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Integral Equations
with Diagonal and Boundary Singularities
of the Kernel
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Abstract. We study the smoothness and the singularities of the solution to Fredholm
and Volterra integral equations of the second kind on a bounded interval. The kernel
of the integral operator may have diagonal and boundary singularities, information
about them is given through certain estimates. The weighted spaces of smooth func-
tions with boundary singularities containing the solution of the integral equation are
described. Examples show that the results cannot be improved.
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1. Introduction, formulation of main results, comments

1.1. Introduction. It is well understood how a diagonal singularity of the ker-
nel of an integral equation of the second kind generates boundary singularities
of the solution (more precisely, of the derivatives of the solution). The case of
one dimensional Fredholm integral equations has been analysed in [1], [6]-[10],
[14], [18]-[20], [23, 24], the case of Volterra integral equations in [2]-[5], [13]
and the case of multidimensional integral equations in [11, 15, 17, 21, 22]. In
the present paper, we examine a more complicated situation for the integral
equation

b
u(z) = / K(z,y)uly)dy + f(x), a<z<b, (1.1)

where K (z,y) is a C™-smooth kernel on ((a, b) x (a,b)) \diag which, in addition
to a diagonal singularity (a singularity as y — z), may have different boundary
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singularities (singularities as y — a, y — b, * — a or x — b). Here —o0 < a <
b < oo, diag = diag(R?) = {(z,y) € R* : z = y}.

To formulate the results of the paper, we first characterise more precisely
the possible diagonal and boundary singularities of the kernel and introduce the
classes of weighted spaces of C"-smooth functions on (a, b) to which a solution
of equation (1.1) occurs to belong. Without proofs, a formulation of main results
of Sections 1.4, 1.6 and 1.7 of the present paper is given also in [16]. Moreover,
[16] contains a formulation of some results about integral equations on a system
of intervals not included into the present paper.

1.2. Classes of kernels. We denote R = (—o00,00), Ry = [0,00), Z =
{...,—-1,0,1,2,...}, Z, = {0,1,2,...}. By ¢, ¢, ¢; etc. we denote generic
constants that may have different values by different occurrances; we write cx
if we want to point out that the constant may depend on the kernel K.

For s € R, denote

1, 5 <0
ks(r) =<1+ |logr|, s=0 (r > 0).
rs, s>0

In the sequel m, k,l € Z, whereas \, u,v € R. Introduce the following three
classes of kernels:

W = W (a,b) x (a,
functions K on ((a, ) a,b)
the inequalities

() (5 ) e

Wrmvidi = Wmvidk (g b) x (a,b)) consists of m times continuously dif-
ferentiable functions K on ((a,b) x (a,b)) \diag that satisfy there, for all k, 1,
k + [ < m, the inequalities

(222w
o)

moreover, in case v < 0, the derivatives (%)kK(az,y) with v+ k <0, k < m,

have continuous extensions onto the square (a,b) X (a,b) including the diagonal;

Wi = Wmvidit (g, b) x (a, b)) consists of K € W™ H that in addition

b)) consists of m times continuously differentiable
) \diag that satisfy there, for all k1, k +1 < m,

S Cm,K"iV—l—k(’x_yD; (12)

< cmschvrr(le =y y —a) (b —y) ™ (13)
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o (1.3) satisfy for all k,1, k + [ < m, the strengthened inequalities

() (G ) e

(y—a)'(b—y) AL >0
1+ |lo a
< el § AN (14
if
T+ Toglb gy LATEZ0

(both inequalities (1.4) must be fulfilled if A +1 >0 and p+1 > 0).
For instance, K € W™¥%0 means that, for 0 < k < m,

‘G%YK@wﬁgmwam—mx

and, for [ > 1, k+1 < m,

' (%)k ((% + (%)l[((x,y)‘ < chvri(le =yl Jiy| ;)ga(z/_l—(ba;(g)—_lyﬂ ’

and ((%)kK(x,y) is continuous on (a, b) x (a,b) if v + k < 0, k < m. Clearly,

W C W00 om0 for v > 0
WA C WA C WA for A < X < i
WA — Yymavidp for A\ < —m, u < —m.

For k =1 =0, condition (1.2) yields

1, v <0
K (2,y)| < emirin(lz —yl) = cmi § 1+ |logla — v=20
|z —y|™, v>0,

thus a kernel K € W™" is at most weakly singular for v < 1; for v < 0, the
kernel is bounded but its derivatives may have diagonal singularities. Most
important examples of weakly singular kernels K € W™" are given by

K(z,y) =g(x,y)lr —y|™ for0<v<l1
K(z,y) = g(z,y)log|z —y| for v =0,

where ¢ is a C™-smooth function on [a,b] X [a,b]. For a K € W™" 0 < v <1,
the kernel K(z,y)(y — a)™*(b — y)™* belongs to W™"»* whereas the kernel
K (z,9)log(y — a)log(b — y) belongs to WA"# for any X, i/ > 0.
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Under the conditions v < 1, A < min{1,1 — v}, p < min{1,1 — v}, a kernel
K € WmviMk s still at most weakly singular in the sense that

b b
sup [ K )ldy < conc s [ e sl - a) A0 — )Py < o
a<z<bJa a<z<bJaq

(see Section 2), and by (Txu)(z) = fabK(x,y)u(y)dy, a <z <b, it is defined
an integral operator Ty : L>(a,b) — L*>(a,b), for m > 1 even Tk : L*>(a,b) —
Cla,b]. Although we assumed in the definitions of the classes W™**# and
Wmvidk that K is given only for (z,y) € ((a,b) x (a,b)) \diag, actually a ker-
nel K € WM and its derivatives up to the order m — 1 have continuous
extensions to ([a,b] x (a, b)) \diag.

1.3. Weighted spaces of smooth functions. For s € R, denote

s<0
s>0

Y

1, s<0
1 *
w(r) = = m, s=0, wi(r)= { (r > 0);

_r
re s>0 Lflogr?
J

for s,t € R, define the following weight functions on (a, b):

wsi(x) = wgi’b) (x) = ws(z — a)w (b — x), w;t(x) = wj(z — a)w;(b— x).

Clearly, wg () < ws(x —a) as * — a, ws(x) < wi(b— ) as x — b, i.e., in the
vicinities of a and b we have, respectively,

aws(z —a) < ws(z) < cws(z —a), cws(b—1z) <wsi(z) < cows(b— ),

where 0 < ¢; < ¢ < 0o. Similar relations hold for w},(x). For s,t € R, we
introduce the following two Banach spaces:

Cmst=C"5t(q,b) consists of m times continuously differentiable functions
w on (a,b) that have a finite norm

[ullmse =D sup wrssm1 pprr () [P (2)]; (1.5)
k:0a<m<b

Cmst=Cm%(q,b) consists of m times continuously differentiable functions
w on (a,b) that have a finite norm

e = supbw2+s_1,k+t_1(x)lu(’“) ()] (1.6)

k:0a<x<

Clearly, C™%(a,b) C C™*!(a,b) C C™**¥ (a,b) for s < s', t < t'. We introduce
also the following standard spaces of continuous functions:
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Cla, b] is the Banach space of contiuous functions u on the closed interval
[a, b] equipped with the norm ||u||c(es = MaXe<a<p |u(2)|;

BC'(a,b) is the Banach space of bounded continuous functions u on the
open interval (a,b) equipped with the norm ||u|| pc(ap) = SUPgeqpes |u(2)];

UC(a,b) is the closed subspace of BC(a,b) that consists of uniformly con-
tinuous functions on (a, b), equipped with the same supremum norm .

Clearly, a continuous function u on (a, b) has a continuous extension to [a, b]
if and only if u is uniformly continuous on (a,b). This enables to identify the
spaces UC(a,b) and Cla, b]. Notice that C"™!(a,b) C C"™>'(a,b) C C[a,b] for
m > 1,s < 1,t < 1 (where we identify Cfa,b] with UC(a,b)). Moreover, it
follows by the Arzela Lemma that the imbeddings

C™**(a,b) C Cla,b], C*'(a,b) C Cla,b] (1.7)
are compact form > 1,s < 1,t < 1.

1.4. Main results. For the sake of a comparison, we first formulate a known
result (Theorem 1.1). Namely, the singularities of a solution to equation (1.1)

are well understood in the case of kernels K € W™V, the result reads as follows
(see [22]-]24]).

Theorem 1.1. Let K € W™"((a,b) X (a,b)) and f € C™""(a,b) where m > 1,
v < 1. Then any solution u € C[a,b] of equation (1.1) belongs to C™"*(a,b).

The main results of this paper concern equation (1.1) with kernels from the
classes WmAH and Wmvids,

Theorem 1.2. Let K € W™ ((a,b) x (a,b)) where
m>1, v<l1, A<min{l,1-v}, p<min{l,1—-r}. (1.8)

Assume that equation (1.1) has a solution u € Cla,b]. Then the following is
true:

(i) if v € Z and f € C™ T H(a b), then u € C™VTAVFE(q b);
(ii) if f € CTv T Hi(a,b), then u € CT™ A (a b) (for v € Z as well as for

veZ).

For v € Z, claim (i) occurs to be wrong. In the following theorem we
strengthen the condition on the kernel.

Theorem 1.3. Let v € Z, K € W™ ((a,b) x (a,b)), f € C™V A He(q b)
with the parameters satisfying (1.8), and let u € Cla,b] be a solution of equa-
tion (1.1). Then u € C™¥ T2 Fh(q b).
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Remark 1.4. Assuming f € C™[a,b| (or even f € C*[a,b]), the solution
of (1.1) still does have the characteristic singularities of functions from the
classes C™¥ AV TR (g, b) or CTTAYTH(g b)), in general, hence the claims of The-

orems 1.1-1.3 cannot be strengthened.

Comparing Theorems 1.2—1.3 with Theorem 1.1, we observe that the bound-
ary singularity factors (y —a)~*~(b—y) *" in estimates (1.3) shift the solution
from C™""(a,b) into C™*TAVFH(q, b) or into C™¥ AR (q b). The singulari-
ties of the solution are stronger for greater A and p. On the other hand, for
negative X\ and p the solution has milder singularities than the functions from
C™""(a,b) have. For instance, if the conditions of Theorem 1.2 are fulfilled
with A\, u < —m — v + 1, then all derivatives up to the order m of the solution
are bounded in (a,b).

Remark 1.5. We have not assumed the uniqueness of the solution w in The-
orems 1.1-1.3. With f = 0, these theorems can be applied to characterise
the singularities of eigenfunctions of the operator Ty corresponding to nonzero
eigenvalues. Recurrently, Theorem 1.1-1.3 are applicable also to generalised
eigenfunctions. Thus we obtain, e.g., the following result from Theorem 1.2: if
K € Wmvde((a,b)x (a,b)), m > 1,v < 1, A < min{1,1—v}, p < min{1, 1—v},
then the generalised eigenspace {u € Cla,b] : (20l — Tx)Nu = 0} of the integral
operator Ty corresponding to a nonzero eigenvalue 2y belongs to C™V AV (q, b)
in case v & 7 and to CT AR (q, b) in case v € Z.

1.5. Proof ideas for the main results. For the proof of Theorems 1.2
and 1.3, we will use the technique of compact operators, see Lemmas 1.6-1.9 be-
low. Note that for 0 < v < 1, Theorem 1.1 is a consequence of Theorems 1.2 (i)
and 1.3 with A = 0, x = 0, so we obtain a new proof of Theorem 1.1 in this
case.

Lemma 1.6. Let E and F be Banach spaces such that E C F densely and
continuously, i.e., E is dense in F and ||u||r < c||u||g for every uw € E. Let T
be a linear operator in F' that maps E into E and, moreover, let' T : E — E
and T : F' — F be compact. Assume that the equation u = Tu+ f with a given
f € E has a solutionu € F. Thenu € F.

This Lemma follows from the Fredholm theory for compact operators; see
[24] for a detailed proof. The claim of the Lemma is clear in the case where
the homogenous eqation v = T'w has only the trivial solution v = 0. But we
avoid this assumption in order to have a possibility to tackle the smoothness
properties of eigenfunctions of the integral operator Tk, see Remark 1.5.

For the proof of Theorems 1.2 and 1.3 we use Lemma 1.6 with F' = Cla, b
and either £ = C™ A *ti(q b) or E = CT i (a b). Due to (1.7), (1.8),
the corresponding imbeddings £ C F are continuous, even compact; these
imbeddings are also dense since C™ T (g b) contains C™[a, b].
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Lemma 1.7. Let K € WO ([a, b] x (a, b)) with v <1 and A, u < min{1, 1—v},
i.e., K is continuous on ([a,b] x (a,b))\diag and

|K(ZL‘,y)| < CKRV(|x_y|)(y_a)_A(b_y)_Mv (xay) S ([a,b]X(a, b))\dlaga (19)
with parameters v, \, p that satisfy
v<l, <1, A+rv<l upu<l, p+rv<l. (1.10)

Then Tk : L*®(a,b) — Cla,b] is compact, i.e., Tx maps L>(a,b) into Cla, ]
and is compact between these spaces.

In the sequel, there will be many quotings to Lemma 1.7, not only in the
proof of Theorems 1.2 and 1.3 but also in the proof of Lemmas 1.8 and 1.9.

Lemma 1.8. Let K € W™ ((a,b) x (a,b)) with parameters m, v, \, i satis-
fying (1.8). Then the following is true:

(i) Ty : CmvTAVER (g b) — C™vHAYTH(q,b) is compact for v & Z;

(i) Ty : CmvHAYTa(q b) — CTVFTAYTR(q, b) is compact (for v € Z as well as

forv & 7).

Lemma 1.9. Let K € W™ ((a,b) x (a,b)) where the parameters m, v, A,
w satisfy (1.8) and v € Z. Then Tx : C™VHATH(q b) — O™y Avte(q b) is
compact.

Theorem 1.2 immediately follows from Lemmas 1.6-1.8, whereas Theo-
rem 1.3 follows from Lemmas 1.6, 1.7 and 1.9. The proof of Lemma 1.7 is
elementary and it is presented in Section 2. The proof of Lemmas 1.8 and 1.9
is a more serious task, we present it in the course of Sections 3-5.

Remark 1.10. Also other reference spaces rather than F' = Cfa,b] can be
used in smoothness results like Theorems 1.1-1.3. According to Lemma 1.6, a
sufficient condition on the Banach space F' for a modifying of Theorems 1.1-1.3
reads as follows: C™V+# ' +i(q b) C F densely and continuously, 7' is compact
in F. For instance, for A < 0, u < 0, the space F' = L'(a,b) is suitable
whereas in the case of arbitrary A and p, the weighted space F' = LYA+#+(a, b)
equipped with the norm ff lu(y)|(y — a)~*+ (b — y)~*+dy may be used; here
Ap = max{\, 0}, py = max{u,0}.

1.6. Application to Volterra equations. The Volterra integral equation

u(z) = /:v K(z,y)u(y)dy + f(z), a<z<b, (1.11)

can be considered as the Fredholm integral equation (1.1) in which K(x,y) =0
for a < z <y < b. The classes W™ ((a,b) X (a,b)), W™ ((a,b) x (a,b)) and



494 A. Pedas and G. Vainikko

Wmvidk((a,b) x (a,b)) have sense for such kernels and Theorems 1.1-1.3 hold
for equation (1.11). These results can be specified if f(x) has no singularity at
x = b and K (z,y) has no singularity at y = b, since then also the solution u(x)
of (1.11) has no singularity at = = b. Denote

A:Aa,b:{(xay):a<y<$§b}

and introduce the following classes of kernels for equation (1.11):

WY (A) consists of m times continuously differentiable functions K on A
that satisfy there for all k1, k + [ < m, the inequality (1.2);

WMV (A) consists of m times continuously differentiable functions K on
A that satisfy there for all k,1, k£ 4+ [ < m, the inequality

oN' (o o\
B I (AR I 4
(ﬁx) (GI v 6y> (z,9)
. o\ k .
and lim,_,, (%) K(z,y)=0if v+ k<0, k <m;
WmVA(A) consists of K € W™A(A) that in addition to (1.12) satisfy

oN' (o o\
— —+— | K
‘ (5) (3 3y) o0
We modify also the weighted spaces: C™*(a,b] and C}™*(a,b] consist of m
times continuously differentiable functions u on (a,b] that have a finite norm

< e kvt —y)(y —a) (1.12)

(y —a)

if A1 > 0.
1+ |log(y — a)|

< i Rusi([T—Yy|)

m
[ullms =D sUp wisr(z — a)[ul® ()]
=0 a<x<b
and
m
lullfs = sup wipy (@ — a)u® ()],
5—0 a<x<b

respectively. The specifications of Theorems 1.1-1.3 read as follows.

Theorem 1.11. Let K € W™ (A) and f € C™"(a,b] where m > 1, v < 1.
Then equation (1.11) has a unique solution and it belongs to C™"(a,b].

Theorem 1.12. Let K € W™A(A) wherem > 1, v <1, A <min{l,1 — v}.
Then equation (1.11) has a unique solution u and the following is true:

(i) if v ¢ Z and f € C™"*a,b], then u € C™ T (a,b);
(ii) if f € C™ M a,b], then u € C™ X (a,b] (for v € Z as well as forv ¢ 7).
Theorem 1.13. Let K € W™ (A), f € C™" M a,b] wherem > 1,1 > v €

Z, A <min{l,1—v}. Then equation (1.11) has a unique solution and it belongs
to C™v X (a, b].
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Theorem 1.11 is known, see [5] where even a nonlinear problem has been
considered. Theorems 1.12 and 1.13 are consequences of Theorems 1.2 and 1.3
and a prolongation argument. Namely, we first extend f from (a, b] to (a,b+ 4],
0<d< bﬁ, using the reflection formula (see, e.g., [12])

m

fl@)=> "dif(b—j(x—b), b<z<b+3, (1.13)

J=0

where d; are chosen so that the C"-smooth joining happens at z = b:

> (=i)kdi=1, k=0,1,...,m. (1.14)

j=0

Using (1.13), (1.14) we also extend K from A, p to A, pys along the lines y—a =
v(z —a), 0 <y < 1. The extension procedure preserves f in C""(a,b+ 6] and
K in Wm’”?A(Aa,bJr(;) or in the corresponding x-labelled classes. After that we
apply Theorems 1.2 and 1.3 to the prolonged problem (1.11) fora < x < b+
to be sure that no singularity of the solution at x = b appears.

1.7. Boundary singularities of the kernels with respect to x and y. The
kernel classes W™ and WVid# admit boundary singularities of K(x,y)
with respect to y but not with respect to x. Here we demonstrate how to
treat the integral equations with kernels that have boundary singularities with
respect to both arguments. For the brevity we confine ourselves to the problem

b
U(x)Z/(x—a)_h(b—x)_“lf((x,y)U(y) dy+(x—a) ™ (b—z) 7" f(z), (1.15)

a

a < x < b, where \; and p; are real parameters, K € W™ ((a,b) x (a,b))
and f € CmwvHAtAvvtati(g b), With respect to the unknown function

v(z) = (x — a)™ (b — z)" u(x), (1.16)

equation (1.15) takes the form

ow) = [ Ko=) M b-g) Moy + f@). (17

This is an equation of type (1.1) with the kernel K (z,y) = K (z,y)(y—a) > (b—
y)~* which has boundary singularities only with respect to y. Moreover,
K € Wmvidk implies K € WmiAAuitin g0 we may apply Theorem 1.2 to
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equation (1.17). Under conditions m > 1, v < 1, A + Ay < min{l,1 — v},
p~+ 1 < min{l,1 — v}, we obtain for the solution v of equation (1.17) that

v e O It (0 B) if y ¢ 7 (1.18)
v € ORI IR (0 BY i Y € 7, (1.19)

From (1.16), (1.18), (1.19) we can determine the boundary singularities of
the solution u to equation (1.15). Also Theorem 1.3 can be applied to equa-
tion (1.17) assuming that K € Wi vt for A} < 0, py < 0, this inclusion
is a consequence of the inclusion K € WmVids,

Similarly, the Volterra integral equation
u(z) = / (x — a)_’\lK(x, Y)u(y)dy + (z — a)_’\lf(x), a<xz<b (1.20)

with K € WA (A), fe Cmv AL (g b] can be reduced to equation of the type
(1.11) with the kernel K (z,y) = K(z,y)(y — a)~ of the class W™V A1(A),
and Theorems 1.12 and 1.13 can be applied.

2. Compactness of Tk : L>(a,b) — Cla, b

Here we prove Lemma 1.7. To this end, we first establish an estimate for the
integrals of the type f;f |K(x,y)|dy.

Lemma 2.1. Let K satisfy the conditions of Lemma 1.7. Then for any x1,z9 €
[a,b], ©1 < xo, there holds

2 (x2 _ xl)min{l,l—)\,l—u}’ v <0
sup [ K (2, )l dy < e { cows — my)mnlsieAi=end g (2.0)
a<x<bJgz; (172 . xl)min{l—y,l—u—)\,l—u—u}7 0<v< 1,

where in case v = 0 the parameter ¢ € (0,min{l — A\, 1 — u}) may be chosen
arbitrarily and c. = cep—q = SUPy_<p_o (1 + |log7|).

Proof. Introduce a cutting function o € C|a, b] with the properties

0<o(y)

IN

1 fora<y<b
o 1 fora<y<a+si(b—a) (2.2)
o(y)=0 fora+2(b—a)<y<b.

Denote K~ (x,y) = K(z,y)o(y) and Kt (z,y) = K(x,y)(1—0(y)). Due to (1.9),
(K™ ()| < eru(lz —yl)(y — @)™ and | K (2,y)] < cr(lz = y[)(b—y)™". To
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prove (2.1), it is sufficient to establish that

2 ( (2 — a)min{LI=AY v<0
s [ s € e e i, o0 @3
(2 — ap)mintlnl=v=M g <p <1
o (25 — xp)min{bl-u} v <0
sup / Kt (2, y)|dy < ¢} co(wy — ay)minti=sl-—ent ) =0 (2.4)
asr<b Jay | (2, — 70 i e DS | I VP

We prove (2.3); the second inequality, (2.4), follows by the symmetry argument.
We treat the cases ¥ < 0, v =0 and 0 < v < 1 separately.

In the case v < 0 we have k,(|]z —y|) = 1, and for z € [a, V],

[ ety e [Cw-aay

1 1

,{IQ—I'L /\SO
C

<
- (my —a)'™ — (2 —a)'™, 0<A<1

and (2.3) follows.
In the case 0 < v < 1 we have k,(|z — y|)= |z — y|™", and for z € [a, b],

[ K ey <e [ — gl -y
x1 1
If A <0 we can continue
x2 €2
[ K @aldy<e [ la = al vy < o - ),

where the constant ¢ is independent of x. If A > 0 we use the well known
inequality st < % + Y for s,t € Ry,p > 1,]13 + % = 1. With s = |z — y|™,

t=(y—a) p= —”Jl:’\, q= —”’;’\ it yields
—v —-A v —v—A A —v=A
_ _ < _ (=
eyl y—a) = e =y sy —a)

and

T2 T2 v A
K~ dy < —— |-y ———(y—a) ) d
/ | (x,y)ly_C/ <V+Ax Y| +V+>\(y a) >y

1 1

S C/(CCQ . xl)lfuf)\

Y

where the constant ¢’ is independent of = € [a,b]. This completes the proof
of (2.3) in the case 0 < v < 1.
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Finally, in the case v = 0 we estimate
Ro(le —yl) =1+ |loglz —y|| < ez —y|™, 0<e<min{l,1—A\1-pu},
and obtain (2.3) for » = 0 from the case 0 < v < 1. O

Proof of Lemma 1.7. Having inequality (2.1), the proof of Lemma 1.7 is a sim-
ple task. First of all, (2.1) with 1 = a, 5 = b tells us that Tk is bounded in

the space L>(a,b): ||Tk|| £ (a,p)—L1(ap) = SUPgcspep fab |K(x,y)|dy < co. Take a
cutting function 7 € C[0, 00) such that
0<7(r)<1 forr >0
T(r)=0 for0<r<3 (2.5)
T(r)=1 forr>1,

and introduce for n = 1,2, ... the kernels

Kn(z,y) = 7(n(y — a))7(nb —y))7(n(lz — y)) K(z,y), a<zy<b

The kernel K, (z,y) is continuous on [a, b] X [a, b], hence the corresponding inte-
gral operator Tk, maps L*(a,b) into C|a, b] and the mapping Tk, : L>(a,b) —
Cla, b] is compact. Further, due to (2.1),

| Tk =Tk, || Lo (a,6)—L[a,8]

b
= sup / K (z,y) — Kn(z,y)|dy

a<z<b

a+% b mhﬂx+%b}
< sup / +/ + |K(z,y)|dy — 0 asn — oo.
a b—L

a<z<b meﬂux—%}

Hence, for u € L*(a,b), the function v = Txu lives in Cla,b] as the uniform
limit of the continuous functions v,, = Tk, u. Moreover, Tk : L*(a,b) — Cl|a, b|
is compact as the operator norm limit of compact operators Tk, : L*(a,b) —
Cla, b]. O

Remark 2.2. If K € W% ((a,b) X (a,b)) with v < 1, A\, u < min{1,1 — v}
then Tx maps L*(a,b) into BC(a,b) and is bounded between these spaces.
(The difference with Lemma 1.7 is in the relaxed continuity condition.)

Remark 2.3. Assume (1.9) with v < 1, A < 1, g < 1 (but not necessarily
v+A<l,v+pu<1asin (1.10)). Then for a <z < b,

b
/!K(x,y)ldy
1

, vr+iA<l1 1, v+pu<l
<ecg 1+ |log(x —a)|, v+A=1)+cq 1+]loglb—2)|, v+pu=1
(x —a)t=" A v+A>1 (b—x)t-vr v+ >1
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3. Equivalent norms of C"*(a,b) and C;"*(a,b)

In the proof of Lemmas 1.8 and 1.9 we use simplified norms of C™**(a,b) and
C™**(a,b) which are equivalent to the basic norms (1.5) and (1.6).

Lemma 3.1. Let m > 1, s,t € R. For u € C™%*(a,b), k =0,1,...,m — 1,
there holds

sup wk+s—1,k+t—1(x)|u(k)(x) - U(k)($0)| < ¢ sup wk+s,k+t(x)|u(k+1)(x)|v (3.1)
a<z<b a<z<b

where xq is a fived point of (a,b), e.g., To = “F°.

The proof is straightforward and omitted. Introduce the seminorms
|ulk,s = sup wk+571,k+t71($)‘u(k) ()]
a<x<b
\U|Z,s,t = sup w2+571,k+t71($)‘u(k) ()], k=0,1,....,m.

a<z<b

Thus the norms (1.5) and (1.6) can be written in the form ||u||msr = > g [tlr,se
and ||ully, o, = > ig lulf .. With the help of Lemma 3.1 and a similar result
for u € C™'(a,b) we can prove the following results.

Lemma 3.2. Form > 1, s,t € R, the basic norm ||ul|ms+ of C™**(a,b) defined
in (1.5) is equivalent to the norms

[l = max |u(@)|+ [ulmse and |l = max [u(@;)] + [ulms
™ a/ <z<b' ” i=1,....,m
where [a',b'] C (a,b) is an arbitrary closed subinterval and 1, ..., x,, are arbi-

trary m points of it, o’ < xy < ... <z, <V
Lemma 3.3. For m> 1, s,t € R, the basic norm |Jull}, ., of C7"**(a,b) defined
in (1.6) is equivalent to the norms

!
m,s,t

*
m,s,t

and lully, = max |u(z)]+ |u
= i=1,...,m

*

HU| m,s,t

= Joax |u(z)[+|ul

-----

where [a', 0] C (a,b) is an arbitrary closed subinterval and xy,...,x,, are arbi-
trary m points of it.

Lemma 3.4. Let m > 1. The following conditions (i) and (ii) are equivalent
for a set M C C™**(a,b):
(i) M is relatively compact in C™>'(a,b);
(i) the functions v from M are m times continuously differentiable in (a,b),
uniformly bounded on a subinterval [a', V'] C (a,b) (or at least at m points
T1, ..., T € (a,)), and the set {wnmys 1.mie—10™ © v € MY} is relatively
compact in BC(a,b).
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Similarly, the following conditions (') and (ii’) are equivalent for a set M C
C5(a,b):
(i) M is relatively compact in CT**(a,b);
(ii") the functions v from M are m times continuously differentiable in (a,b),
uniformly bounded on a subinterval [a’,V'] C (a,b) (or at least at m points
T1, .., & € (a,)), and the set {w}, 0™ 0 v € M} is relatively
compact in BC(a,b).

Proof. These claims are obvious consequences of Lemmas 3.2 and 3.3. O

4. Differentiation of weakly singular integrals

First we recall a well known result about the closedness of the graph of the
differentiation operator.

Lemma 4.1. Let v, € C'(a,b), v, — v, v/, — w uniformly on every closed
subinterval [a’, V] C (a,b). Then v € C(a,b) and v' = w.

The following differentiation result is also known at least partly, see [22]-
[24]. We equip it with an elementary proof based on Lemma 4.1.

Lemma 4.2. Assume that g(x,y) is a continuously differentiable function on
((a,b) x [a,b]) \ diag and satisfies with a v € (0,1) the inequalities

0

0
<z —y|™ = 4= < clz—y|™. .
l9(z,y)| <clz—y|™ and ‘ (am + ay) g(rc,y)‘ < clz —y| (4.1)

Then the function f;g(x,y)dy is continuously differentiable in (a,b) and

a [owwir=[[(Z+2) sy ste.0) -sen). (2

Proof. For functions g that are continuously differentiable on (a,b) X [a, b], in-
cluding the diagonal, formula (4.2) is obvious. Let g satisfy the conditons of
the lemma. Take a cutting function 7€ C'[0, c0) that satisfies (2.5), and define
gn(z,y) = T(n|x — y|)g(x,y), n = 1,2,.... The functions g, are continuously
differentiable on (a,b) x [a,b] and equality (4.2) holds for them true: denoting

vn(x) =[P 7(nlz — y|)g(z, y)dy, we have

o) =2 [ role = yl) (e, v)dy

— / 7(nlz —y|) (% + a%) 9(z,y)dy
+ T(n(m — a))g(m,a) — T(n(b — :v))g(x,b), a<zx<b.



Integral Equations 501

We took into account that (2 + (%)T(Mx —y|) = 0. With the help of (4.1) we
find that

v () — /ab ((% + a%) 9(x,y)dy + g(z,a) — g(z,b), wva(z) — /abg(fc, y)dy

as n — oo uniformly on every closed subinterval [a’, b'] C (a,b). By Lemma 4.1,

the function fab g(x,y)dy is continuously differentiable on (a,b) and (4.2) holds
for it. O

We are ready to derive a formula for the differentiation of Txu. Assume
that K satifies the conditions of Lemma 1.8, i.e.,

K e WM ((a,b) x (a,b)), m>1, v<1, \p<min{l,1—v}, (4.3)
and take an arbitrary function
w € C™TAT (g b) or u € CTTAT (b)), A\ p < min{l,1—v}. (4.4)
Denote by k' > 0 be the greatest integer that is less than 1 — v, i.e.,
K=[1-v] for véZ, K'=-v forvel, (4.5)

where [1 — v] is the integer part of 1 — v. In particular, ¥/ = 0 in the most
interestig cases where 0 < v < 1. We assume now that m > k' (as we will
see, the case m < k' is trivial). Due to condition (1.3) with [ = 0, the kernel
(%)k K(z,y) is still weakly singular and we may compute (d%)k (Tku)(z) by
differentiating the kernel under the integral,

(%)kl(TKU)(x) = /ab (%)le(x,y)U(wdy;

recall that (a%)kK(x,y) is continuous on (a,b) x (a,b) for k < k’. To compute

(d%)m(TKu)(a;) = (%)mk/ /ab (%)kl}f(% y)u(y)dy

we take a cutting function 7 € C™[0, 00) that satisfies (2.5). Fix an arbitrary
point 2’ € (a,b) and denote ' = 1p(z’) where p(z) = min{z — a,b — z} is
the distance from z € (a,b) to the boundary of (a,b). For |z —2'| < 17/, we
represent

[ (2 stemoan= [ (1) (2) ket
+ /ab {1 sy <|l° - y|) } (a%)k/}((:c, y)u(y)dy.
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The singularity at x = y is cut off in the first integral on r.h.s., and we may

apply ((%)mfk/ under the integral. In the second integral on r.h.s., the coefficient
function 1 — 7 (|2 — y|) vanishes for |z —y| >+, in particular, for y satisfying
ly — 2’| > 3¢ (since |# — 2’| < $r’); the boundary points a and b with their
11'-neighbourhoods belong to the region where 1 — 7 (1 |z — y|) vanishes. Thus
in the second integral the boundary singularities caused by K(x,y) are cut off.

Due to estimate (1.3) , differentiation formula (4.2) may be applied obtaining

2L () ()
SRR [ERATE e

Recall that 1 — T(%\x — y|) = 0 for y = a and y = b, so the boundary
terms of the formula (4.2) vanish in our case; we also took into account that

(% + %)T(%\x — y|) = 0. In its turn, the last integral may be differentiated in

. . / .
the similar manner. So for |z — 2| < % we obtain

() T | |
) @ e
() (2 +8%)’”"“'{(%)’“'K@,wu(y)}dy.

Differentiating the product of functions by the Leibnitz rule, taking the result
at point x = 2’ but writing again z instead of x’, we arrive at the formula

k/
0

(=55 ()t (3) o
L)

o o\ o\ .
. - 4~ _ ()
{(aﬁaﬂ (5) K<x,y>}u (),
a <x<b, where

j=
o m—k'—j |$—y| . /
Tj(%y)—{(%) 7'( " )L . j=0,....,m—Kk. (4.7)

Let us summarise the result.




Integral Equations 503

Lemma 4.3. For K and u satisfying (4.3) and (4.4) with m > k' (where k'
is defined by (4.5)), the derivative ()™ (Twu)(x) erists in (a,b) and can be
represented by the formula (4.6) where 7;(x,y) is defined in (4.7) and the cutting
function T € C™|[0,00) satisfies (2.5). In the case m < k' we simply have

(%)W(Tw)(x) = /ab (%)mf((m, yuly)dy, a<xz<b.  (48)

5. Compactness of Tx in C™" A+ (g b) and Cf“”“’”“(a, b)

Let us multiply both sides of (4.6) by the weight function Wy, 4p4r—1m+v+u—1
corresponding to (&)™ (Txu)(z). The result can be written in the form

m
uhn+V+A—1Jn+V+u—ll) j}(u

m—k'

_ ,
= Z (mj > (Tj“+Sj(wj+u+/\—1,j+u+u—1D]U))

J=0

(5.1)

where D = d% is the differentiation operator and
b k' +j
(Tju)(z) = / Wit A—1mtvtpu—1(2)T5(2, y) (%) K(z,y)u(y)dy  (5.2)
sy = [ el £y (2 i)
! a wj+u+)\—17j+v+,u—1(y) P(ﬁ)
o\ o aN""
' { (@) (% + a_y) K(%y)} v(y)dy.

The proof of Lemmas 1.8 (i) and 1.9 can be reduced to the study of the mapping
properties of T; and S;. In (5.1), wjtpsr—1j4v+u—1(y) =1 for j =0 and

(5.3)

S0 w101 NP0 O] < Nllmrirss 5= 01,0,
a<y<b

Recall that the imbedding C™*+***#(q, b) C Cla,b] is compact. Taking into
account also Lemmas 3.2 and 3.4 we observe that in order to prove the com-
pactness of the operator Ty in C™V A TH(q, b), it is sufficient to establish that

So,T; : BC(a,b) — BC(a,b), j=0,1,...,m—Fk', are bounded (5.4)
S;: BC(a,b) — BC(a,b), j=1,....,m—Fk, are compact.  (5.5)

In the sequel we realise (5.4), (5.5) for v ¢ Z but for v € Z we slightly modify the
program: while T occurs to be unbounded in BC(a,b) for v € Z in general, we
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prove that under condition K € WM ¢ neverteless, T : O™V AT (g, b) —
BC(a,b) is compact.

To prove Lemma 1.8 (ii), we have to examine Tk also in the space
Oy tAvti(a,b). To do this we multiply (4.6) by w},,, s 1.m4ps,10btaining
the formulae quite similar to (5.1)—(5.3): everywhere the weight functions
Wjty4a—1,j+v+u—1 are replaced by their counterparts wy,, \ 1 4,4, 1- We de-
note the corresponding integral operators by 77, 57, j = 0,...,m. We realise
the program like (5.4), (5.5) for T}, S5, j = 0,...,m, this time without any
exception.

Lemma 5.1. Assume that K € W™ ((a,b) x (a,b)), m > k' +1, v < 1,
A p < min{l,1 —v}. Then the operators S; and S}, j = 1,...,m — k', are
compact in the space BC(a,b), i.e., (5.5) holds true (independently of whether
veZorv¢Z). Further, the operator Sy is bounded in BC(a,b) if v ¢ Z (and
may be unbounded for v € 7Z.) whereas the operator S§ is bounded in BC(a,b)
independently of v.

If K € Wmidi((a,b) x (a, b)), m > K +1, v < 1, \,p < min{1,1 — v},
then Sy is bounded in BC(a,b) also for v € Z.

Proof. Denote by H; the kernel of the integral operator S;, 0 < j <m — K/,

Hj (:C’ y) _ wm‘+l/+>\—1,7?1+l/+,u—1(x)
Wi4v4A—1,j4+v+pu—1 (y)

{ (BB (3 ) e

For j =1,...,m — k' we check that H; is weakly singular and obtain (5.5) on
the basis of of Lemma 1.7. The order of derivatives of K involved in H; is m—j,
and those have a continuous extension to ([a,b] X (a,b)) \diag for j > 1, hence
the same property has H;. Estimate (1.3) yields

o\ /7o o \vF
’(%) (%*a—y) K“’y)\

< chppr (|2 —y))(y — a)

—A—m+k'+j (b o\ —H—m+k ]

)

To separate the boundary singularities, introduce the operators S; and S;rwith
the kernels H; (x,y) = H;(z,y)o(y) and H} (z,y) = H;(x,y)(1 - o(y)), respec-
tively, where the cutting function o € Cla, ] satisfies (2.2). Since S; = S; +S7,
it is sufficient to establish the claims of the Lemma for S and Sj+ separately,
or thanks to symmetry, for S; only. We have

|H} (z,y)]
m—+v — - 2 - Y s
§cw +v+A 1('7: a) {1_7_< ’.Z’ yl)}/i,,+k/(|$—y|)(y—a) A—m—+k'+j

Wjyyr—1(y — a) p()
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|H (2, y)|
mtvtu—1(b — 2z — I
Scw +r+p 1 ) {1_7_( k2 y|>}/il,+k/(]:c—y])(b—y) pmtk +j

Wisv+u-1(b—y) p(z)

In the sequel we confine us to the examining of H; (z,y), j =0,...,m — k',

;From definition of k" (see (4.5)) we observe that v + k' = 0 for v € Z and
0<v+k <1forv¢Z, thus k,p(|x — y|) has at most a weak singularity on
the diagonal,

1+ |loglz—yl|, vez
|z —y| 7, v¢l.

ﬂwmﬂx—yDSC{

Further, 1 — T(%) = 0 for |z —y| > @, hence the integration interval
in (5.3) actually is (m — @, T+ %x)) C (a,b). In this subinterval, the quantities
p(x) and p(y) are of the same order, namely,

@gp(y)SB@ forye(x—p<$>,x+p(x))- (5.6)

Hence similar relations hold for the weight functions: with some positive con-
stants ¢; and co,

AWjtpir-1(T — a) < wjppr1(y — a) < wjpppa(@—a), j=0,...,m—Fk.

Thus

[Hy (2, y)| < chy (@)kpw(z—yl), G=0,....,m—=F,

where

h]_ (.T) _ wm-l—V-l—)\—l(:E - CL) (CL’ o a)—A—m—i—k’—Fj‘
Wjtvir-1(z — a)

Depending on the signs of m+ v+ A —1and j+ v+ A — 1, we have 6 cases to
specify h; (z).

Case I: m+v+A—1>0,7+v+A—1>0 (in this case j > 1 since
A <1—v). Then

— m—j —A—m+k'+j k=X
hi(z) = (v —a)" (v —a) T = (- a)
H7 (2,y)] < cw — a)" k(|2 — yl)

or, once more exploiting (5.6), |H; (z,y)| < ckp (|o—y|)(y—a)¥ =, for (z,y) €
[a,b] x (a,b) \ diag. For the singularity orders we have (cf. (1.9), (1.10))

v+ k<1, —K+X<A<l, (w+K)+(-K+N=v+Xr<1,
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thus H; (7,y) is a weakly singular kernel satisfying the conditions of Lemma 1.7,
and by Lemma 1.7, 57" is a compact operator in the space BC'(a,b).

Case 2: m4+v+A—1>0,j+v+A—1=0 (again, j > 1 in this case).
Similarly as in case 1 we find that

- — m+v+i—1
hy (z) = (1 +[log(z — a)|)(z — a)" ™z —a
= (L +|log(z — a)[)(z — a)*"~
[Hy (2,9)] < et (2 = yl)(y — a)* 77,
(x,y) € [a,b] x (a,b)\diag. We estimated 1+ |log(z —a)| < ¢.(x —a)~* choosing
a small € > 0 so that still A\+¢ < 1, A+ v +¢ < 1. Then the conclusions are
similar to case 1: S is compact in the space BC'(a,b).

Case 3: m+v+A—1>0,j+v+ A—1<0 that implies

)—)\—m-l—k’-l—j

- _ m4v+A—1 —A—m+k'+j _ v+k'4+5-1
hi (z) = (x — a) (r —a) T=(x—a)Y
[H; (2,9)] < chvw(jo =y (y —a) 7
(x,y) € [a,b] x (a,b) \ diag. Now the singularity parameters satisfy
V+k/<17 _(V+kl+j_1)§1_]7 (V—i—k/)—(V—i—k/—l—j—l):l—],

and on the bases of Lemma 1.7 , for j > 1 the operator S} is compact in the
space BC(a,b). For j =0, v ¢ Z, we have on the basis of (5.6)

b
sup [ Hy (epldy < ¢ swp (o= [ ooyt < oc
a<z<bJa a<z<b y—x| <22

telling us that Sy is bounded in BC'(a, b). On the other hand, for j =0, v € Z,
we have v + k' = 0 and

sup/|H (x,y)|dy < ¢ sup (x —a)” 1/ ()( + |log |z — yl|)dy = o0
ly—a|<252

a<x<b a<z<b

warning us that S; need not to be bounded in BC(a, b). The situation changes
if K € Wbk since A+-(m—k') = m~+v+X > 1, we may use the estimate (1.4)
obtaining for a <y < a+ 2(b— a) (where o(y) is supported, see the definition
of Hy)

a k’/ a a m—k’
() () e

Due to (5.6), 1+ |log(y — a)| < 1+ |log(z — a)|, and
1
(x —a)(1+ |log(x

a)*/\fmqtk’

1+|10g( a)l

<c(1+]10g]x—y|]

|Hy (z,y)] < ¢ a))) (1+|10g\x—y||)
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for (z,y) € [a,b] x (a,b) \ diag that implies the boundedness of Sy in BC(a, b):
b
sup | |Hy (z,y)|dy

a<z<zo Ja

1
S T o)y 81D <
Case 4: m+v+A—1=0,74+v+A—1=0 (hence j = m > 1). Then
h; (z) = (x—a) " = (z — a)¥~* that is same as in case 1, and S} = S,
is compact in BC(a, b).

Case 5 m+v+A—1=0,7+v+A—1<0. Then

1 S
ho — N A—m+k'+j
i (@) =17 log(z — a)| (z—a)
_ 1 v+k'+5—1
= T oge—a© Y
(y _ a)u+k’+j—1

[Hj (z,y)] < chpw (o = yl)

?

1+ [log(y — a)|
(x,y) € [a,b] X (a,b) \ diag. This is somewhat stronger estimate than in case 3
due to 1 + |log(y — a)| in the denominator. The conclusions are same as in
case 3: for j > 1, the operators S are compact and S; is bounded in BC(a, b);
now even in case v € Z we do not need the condition K € W™"* when S; is
treated.

Case 6: m+v+A—1<0,j+v+A—1<0. Then

) AL
hi(z) = (v —a) k' +j
1 (.9)| < el = yl) (g = a) >,

(x,y) € [a,b] % (a,b)\diag. In the present case the singularity parameters satisfy
strict inequalities

v+ k<1
Adm—kK—j=m+v+A-1)—w+k)—j+1<1—j
v4+E)Y+A+m—K—j)=(m+v+r-1)—j+1<1—j
and S; : BC(a,b) — BC(a,b) is by Lemma 1.7 compact for j > 1 and Sy is
bounded (for v € Z as well as for v ¢ Z) .

We completed the proof of claims of Lemma 5.1 concerning the operators .S.
Now consider the operators S7 having the kernels

w:nJrqu)\fl,erquufl (z}

Hi(z,y) =

WLy 1 jttp—t (y)

{=CEN G G ) e
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Separating the boundary singularities similarly as above we arrive at the esti-
mate

H; ()| < b @kprnel(z —yl), j=0,ccom—K

—A—m+k'+j

h—,*(x) _ w:n+u+)\fl(l‘ - a)

~ (z —a)
’ Wiy a1 (T —a)

Depending on the signs of m+v + A —1and j + v + p — 1, we now have 3
different formulae for h;"*(z).

Case 1" m+v+AX—12>0,j+v+A—12>0 (implying 7 > 1). Then
h; " (x) coincides with h; () in case 1 and the result is that S} is compact in
BC(a,b).

Case 2: m+v+A—12>0, j+v+A—1<0. Then the estimate of h; ()
is comparable with case 3 but now we have the supplementary logarithm in the
denominator. The S5 *, j > 1, are compact in BC(a,b), and S, is bounded
in BC(a,b).

Case 3: m+v+A—1<0,j+v+A—1<0. Then hj_’*(x) coincides with
h]_(x) in case 6 and the result is that S; . j > 1, are compact and S, *bounded
in BC(a,b).

The proof of Lemma 5.1 is complete. O

The last assertion of Lemma 5.1 concerning the boundedness of Sy for v € Z
is wrong without the condition K € WmVite,

Lemma 5.2. Assume that K € W™ ((a,b) x (a,b)), m > k' +1, v < 1,
Ap < min{l,1 — v}, Then the operators Ty, j = 1,...,m — k', and T7,
j=0,....,m—Fk, are bounded in BC(a,b). For v & Z, also Ty is bounded in
BC(a,b); for v € Z this is true if m+v+A—1<0, m+v+pu—1<0.

Proof. Denote

K+j
Ri(z,y) = 1j(x,v) <%> K(z,y), 7=0,...,m—Fk,

where 7; is defined by (4.7). Thus (see (5.2))
b
(T0)(2) = tsserca (o = @)imssysb = ) [ Ryas)uty)dy

Similarly as in the proof of Lemma 5.1 we represent R;(z,y)=R; (z,y)+R; (z,y)
where R (x,y) = R;j(z,y)o(y) and RS (x,y) = R;(z,y)(1—0(y)). We show that
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for j > 0if v ¢ Z and for j > 1 if v € Z, the following inequalities hold for
a<zx<b:

b
wneviss(o = a) [ IRy y)ldy < e
a (5.7)

b
Wi (b— ) / R (z,y)ldy < c.

Clearly, (5.7) implies that 7} is bounded in BC(a, b) as asserted in the lemma.
Due to symmetry, it suffices to establish the first one of inequalities (5.7).

Let us estimate |R; (z,y)|. For 7;(x,y) defined in (4.7) we have

~(m—k'—)
Xz kg
menl<e(?S) L g mml 0L 6

Moreover, for j < m — k/,

suppry © {(e.0) € ont] x fa ] s o =yl = 20

in particular, for j < m — k'

suppt; C {(x,y) € [a,b] X [a,b] : % <lz—y| < @} (5.9)

allowing to rewrite (5.8) in the form

17 (2, )| < clw —y|~ "D =0, ,m—F

(for j = m — k' this estimate holds since 7,,,_/(x,y) = 7(2%).
Since ¥’ +v =0forv € Z and 0 < k' +v < 1 for v ¢ Z, estimate (1.3)
yields

o \"" -
(5) En|<do—sl -0 0=

for j > 0if v ¢ Z and for j > 1 if v € Z. Composing the last two estimates we
obtain |R; (x,y)| < ¢z —y|™ " (y — a) "o (y); we took into account that o(y)
cuts the singularity (b — y)~* off. Now

b
/ IR (2, y)ldy < / 2 =y "y — a) My
a (a,d)\{y: |lz—y|<p(x)/4}

<c |z —y| ™"y — a) My,

/(avd)\{yi lz—y|<(z—a)/8}
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where d = a + 2(b — a). With the change of variables y — a = (z — a)z we find

/ |z —y|™ "y — a) My
(@ d)\{y: [7—y|<(z—a)/8}

_ (.77 o a)mu)\Jrl/ ‘1 o Z|71/7m27/\dz
(0,(d—a)/(z—a)\{z: [1-2|<4}

d—a

< ez —a)TmTVTAM (1 + / o z_m_”_Adz)
9

8
(x —a)™™ 1 mtrv4+A-1<0
<d@—a) M 4 |log(r —a)], mAv+A—1=0
1, m+v+A—1>0

1, m+v+A-1<0
=d1+log(x —a)l, m+v+A—1=0
(x—a) ™™ M m4+rv4+A-1>0
J
wm+u+>\fl($ - CL)'
We obtained the first one of inequalities (5.7).

In the case v € Z, j = 0, estimate (1.3) yields

| (a%)klf((:v, y)

Using (5.8) and (5.9) we may estimate directly

< cly —a) M (b—y) (1 +log |z —yl).

/ IRy (2,)ldy < cplx) ™™ *=>1(1 + |log p(z)]),
@ (5.10)

b
/ RS () ldy < epla) ™™=+ (1 + [log p()]).

Form+v+A—1<0, m+v+ p— 1< 0 we still have (5.7), and T} is bounded
in BC(a,b) (butitisnotsoif m+v+A—1>0o0rm+v+pu—1>0).

Now consider the operators

(Tru) (&) = Wiy oys (T — Oy y(b— ) / R;(z, y)u(y)dy.

Since wi(r) < wy(x), we have |(T;7u)(x)| < |(Tju)(x)|, and TF is bounded in
BC'(a,b) in all cases where Tj is, in particular for j > 1. For j = 0, (5.10)
implies

b
Wy oxr(@ — a) / Ro(z.y)ldy <c, a<z<b
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hence also T, ™, Ty"* and T = T, + T, are bounded in BC(a, b). O

Lemma 5.3. Assume that K € W™ ((a,b) x (a,b)), m > k' +1,1 > v € Z,
A\ p < 1. Then Ty: C™v+ v FH(q,b) — BC(a,b) is compact.

Proof. Let u € C™v+*+i(q b) C Cla,b]. With the designations from the proof

of Lemma 5.2, we represent

/ Ry (2, y)u(y)dy = / Ry (2, y)[uly) — u(a)]dy + u(a) / Ry (x,y)dy.

To prove the Lemma, we show that
(i) the operator R~ defined by

b
(R )(2) = Wi (z — a) / Ry (2, ) uly) — ula)ldy

maps O™V AT b) into BC(a,b) and is compact between these spaces;
(ii) ¢~ € BC(a,b) where the function ¢~ is defined by

b
¢~ () = Winypyr1 (T — a)/ Ry (v,y)dy, a<z<b.

Similar claims for R and ¢* follow by the symmetry argument.

To claim (i). Fix an € > 0 such that A + & < 1 and introduce the Banach
space C[a, b] of continuous functions u on [a, b] with the finite norm

lullez gy = ma fu(x)] + sup (= — a)“[u(z) — u(a)].
QST a<x<b

We have a compact imbedding C™* ™ *#(q b) C C-[a,b]. Hence claim (i
follows noticing that R~ : C= [a,b] — BC(a,b) is bounded: from |u(y) —u(a)| <
(y — a)*||lull o= (o, We win the factor p(z)® in the estimate (cf. (5.10))

/ Ry (2, y)[uly) — U(a)]dy‘ < ep(a) T TME(L A [ log p(@) ) lull o gy

implying
b
b wnpwaca (o= ) [ Ry e )luts) — u(@dy] < el
a<zr< a

To claim (ii). If m+v 4+ X —1 <0, (ii) is clear, since due to (5.10),

b
o @) < wniirale =) [ Ry @pldy <. a<o<b



512 A. Pedas and G. Vainikko

Form+v+A—1>0, (5.10) leads to an estimate |~ (z)| < ¢(1+ |log(x —a)|)
that is too coarse. So we have to deduce a finer estimate in the vicinity of the
left boundary point @ in the case m +v 4+ A — 1 > 0. Recall that

k/

Ry ) = o) (57 ) Koo)' =)

e =[() 7 ()]
= (%)m ()

Integrating m — k' times by part we represent

L@ Q) eme (o

p(x)

o= (@) () o]

where

y=x
we assume here that the cutting function o (see (2.2)) is chosen from C™[a, b].
Since o(y) =1 for a <y < a+ 3(b—a), we have for a <z < 2o = a+ 2(b—a),

/ab Ra(a:,y)dy:/;zaga {(%)k (%)mk/}((aj,y)}T (%)dy%—ﬁ‘(m),

where

T—a

S [N M

Further, we expand

)
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and similarly (%)m_k,_l in 5~ (x). For j > 1 we estimate on the basis of (1.3)

o\t ra o \"THH
= 42 K
() " (Geray) e

and for j = 0 on the basis of (1.4)

P 174 P 9 m—k'
() (i) e

note that A+ (m — k') = m+v+ X > 0, even A+ (m — k') > 1, so the use
of (1.4) is legitime, and it remains to be legitime also when we estimate the
corresponding term of 57 (x). Observe that T(%) = 0 for |z —y| < %4,
thus the integration interval (z — %5%, 2 + %5%) actually reduces to the union
of intervals (z — %%, 2 — #7%) and (z + *7%, z + %5%) in which the quantities
|z — y| and x — a are of the same order. So the estimates reduce to

oo a\"MI
— — 4+ = K
&) Grm)  xew

for j > 1 as well as for j = 0, and

< o —y| (@ — )T

(x —a)= "

1+ |log(x—a)|;

< c(1+|log |z —yl|)

r—a

S C($ o a)—m—u—)\

b
/ Ry (x, y)dy’ <clr—a) ™M a<x <a.

Recalling that m + v + A — 1 > 0, this implies

b
6 (@)] < Wmsvir (@ — ) / Ra<x7y>dy‘ <e a<z<m

as desired. 0
Finally, we turn to the case 1 < m < k’; then v < 0, v+ m < 1.

Lemma 5.4. Assume that K € W™ ((a,b) X (a,b)), 1 <m <k, A < 1,
w < 1. Then the integral operator T defined by (cf. (4.8))

, (o)
(Tmu)(x) = wm+u+)\—1,m+u+u—1(x)/ (%) K(xvy)u(y>dya a<zT< ba

is bounded in the space BC(a,b).
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Proof. Inequality (1.3) yields

(5) K| < sl =l - 00 =)

and in accordance to Remark 2.3 we have
b o m 1, v+m+A<l1
[1(5:) K@afar<ed 1 oga = ol vema=
a & (x—a)l7"™ 2 v+m+A>1

1, v+m+p <1
+c 1+ |loglb—z)|, v+m+pu=1
(b—x)l7v=m . v+m+p>1

Hence

a m
— K <
<(‘3x) (x,y)‘dy_c, a<x<b,

b
Wmtv4+A—1,m4v+p—1 (fﬂ) /
a

that proves the assertion of the Lemma. O

We are ready to complete the proof of Lemmas 1.8 and 1.9. Actually we
already have constructed all the details we need and we only tell how to compose
them.

Proof of Lemma 1.8. Let K € W™"*((a,b) x (a,b)) where m > 1, v < 1,
A, < min{1,1 — v}. Recall the definition (4.5) of £’.

In the case 1 < m < K/, the compactness of Tk in C™ A T4(aq, b) imme-
diately follows from (4.8) on the basis of Lemma 1.7, Lemma 3.4, Lemma 5.4
and the compactness of the imbeddings (1.7).

In the case m > k' we use formulae (5.1)—(5.3), Lemmas 5.1-5.2 and still
Lemma 1.7, Lemma 3.4 and the compactness of the imbeddings (1.7). O

Proof of Lemma 1.9. The proof of Lemma 1.9 is composed in a similar way as
the proof of Lemma 1.8 adding Lemma 5.3 to the list of details in the case
m > k' ]

Together with the proof of Lemmas 1.8 and 1.9, also the proof of the The-
orems 1.2 and 1.3 is complete.
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