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1. Introduction

Consider an operator A with continuous negative definite symbol. Our aim is
to find out when (−A,Hψ,2

p,+) with zero Neumann boundary condition generates
an Lp-sub-Markovian semigroup, and whether it is possible to characterize the
process on the boundary. Here A is an operator with continuous negative def-
inite symbol ψ(ξ), ξ ∈ R

n, and H
ψ,2
p,+ = Hψ,2

p (Rn)|Rn+ , where R
n
+ = {(x, xn) :

x′ ∈ R
n−1, xn > 0}, is the restriction to the half-space of the ψ-Bessel potential

space, see the definitions below. This problem is well known for the diffusion
and stable processes, we refer to, for example, [1] and [6]. In this paper we will
try to solve the more general problem.

To check whether an operator is the generator of a strongly continuous
contraction semigroup we apply the Hille-Yosida theorem. The first problem
which we need to overcome is to show the solvability of the boundary value
problem

(λ+ A)u = g, g ∈ Lp(Rn
+), (1.1)

with some boundary conditions, which in turn depends on the existence of the
trace of Hψ,2

p (Rn) on the boundary R
n−1. Therefore first we need show that we
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are allowed to pose such boundary value problem and that the solution to (1.1)
exists. For this we need some notions on the spaces of generalized smoothness,
associated with the function ψ. For such functions of special ”locality” type it
is possible to show that (1.1) can be posed and it is uniquely solvable.

In case p = 2 it is known (see [6], or [20]) that if the Dirichlet form associated
with operator −A is regular (which is true in our situation) we can associate
with (−A,Hψ,2

2,+) a Markov process. We would like to characterize the associated
process on the boundary. It can be characterized as the time changed process
with respect to the right inverse of the additive functional, which is in the
Revuz correspondence with the measure on the boundary. In [12] it was done
for subordinated reflected diffusion for the case when the subordinator is an
α-stable process. We show that for some generators it is possible to describe
the time-changed process in terms of the symbol of the generator of the initial
process, and, moreover, to get more simple description of the trace of the domain
of this generator on R

n−1.

Further we consider a pseudo-differential operator q(x,D) defined for
u ∈ C∞0 (Rn):

q(x,D)u(x) := (2π)
n
2

∫

Rn

eiξxq(x, ξ)û(ξ) dξ ,

where q : R
n×R

n → C is a locally bounded function such that for every x ∈ R
n

the function q(x, ·) : R
n → C is continuous and negative definite.

Under some conditions on the symbol q(x, ξ) it is possible to specify the do-
main D(q(x,D)) of the operator q(x,D) in Lp(R

n), and (−q(x,D), D(q(x,D)))
generates an Lp-sub-Markovian semigroup. This problem was solved for p = 2,
see [8, 9], also [11] and the reference therein. In general case, 1 < p < ∞,
the methods which are applicable when p = 2 do not work, we need stronger
estimates on the symbol, i.e., we need to work with symbol classes a bit differ-
ent from those introduced by W. Hoh, see [8] and [9]. We require a different
technique to prove that there exists the unique solution u ∈ D(q(x,D)) to the
equation

(λ+ q(x,D))u(x) = g(x) for all g ∈ Lp(Rn). (1.2)

Working with the symbol classes introduced in [2], it is possible to obtain the
necessary estimates for q(x,D) and for the symbol q∗(x, ξ) of the adjoint oper-
ator q∗(x,D). Then applying the Fredholm principle we can show that (1.2) is
uniquely solvable and the solution belongs to D(q(x,D)).

Finally, we show that it is also possible to pose the boundary-value prob-
lem (1.1) for some pseudo-differential operators q(x,D). We prove that if
(−q(x,D), D(q(x,D))) is a generator of an Lp-sub-Markovian semigroup on
Lp(R

n), then under certain conditions on the symbol q(x, ξ) the operator
(−q(x,D), D(q(x,D))|Rn+) generates anLp-sub-Markovian semigroup onLp(R

n
+).
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2. Basic settings

We start with some notions and results on the spaces of generalized smoothness.
The definitions below are taken from [2], see also [3].

Definition 2.1. A sequence γ = (γj)j∈N0 of positive real numbers is called

i) almost increasing if there exists d0 > 0 such that d0γj ≤ γk for all j, k
such that 0 ≤ j ≤ k;

ii) strongly increasing if it is almost increasing and in addition there exists a
natural number κ0 such that

2γj ≤ γk for all j and k and j + κ0 ≤ k;

iii) of bounded growth if there are positive constants d1 and J0 ∈ N0 such that

γj+1 ≤ d1γj for all j ≥ J0.

Let (σj)j∈N0 be a sequence which satisfies for some d0, d1 > 0 the inequality

d0σj ≤ σj+1 ≤ d1σj for all j ∈ N. (2.1)

This means that both (σj)j∈N0 and (σ−1j )j∈N0 are of bounded growth. We will
call the sequences which satisfy (2.1) the admissible sequences.

For a fixed strongly increasing sequence N = (Nj)j∈N0 and a fixed J ∈ N

we define the associated covering ΩN,J = (ΩN,J
j )j∈N0 of R

n by

ΩN,J
j =

{

ξ ∈ R
n : |ξ| ≤ Nj+Jκ0 , when j = 0, 1, . . . , Jκ0 − 1

ξ ∈ R
n : Nj−Jκ0 ≤ |ξ| ≤ Nj+Jκ0 , when j = Jκ0, Jκ0 + 1, . . ..

Further, let ΦN,J be a collection of all function systems ϕN,J = (ϕN,Jj )j∈N0 such
that

i) ϕN,Jj ∈ C∞0 (Rn), ϕN,Jj (ξ) ≥ 0 for all ξ ∈ R
n, for any j ∈ N0;

ii) suppϕN,Jj ⊂ ΩN,J
j ;

iii) for any γ ∈ N
n
0 there exists cγ > 0 such that for all j ∈ N0

∣

∣Dγϕ
N,J
j (ξ)

∣

∣ ≤ cγ(1 + |ξ|2)−
|γ|
2 for all ξ ∈ R

n;

iv) there exists a constant cϕ > 0 such that

0 <
∞
∑

j=0

ϕ
N,J
j (ξ) = cϕ <∞ for all ξ ∈ R

n.
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Definition 2.2. Let N = (Nj)j∈N0 be a strongly increasing sequence, J ∈ N0,

and let (ϕN,Jj )j∈Nj
∈ ΦN,J , and (σj)j∈N0 be an admissible sequence.

i) Let 1 < p < ∞, 1 ≤ q ≤ ∞. Then the Besov space of generalized
smoothness is

Bσ,N
p,q (Rn)=

{

u ∈ S ′ : ‖u‖Bσ,Np,q (Rn)=
∥

∥(σjϕ
N,J
j (D)u)j∈N0

∥

∥

lq(Lp)
<∞

}

. (2.2)

ii) Let 1 < p < ∞, 1 < q < ∞. Then the Triebel-Lizorkin space of general-
ized smoothness is

F σ,N
p,q (Rn)=

{

u ∈ S ′ : ‖u‖Fσ,Np,q (Rn)=
∥

∥(σjϕ
N,J
j (D)u)j∈N0

∥

∥

Lp(lq)
<∞

}

. (2.3)

The spaces (2.2) and (2.3) are the generalizations (due to the standardization
theorem) of those introduced by Kaljabin [14, 15]; they are equivalent (to the
spaces from [14, 15]) if σ is strongly increasing and of bounded growth, see [3]
for details. As an example, we note, that the sequence (2sk)k≥0, s > 0, is almost
strongly increasing and of bounded growth.

We will need theorems on the existence of the trace space of F σ,N
p,q (Rn)

and Bσ,N
p,q (Rn) on some domain G ⊂ R

n with smooth boundary ∂G, and the
existence of continuous restriction and extension (i.e., the retraction and the
coretraction) to this trace space.

Define (see [15], also [22]) Bσ,N
pq (G) as the space of functions from Bσ,N

pq (Rn),
restricted to G, i.e.,

Bσ,N
pq (G) =

{

u : there exists g ∈ Bσ,N
pq (Rn), g|G = u

}

,

with the norm

‖u‖Bσ,Npq (G) = inf
g∈Bσ,Npq (Rn), g|G=u

‖g‖Bσ,Npq (Rn).

Analogously one can define the space F σ,N
pq (G).

Suppose that (βj)j∈N0 is a strongly increasing sequence of bounded growth,
and let 1 ≤ m < n be an integer. Denote

αj = βjN
m−n
p

j . (2.4)

Theorem 2.3 ([16, Theorem 5.1]). The condition (α−1j )j∈N0 ∈ lp′ is necessary

and sufficient for the existence of retraction from F β,N
p,q (Rn) to Bα,N

p,p (Rm) with
the corresponding coretraction.

For the next statement we refer to [15, Theorem 1 and Lemma 1] and [16,
Lemma 7.2].
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Theorem 2.4. Let G ⊂ R
n, ∂G be smooth. There exists the coretraction from

F β,N
p,q (G) to F β,N

p,q (Rn).

Note that the restriction can be defined in the natural way: Re u(x) = u
∣

∣

G
,

and it is continuous:

‖Re u‖Fβ,Np,q (G) ≤ c‖u‖Fβ,Np,q (Rn),

which follows from the definition of the norm in F β,N
p,q (G).

Definition 2.5. LetA be the class of all non-negative C∞-functions a : R
n → R

with the following properties:

A. lim|ξ|→∞ a(ξ) =∞;

B. a(ξ) is almost increasing in |ξ|, i.e., there exist constants δ0 ≥ 1 and R > 0
such that a(ξ) ≤ δ0a(η) if R ≤ |ξ| ≤ |η|;

C. there exists m > 0 such that a(ξ)|ξ|−m is almost decreasing in |ξ|, i.e.,
there exists a constant δm, 0 < δm ≤ 1, and R > 0 such that

a(ξ)|ξ|−m ≥ δma(η)|η|−m, ifR ≤ |ξ| ≤ |η|;

D. for every multi-index α = (α1, . . . , αn), αi ∈ N ∪ {0}, i = 1, . . . , n, there
exists some cα > 0 such that

|Dαa(ξ)| ≤ cαa(ξ)(1 + |ξ|2)−
|α|
2 , if |ξ| ≥ R.

The functions from A are called admissible functions.

Later on we will need condition

E. there exists r ∈ [0, 1) such that the function ξ → a(ξ)(1 + |ξ|2)− r
2 is

increasing in |ξ|.
It was proved in [3] that for an admissible function a(ξ) the sequence N a =

(Na
j )j∈N0 , where

Na
j = sup

{

|ξ| : a(ξ) ≤ 22j
}

, j ∈ N0, (2.5)

is strongly increasing, see Lemma 3.1.17 from [3]. Note that the definition of
the strongly increasing sequence by (2.5) does not require the radial symmetry
of the symbol.

Let ψ be a real-valued continuous negative definite function with represen-
tation

ψ(ξ) =

∫

Rn\{0}

(1− cos(ξ · y)) ν(dy),
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where ν(dy) is a Lévy measure which satisfies
∫

Rn\{0}
(1 ∧ |y|2) ν(dy) <∞, and

consider the generalized ψ-Bessel potential space

Hψ,s
p (Rn) =

{

u ∈ S ′(Rn) :
∥

∥F−1((1 + ψ(ξ))
s
2 û(ξ))

∥

∥

p
<∞

}

,

where s > 0, 1 < p < ∞. We refer to [4] or [11] for more details about such
spaces.

Suppose in addition that ψ is an admissible function, and let Nψ = (Nψ
j )j≥0

be the strongly increasing sequence associated with ψ. Then the spacesHψ,s
p (Rn)

and F σs,Nψ

p,2 (Rn) coincide, σs = (2js)j∈N0 , see [3] for details. We use the notation
Hψ,s
p for Hψ,s

p (Rn) when it is clear which space is meant.

Let A be an operator with a continuous negative definite symbol ψ. On
C∞0 (Rn), A admits the representation ([10])

Au(x) =

∫

Rn\{0}

(

u(x− y)− u(x)−
n
∑

j=1

yj

1 + |y|2
∂u(x)

∂xj

)

ν(dy). (2.6)

It was proved (see [4]) that for real-valued ψ the domain of A in Lp is H
ψ,2
p , the

operator A is an isomorphism between Hψ,s−2
p and Hψ,s

p , −∞ < s < ∞, and
(−A,Hψ,2

p ) is a generator of an Lp-sub-Markovian semigroup.

Let
H
ψ,s
p,+ =

{

u : there exists g ∈ Hψ,s
p , g|Rn+ = u

}

.

with the norm
‖g‖Hψ,s

p,+
= inf ‖f‖Hψ,s

p
,

where the infimum is taken over all such extensions (note that Hψ,2
p,+ coin-

cides with F
σ2,Nψ

p,2 (Rn
+), σ

2 = (22j)j≥0). In this case the operator, defined as

Re u(x) = {u(x′, 0), ∂u∂xn (x
′, 0)} is the retraction from Hψ,2

p (Rn) = F
σ2,Nψ

p,2 (Rn) to

Bα(1),Nψ

p,p (Rn−1)×Bα(2),Nψ

p,p (Rn−1), where α
(1)
j = 22j(Nψ

j )
− 1
p , α

(2)
j = 22j(Nψ

j )
−1− 1

p ,
and there exists the corresponding coretraction.

Let R
n
0+ = {(x′, xn) : x′ ∈ R

n−1, xn ≥ 0}. Later on we will also need the
space

H̃
ψ,s
p,+ =

{

u : u ∈ Hψ,s
p , suppu ⊂ R

n
0+

}

.

Here and below we understand suppu ⊂ K, K is a closed set, in the sense of
distributions, i.e.,

∫

Rn
u(x)ϕ(x) dx = 0 for any ϕ ∈ S(Rn), suppϕ ⊂ R

n\K.

Consider some examples.

Example 2.6. Let ψ(ξ) = ln(1 + |ξ|). Then

N
ψ
j = sup

{

|ξ| : ln(1 + |ξ|) ≤ 22j
}

= sup
{

|ξ| : |ξ| ≤ e2
2j − 1

}

= e2
2j − 1,

and thus αj =
22j

(e2
2j

− 1)
1

p

. Clearly, (α−1j )j∈N0 does not converge in lp for any p,

1 ≤ p <∞.
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Example 2.7. Let ψ(ξ) = |ξ|β ln(1 + |ξ|), and 0 < β < 1. Then

N
ψ
j = sup g{|ξ| : |ξ|β ln(1 + |ξ|) ≤ 22j

}

≤ sup
{

|ξ| : |ξ|β ≤ 22j
}

= 22
j
β . (2.7)

Then α−1j ≤ 2−2j(1−
1
pβ

), and the sequence (α−1j )j∈N0 is convergent in lp for β >
1
p .

We will also need some symbol classes, as well as some results from sym-
bolic calculus. The following definition and the theorem are taken from [2,
Chapter 16].

Definition 2.8. Let ψ : R
n → R be an admissible continuous negative definite

function which satisfies E. Let µ ∈ R and 0 ≤ δ ≤ 1. Then let Sψ,µ1,δ be the
collection of all complex valued C∞ functions a : R

n × R
n → C such that for

any multi-indices β and α there exists a constant cαβ > 0 such that

∣

∣Dβ
xD

α
ξ a(x, ξ)

∣

∣ ≤ cαβ(1 + ψ(ξ))
µ
2 (1 + |ξ|2)−|α|+δ|β|

2 for any x, ξ ∈ R
n. (2.8)

Theorem 2.9 ([2, Theorems 16.3.5/16.3.7]). Let ψ : R
n → R be an admissible

continuous negative definite function which satisfies E, µ ∈ R, 0 ≤ δ < 1, and
a ∈ Sψ,µ1,δ . For 1 < p < ∞ and s ∈ R the pseudo-differential operator a(·, D) is

continuous from the space Hψ,s+µ
p into Hψ,s

p , i.e., for any u ∈ Hψ,s+µ
p it holds

‖a(x,D)u‖Hψ,s
p
≤ c‖u‖Hψ,s+µ

p
.

For simplicity we will consider only the symbols from S
ψ,µ
1,0 , µ ∈ R, i.e., with

δ = 0. Although we will not work with the spaces Sm,ψρ , for our convenience we
give the definition of these spaces.

Definition 2.10. Let m ∈ R and ψ be a continuous negative definite function
such that for all α ∈ N

n
0 it holds

∣

∣∂αξ (1 + ψ(ξ))
m
2

∣

∣ ≤ c|α|(1 + ψ(ξ))
m−ρ(|α|)

2 ,

where ρ : N0 → N0, ρ(k) := min(k, 2). We call a C∞-function q : R
n × R

n → C

a symbol in the class Sm,ψρ if for all α, β ∈ N
n
0 there are constants cαβ ≥ 0 such

that
∣

∣∂αξ ∂
β
xq(x, ξ)

∣

∣ ≤ cαβ(1 + ψ(ξ))
m−ρ(|α|)

2 . (2.9)

Clearly, for admissible ψ we have Sψ,m1,0 ⊂ Sm,ψρ . We refer for the definitions
and some results below to [11, Chapter 2.4], and also to the original papers
[8, 9].

Definition 2.11. The class Σ consists of all complex valued C∞–functions
a : R

n × R
n → C such that for all α, β ∈ N

n
0 and all η, y ∈ R

n the estimate

|∂αη ∂βy a(η, y)| ≤ cαβ(1 + |η|2)
m+δ|β|

2 (1 + |y|2) τ2 (2.10)
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holds for some m ∈ R, δ ∈ [0, 1) and τ ≥ 0. For all a ∈ Σ and χ ∈ S(Rn × R
n)

such that χ(0, 0) = 1 we define the oscillatory integral by

Os −
∫

Rn

∫

Rn

e−iy·ηa(η, y) dy dη := lim
ε→0

∫

Rn

∫

Rn

e−iy·ηχ(εη, εη)a(η, y) dy dη (2.11)

Theorem 2.12. For all a ∈ Σ the oscillatory integral (2.11) exists, it is inde-
pendent of the choice of χ and

Os −
∫

Rn

∫

Rn

e−iy·ηa(η, y) dy dη

=

∫

Rn

∫

Rn

e−iy·η(1+|y|2)−l′(1−4η)
l′
{

(1+|η|2)−l(1−4y)
la(η, y)

}

dy dη

(2.12)

holds for l, l′ ∈ N, such that −2l(1− δ) +m < −n, −2l′ + τ < −n, where δ, τ
and m are from equation (2.10).

In the same fashion as the classes Sm,m
′,ψ

0 were introduced in [8], we intro-

duce the classes Sψ,m,m
′

1,0 .

Definition 2.13. Let ψ be an admissible continuous negative definite function,
m, m′ ∈ R. The class Sψ,m,m

′

1,0 of double symbols of orders m and m′ consists of
all functions q(x, ξ;x′, ξ′) : R

n ×R
n ×R

n ×R
n → C, n times differentiable in ξ

and ξ′, and r times in x and x′, r ∈ N, such that

∣

∣∂αξ ∂
β
x∂

α′

ξ′ ∂
β′

x′ q(x, ξ;x
′, ξ′)

∣

∣ ≤ cαβα′β′
(1 + ψ(ξ))

m
2

(1 + |ξ|2) |α|2
(1 + ψ(ξ′))

m′

2

(1 + |ξ′|2) |α
′|
2

(2.13)

for all 0 ≤ |α|, |α′| ≤ n, 0 ≤ |β|, |β ′| ≤ r.

In the end of this section we formulate the Hille–Yosida theorem which gives
us the necessary and sufficient conditions when a closed operator generates a
strongly contraction semigroup. Denote by R(A) the range of an operator A.

Theorem 2.14 (Hille–Yosida theorem). A closed linear operator (A,D(A)) on
a Banach space (X, ‖ · ‖X) is the generator of a strongly continuous contraction
semigroup (Tt)t≥0 if and only if the following conditions hold:

1. D(A) ⊂ X is dense;

2. A is a dissipative operator;

3. R(λ− A) = X for some λ > 0.

Let X = Lp(R
n). A strongly continuous contraction semigroup (Tt)t≥0 is

sub-Markovian, if its generator A is a Dirichlet operator: for u ∈ D(A)

∫

Rn

Au(x)
(

(u(x)− 1)+
)p−1

dx ≤ 0.

For pseudo-differential operators with negative definite symbols this condition
is satisfied, see §4.6 from [10], also §2.6 from [11].



On a Boundary-Value Problem 9

3. The solvability of the boundary-value problem

In this Chapter we prove the solvability of boundary value problems in R
n
+ for

some operator with continuous negative definite symbol, and we show that this
operator is a generator of an Lp-sub-Markovian semigroup in Lp(R

n
+).

Consider an operator A with symbol ψ0(ξ), ξ = (ξ′, ξn), ξ
′ ∈ R

n−1, ξn ∈ R,
which satisfies the following condition:

F. For z ∈ C, Im z > 0 there exists an extension ψ0(ξ
′, z) of the function

ψ0(ξ
′, ξn), which is analytic in z, and |λ+ ψ0(ξ

′, z)| > 0 for some λ > 0.

Under such a condition we obtain by the same method, used in Theo-
rem 2.10.3/1 from [22], that λ+A is an isomorphism between Hψ,2

p,+ and Lp(R
n
+).

We postpone the proof of this fact to Section 6, where we give the proof for a
wider class of pseudo-differential operators.

In addition, suppose that ψ0 ∈ S
ψ,2
1,0 for some admissible continuous nega-

tive definite function ψ, which satisfies E. Under this condition D(A) = Hψ,2
p

is closed with respect to the graph norm of A. Sometimes we can easily deter-
mine ψ. For example, let ψ0(ξ) = (φ(ξ′) + iξn)

α, ξ = (ξ′, ξn) ∈ R
n, 0 < α < 1,

and φ be an admissible real-valued continuous negative definite function. It can
be shown that ψ(ξ) = Reψ0(ξ), see [18] or [17]. For p = 2 we even don’t need the
condition ψ0 ∈ Sψ,21,0 (for ψ(ξ) = Reψ0(ξ)), since we always have D(A) = Hψ,2,
if ψ0 satisfies the sector condition

| Imψ0| ≤ cReψ0. (3.1)

We will come back to this problem later in Section 5, for an operator with more
general symbol q(x, ξ).

Consider the boundary value problem

(λ+ A)u(x) = g(x), x ∈ R
n
+, (3.2)

with Dirichlet

u(x′, 0) = h(x′), x′ ∈ R
n−1, (3.3)

or Neumann
∂u

∂xn
(x′, 0) = r(x′), x′ ∈ R

n−1 (3.4)

boundary conditions. Denote further by ‖ · ‖p,+ the norm in Lp(R
n
+).

Theorem 3.1. Let ψ0 be a continuous negative definite function, satisfying

condition F, and such that ψ0 ∈ S
ψ,2
1,0 for some admissible continuous negative

definite function ψ, which satisfies E. Let (−A,Hψ,2
p,+) be an operator with symbol

ψ0, α
(1)
j = 22j(Nψ

j )
− 1
p , α

(2)
j = 22j(Nψ

j )
−1− 1

p , where N
ψ
j is defined in (2.5).
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a) If ((α
(1)
j )−1)j∈N0 ∈ lp′, then the boundary value problem (3.2), (3.3) is

uniquely solvable for any h ∈ Bα(1),Nψ

pp (Rn−1).

b) If ((α
(2)
j )−1)j∈N0 ∈ lp′, then the boundary value problem (3.2), (3.4) is

uniquely solvable for any r ∈ Bα(2),Nψ

pp (Rn−1).

Proof. From the structure of the symbol ψ0 we see, that we are allowed to pose
the Dirichlet or Neumann boundary conditions.

We prove that the boundary value problem (3.2) with the Dirichlet or Neu-
mann boundary conditions is uniquely solvable. Since A is an isomorphism
from H

ψ,2
p,+ to Lp(R

n
+) (see Section 6 for the proof in the more general sit-

uation), then the equation (λ + A)u0 = g is uniquely solvable in the class
H̃
ψ,2
p,+ for all g ∈ Lp(R

n
+). The space H̃ψ,2

p,+ is a closed subspace of Hψ,2
p , there-

fore Hψ,2
p = H̃

ψ,2
p,+ ⊕ H

ψ,2
p,−, i.e., each u ∈ Hψ,2

p can be uniquely decomposed as

u = u0 + u1, where u0 ∈ H̃ψ,2
p,+, and u1 ∈ Hψ,2

p,−.

Consider the Dirichlet boundary value problem (3.2), (3.3) with u(x′, 0) =
h(x′) (we can proceed similarly in the case of Neumann boundary condition).
Let v be a continuous extension of h to Hψ,2

p,−, u = u0 + v, and denote by ũ the
function, on which the infimum infv{‖u‖Hψ,2

p
: ‖u‖Hψ,2

p
< ∞} is attained, and

ṽ = arg infv{‖u‖Hψ,2
p

: ‖u‖Hψ,2
p

< ∞}. Then ũ = u0 + ṽ. We will show below

that ‖ũ‖Hψ,2
p,+

<∞. Since ṽ(x′, 0) = h(x′), then ũ(x′, 0) = h(x′). We have

(λ+ A)ũ = (λ+ A)u0 = g, x ∈ R
n
+.

Therefore the boundary value problem (3.2), (3.3) (or (3.2), (3.4)) is uniquely
solvable and it remains to show that the solution belongs to Hψ,2

p,+.

On R
n we have the inequality (see [4], also [11])

c1‖u‖Hψ,2
p
≤ ‖Au‖Lp + ‖u‖Lp ≤ c2‖u‖Hψ,2

p
. (3.5)

Let w ∈ Hψ,2
p,+. Then w(·, 0) ∈ Bα(1),Nψ

pp (Rn−1) (or ∂w(·,0)
∂xn

∈ Bα(2),Nψ

pp (Rn−1)), and
suppose that

∂jũ(x′, 0)

∂x
j
n

=
∂jw(x′, 0)

∂x
j
n

, j = 0, 1.

We also have

‖w‖Hψ,2
p,+
≤ c1‖w(·, 0)‖

Bα
(1),Nψ

pp

, ‖w‖Hψ,2
p,+
≤ c2

∥

∥

∥

∥

∂w(·, 0)
∂xn

∥

∥

∥

∥

Bα
(2),Nψ

pp

. (3.6)

Since supp(ũ − w) ⊂ R
n
0+, we obtain, because the inequalities (3.5) hold for

functions with support in R
n
0+,

‖ũ‖Hψ,2
p,+
≤ ‖ũ− w‖Hψ,2

p,+
+ ‖w‖Hψ,2

p,+

≤ c3
(

‖A(ũ− w)‖p,+ + ‖ũ− w‖p,+ + ‖w‖Hψ,2
p,+

)

≤ c4
(

‖Aũ‖p,+ + ‖ũ‖p,+ + ‖w‖Hψ,2
p,+

)

,
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where in the last line we used that by the definition of the norm in Hψ,s
p,+

‖Aw‖p,+ + ‖w‖p,+ ≤ c‖w‖Hψ,2
p,+
.

Finally, using (3.6), we arrive at

c5‖ũ‖Hψ,2
p,+
≤

(

‖Aũ‖p,+ + ‖ũ‖p,+ +

∥

∥

∥

∥

∂jũ(·, 0)
∂x

j
n

∥

∥

∥

∥

Bα
(j),Nψ

pp

)

≤ c6‖ũ‖Hψ,2
p,+

(3.7)

for j = 0, 1 (the right-hand side follows from the existence of continuous re-
striction). But (3.7) shows that the solution to (3.2) with boundary conditions
(3.3) or (3.4) belongs to Hψ,2

p,+.

Theorem 3.2. Let A be an operator with continuous negative definite symbol,

which satisfies the conditions of Theorem 3.1. Then the operator (−A,Hψ,2
p,+) is

the generator of an Lp-sub-Markovian semigroup.

Proof. We need to check the conditions of Hille–Yosida theorem.
1. The space Hψ,2

p,+ is dense in Lp(R
n
+).

2. Since −A is a Dirichlet operator on Hψ,2
p (see [11], for example), then by

the definition of Hψ,2
p,+ it is a Dirichlet operator on Hψ,2

p,+.
3. The solvability of (3.2) follows from Theorem 3.1.

4. Dirichlet forms and the boundary process

Suppose we can construct a Markov process moving in R
n
+. Our next aim is

to describe the jump process on the boundary. To do this we consider the
L2-setting, and use the methods from the theory of symmetric Dirichlet forms.
We start with some general notions, see [6] and [5] for details.

Let (X,B,m) be a locally compact measure space, and m be a positive
Radon measure such that suppm = X. Consider the Hilbert space L2(X,m).
A form E is a symmetric form on L2(X,m) if

a) E : F × F → R, and F is dense in L2(R
n);

b) E(u, v) = E(v, u), E(u + v, w) = E(u,w) + E(v, w), aE(u, v) = E(au, v),
E(u, u) ≥ 0 for u, v, w ∈ F and a ∈ R.

The space F is called the domain of E .
The Dirichlet form is a symmetric, closed and Markovian form on L2(X,m),

where Markovian mean that

if u ∈ F , v = (0 ∨ u) ∧ 1, then v ∈ F , E(v, v) ≤ E(u, u).

The Dirichlet form (E ,F) is called regular, if there exists a subset C which
is dense in F ∩ C0(X), where C0(X) is a space of continuous on X functions
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with compact support. It is known (see, for example, [6, Chapter 7]), that
regular Dirichlet forms and Hunt processes (i.e., strong Markov processes whose
sample paths are right continuous and quasi-left continuous) are in one-to-one
correspondence, and therefore studying a regular Dirichlet form we can get the
information about the behaviour of the corresponding Hunt process. One can
construct the symmetric Dirichlet form starting with a self-adjoint Dirichlet
operator, i.e., if −B is a self-adjoint Dirichlet operator, then

Eλ(u, v) = (
√
−Bu,

√
−Bv) + λ(u, v)

is the corresponding Dirichlet form, and F = D(
√
−B) (here (·, ·) is a scalar

product in L2(X,m)). We will use the notation E(·, ·) for E0(·, ·).
Denote by Fe the family of m-measurable functions u on X such that

|u| < ∞ m-a.e., and there exists an E-Cauchy sequence {un}n≥0 ∈ F such
that limn→∞ un = u m-a.e.. (E ,Fe) is called the extended Dirichlet space of
(E ,F), and under such a completion it is a Hilbert space (note that (Eλ,F) is
complete, so F = Fe).

We need the notions on the capacity of a set. Let O be a family of open
sets in L2(X,m), and LC = {u ∈ F , u ≥ 1 a.e. on C}. The set function

Cap(C) =

{

infu∈LC E1(u, u), LC 6= ∅

∞, LC = ∅,

denotes the capacity of an open set C (see [6, §2.1]). For an arbitrary set D the
capacity is defined in the following way:

Cap(D) = inf{Cap(C) : D ⊂ C, C is open}.

A positive Borel measure is called smooth, if it charges no set of capacity
zero, and there exists a so-called exhausting sequence (see [6, §2.1]). Let µ be
the smooth measure (with respect to E(·, ·)), with support F . Then there exists
a positive continuous additive functional (Lt)t≥0, which is in Revuz correspon-
dence with µ (see [6]). Let F̌ be the support of (Lt)t≥0, and denote by σF̌ the
first moment when the random process associated with (E ,Fe) hits F̌ . Since
µ is smooth, and F − F̌ is µ-negligible, then σF̌ < ∞, see [5, §4.2–4.3]. Let
HF̌u(x) = Ex(u(XσF̌

)), x ∈ X.

Definition 4.1. The time changed Dirichlet form is (Ě , F̌), where

F̌ =
{

ϕ ∈ L2(F, µ) : ϕ = u µ-a.e. on F for some u ∈ Fe
}

Ě(ϕ, ϕ) = E(HF̌u,HF̌u), ϕ ∈ F̌ .

The following Dirichlet principle holds:
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Lemma 4.2. For ϕ ∈ F̌ , u ∈ Fe, Ě(ϕ, ϕ) = inf{E(u, u), u = ϕ µ-a.e.}.

We will show below that starting with a Hunt process associated with (E ,Fe)
we can construct the time-changed process, associated with (Ě , F̌), i.e., we can
show how this time change is defined. In our situation we even will be able to
find (Ě , F̌) explicitly.

Now we turn into our situation. Let A be an operator with continuous
negative definite symbol ψ0, satisfying the sector condition | Imψ0| ≤ cReψ0.
Let ψ = Reψ0, and consider the symmetrization of the Dirichlet form associated
with −A, i.e.,

Eψ1 (u, u) = −
(
√

ψû,
√

ψû
)

+ (u, u), with u ∈ Hψ,1(=: Hψ,1
2 ).

Note that in this situation

c‖u‖2Hψ,1 ≤ Eψ1 (u, u), u ∈ Hψ,1 (4.1)

holds, and therefore Eψ1 (·, ·) is equivalent to the scalar product on Hψ,1.

We claim that if the space Hψ,1(Rn) admits the trace on R
n−1, then

Cap(Rn−1) > 0, which is necessary to define a time-changed process on the
boundary R

n. Indeed, suppose that the space Hψ,1(Rn) admits the trace space
on R

n−1. Let K be a compact subset of R
n−1. Then there exists a function

u ∈ Hψ,1(Rn) such that u ≥ 1 on K× [0, 1]. Due to the existence of the trace of
u on R

n−1 we obtain that u(x′, 0) ≥ 1 on K. Then LK 6= ∅, and Cap(K) <∞.
By Lemma 3.1.1 from [5] there exists the unique element eK , 0 ≤ eK ≤ 1 µ–a.e.,
and eK = 1 on K µ–a.e., where µ is the Lebesgue measure on R

n−1, and
Eψ1 (eK , eK) = Cap(K). But then Cap(K) > 0, otherwise eK = 0, since Eψ1 (·, ·)
is a scalar product on Hψ,1(Rn). By monotonicity, Cap(Rn−1) ≥ Cap(K).

Thus, Cap(Rn−1) > 0. Then there exists a smooth measure on it. Let µ(dx)
be the Lebesgue measure, suppµ = R

n−1. It is smooth, therefore there exists a
positive continuous additive functional (Lt)t≥0 which is in Revuz correspondence
with µ. In our situation the resolvent measure associated with Eψλ is absolutely
continuous with respect to the Lebesgue measure on R

n; denote by gλ(x, y) its
density. Let (Yt)t≥0 be a Hunt process associated with Eψ1 . By Theorem 5.1.3
from [6] we get

∫

Rn

h(x)

[

Ex

(
∫ ∞

0

e−λtφ(Yt) dLt

)

−
∫

Rn

gλ(x, z)φ(z)µ(dz)

]

dx = 0

for every Borel measurable and positive functions h and φ, which leads to

Ex

[
∫ ∞

0

e−λtdLt

]

=

∫

Rn

gλ(x, y)µ(dy) (4.2)
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(note that suppµ = R
n−1). From (4.2) we have for t(s) := inf{t : Lt(ω) > s} –

the right inverse of Lt – that

Ex
[

e−λt(s,ω)
]

= e
− s
rλ(x

′) , x′ ∈ R
n−1, (4.3)

where x = (x′, 0), rλ(x
′) =

∫

Rn
gλ(x, y)µ(dy), because

∫∞

0
Exe

−λt(s,ω)du =
∫∞

0
Exe

−λs dLs = rλ(x
′). Since in our case gλ(x, y) depends on the difference

x− y, then rλ(x′) =: r(λ) does not depend on x′ ∈ R
n−1. The process t(s) is an

increasing compound Poisson process, and therefore it is a subordinator, and
the function 1

r(λ) is its Laplace exponent.

Let ρ(ξ′) = 1
r(ψ(ξ′, 0))

. To simplify the notation let D = trRn−1 Hψ,1.

Lemma 4.3. The trace space D is equivalent to Hρ,1(Rn−1).

Proof. Indeed, the Dirichlet form Eψ1 (u, v) is a scalar product on Hψ,1. From
Lemma 4.2 and the existence of the retraction and the coretraction on the space
Hψ,1 we have for the time changed Dirichlet form

Ěψ1 (v, v) = inf
{

‖u‖2Hψ,1 : u = v µ-a.e., u ∈ Hψ,1
}

∼ inf
{

‖u(·, 0)‖D : u = v µ-a.e., u ∈ Hψ,1
}

(where ”∼” means ”equivalent”). Therefore Ěψ1 (v, v) is equivalent to the scalar
product on D. But Ěψ1 (v, v) corresponds to (Y̌s)s≥0 – the time changed process
with respect to t(s) of (Yt)t≥0, i.e., Y̌s = Yt(s). And as we saw above the symbol
of the generator which corresponds to (Y̌s)s≥0 is equivalent to ρ(ξ′), ξ′ ∈ R

n−1.
Therefore the Dirichlet form Ěψ1 (v, v) is equivalent to Eρ1 (v, v), which gives us
the equivalence of D and Hρ,1.

Let (Xt)t≥0 be a Markov process which corresponds to (−A,Hψ,2
+ ) with

zero Neumann boundary condition. Consider the time changed process X̌s =
Xt(s), s ≥ 0. From above, its Laplace exponent is (by subordination) ρ(ξ ′) =
[r(ψ0(ξ

′, 0))]−1, and the (non-symmetric) Dirichlet form, associated with (X̌s)s≥0
is equivalent to (Eρ, Hρ,1), which is a Dirichlet form associated with (Y̌s)s≥0.

Consider some examples.

Example 4.4. Let (Xt)t≥0 be a diffusion process with generator −4. Then
the corresponding Dirichlet form is

E1(u, v) =
∫

Rn

(

1 + |ξ|2
)

û(ξ)v̂(ξ) dξ,

and its domain is H1
+. The resolvent kernel associated with −4 is

gλ(x) =

∫ ∞

0

e−λt
e−

|x|2

2t

(2πt)
n
2

dt,
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and thus

r(λ) =

∫

Rn−1

gλ(x) dx
′
∣

∣

xn=0
=

∫ ∞

0

e−λt
e−

|xn|
2

4t

(2πt)
1
2

dt
∣

∣

xn=0
=

1√
2λ
.

Therefore subordinating 1
r(λ) =

√
λ with |ξ′|2 we obtain

Eρ1 (u, v) =
∫

Rn−1

(1 + |ξ′|)û(ξ′)v̂(ξ′) dξ′,

and thus the trace space of H1(Rn) (or H1(Rn
+)) on R

n−1 is H1/2(Rn−1), which
is known.

Example 4.5. Consider the subordinate diffusion (Xt)t≥0 with generator
−(−4)α, 1

2
< α < 1. Then the corresponding Dirichlet form is

E1(u, v) =
∫

Rn

(

1 + |ξ|2α
)

û(ξ)v̂(ξ) dξ,

and its domain is Hα
+. The resolvent kernel associated with −(−4)α is

gλ(x) =

∫ ∞

0

e−λt
∫ ∞

0

e−
|x|2

2s

(2πs)
n
2

σα(s, t) ds dt,

where (σα(s, t)ds)t≥0 is one-parameter semigroup of measures, which corre-
sponds to the Bernstein function f(x) = xα, 1

2 < α < 1. Thus

r(λ) =

∫

Rn−1

gλ(x) dx
′
∣

∣

xn=0
=

∫ ∞

0

e−λt
∫ ∞

0

e−
|xn|

2

4s

(2πs)
1
2

σα(s, t) ds dt
∣

∣

xn=0
=

cα

λ1−
1
2α

.

Therefore subordinating 1
r(λ) = λ1−

1
2α with |ξ′|2α we obtain

Eρ1 (u, v) =
∫

Rn−1

(

1 + |ξ′|2α−1
)

û(ξ′)v̂(ξ′) dξ′,

and thus the trace space of Hα(Rn) (or Hα(Rn
+)) on R

n−1 is Hα−1/2(Rn−1),
which is known.

Example 4.6. Let f be a Bernstein function, such that f(x) ≥ xα, 1
2
< α < 1,

as x→∞, and consider A = −f(−4). Then

gλ(x) =

∫ ∞

0

e−λt
∫ ∞

0

e−
|x|2

2s

(2πt)
n
2

ηt(ds) dt,
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where ηt(ds) is the convolution semigroup which is in one-to-one correspondence
with f , and thus

r(λ) =

∫

Rn−1

gλ(x) dx
′
∣

∣

∣

xn=0

=

∫ ∞

0

e−λt
∫ ∞

0

e−
|xn|

2

4s

(2πs)
1
2

ηt(ds) dt
∣

∣

∣

xn=0

= 2

∫ ∞

0

dζ

(λ+ f(|ζ|2)) .

Thus for ρ(|ξ′|2) = 1
r(f(|ξ′|2))

we have

Eρ1 (u, v) =
∫

Rn−1

(

1 + ρ(|ξ′|2)
)

û(ξ′)v̂(ξ′) dξ′,

and the trace space of H
f(|·|2),1
+ (Rn) on R

n−1 is equivalent to Hρ(|·|2),1(Rn−1).

Remark 4.7. Although the symbols of operators in Examples 4.4–4.6 do not
satisfy the assumption F, we still can prove that for such operators the boundary
value problem (3.2) is uniquely solvable. In Example 4.4 we have an elliptic
operator, and for it the boundary value problem (3.2) is uniquely solvable. In
Examples 4.5 and 4.6 the solutions to (3.2) are constructed by subordination,
i.e., if

Rλg =

∫ ∞

0

e−λtTtg dt

is the resolvent for the equation (λ+4)u = g (with some boundary condition),
where (Tt)t≥0 is the semigroup generated by (−4, H2

+), then

R
f
λg =

∫ ∞

0

e−λtT
f
t g dt

is the resolvent for the equation (λ + f(−4))u = g (with some boundary con-
dition), where f is a Bernstein function, such that f(x) ≥ xα, 1

2
< α < 1,

as x → ∞, and T ft =
∫∞

0
Tsg(x)ηt(ds), (ηt(ds))t≥0 is the convolution measure

which corresponds to f .

Example 4.8. Consider an operator A with symbol ψ0(ξ) = (iξn + |ξ′|)α,
1
2
< α < 1. Since the domain Hα of A admits the trace on R

n−1, we see
from Theorem 3.2 that (−A,Hψ,2

+ ) generates an L2-sub-Markovian semigroup.
Denote by (Xt)t≥0 the associated process. But the domain of the corresponding
Dirichlet form Hα/2 does not admit the trace for 1

2
< α < 1. This means that

we can construct the process (Xt)t≥0 with the generator (−A,Hψ,2
+ ), but this

process with probability 1 will not hit the boundary, it will jump only inside.
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Another probabilistic interpretation of the behaviour of (Xt)t≥0 is the fol-
lowing. (Xt)t≥0 is obtained by subordination of the process (Zt)t≥0, which
corresponds to the symbol ψ1(ξ) = iξn+ |ξ′|, and the subordinator (τt)t≥0, with
the Laplace exponent f(λ) = λα, 1

2 < α < 1. The term iξn in the symbol ψ1

stands for a constant-speed movement of the process (Zt)t≥0 from the boundary
R
n−1, while the term |ξ′| stands for the Cauchy process which moves parallel

to the boundary. Thus, (Zt)t≥0 drifts away from the boundary R
n−1 and never

hits it; the subordination with (τt)t≥0 does not change this type of behaviour.

Remark 4.9. Note that the symbols of operators considered in Examples 4.4–
4.8 were obtained by subordination of functions |ξ|2 (or iξn+|ξ′|2) with Bernstein
functions, and for operators −A = 4 and −A = ∂

∂xn
− 4x′ the boundary

value problem (3.2) is uniquely solvable for Neumann or Dirichlet boundary
conditions. Theorem 3.1 says more: it generalizes the class of operators for
which we can solve the boundary value problem (3.2) in the half-space.

5. Some properties of pseudo-differential operators
in Lp(R

n)

In this Chapter we will find the conditions under which a pseudo-differential
operator q(x,D) with continuous (with respect to ξ) negative definite symbol
q(x, ξ), generates an Lp-sub-Markovian semigroup in R

n.

We start with some auxiliary lemmas, which adjust the results obtained
for symbols from Hoh’s symbol classes to our situation. For details, see [19],

also [11]. For q ∈ Sψ,m,m′

1,0 we define on S(Rn) the operator

q(x,Dx;x
′, Dx′)u(x)

= (2π)−
3n
2

∫

Rn

∫

Rn

∫

Rn

ei(x−x
′)·ξ+ix′ξ′q(x, ξ;x′, ξ′)û(ξ′) dξ′dx′dξ.

Theorem 5.1. Let ψ be an admissible continuous negative definite function,

and q ∈ Sψ,m,m′

1,0 . Then for u ∈ S(Rn) the iterated integral exists and defines a
pseudo-differential operator. The function

qL(x, ξ) := Os − (2π)n
∫

Rn

∫

Rn

e−iy·ηq(x, ξ + η;x+ y, ξ) dy dη (5.1)

is a symbol in S
ψ,m+m′

1,0 , and

q(x,Dx;x
′, Dx′)u = qL(x,D)u for u ∈ S(Rn). (5.2)

Proof. For q ∈ Sm,ψρ the statement was proved in Theorem 2.4.17 from [11], and

in such a way (5.2) follows from the embedding Sψ,m1,0 ⊂ Sm,ψρ . We only need

to prove that qL(x, ξ) ∈ Sψ,m+m′

1,0 . For more details see also Theorem 2.5, p. 73,
from [19].
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By Peetre’s inequality for continuous negative definite functions we have for
admissible ψ

(1 + ψ(ξ))
s
2

(1 + ψ(η))
s
2

≤ 2
|s|
2 (1 + ψ(ξ − η))

|s|
2 , (5.3)

and since
(1 + ψ(ξ)) ≤ c(1 + |ξ|2) (5.4)

holds for any real-valued continuous negative definite function, we get for all
α, β ∈ N

n
0

∣

∣∂αξ ∂
β
y q(x, ξ + η;x+ y, ξ)

∣

∣ ≤ c1
(1 + ψ(ξ + η))

m
2 (1 + ψ(ξ))

m′

2

(1 + |ξ + η|2) |α|2
≤ c2(1 + |η|2)

m
2 (1 + ψ(ξ))

m′+m
2 .

Thus, for fixed x and ξ the function (η, y)→ q(x, ξ + η, x+ y, ξ) belongs to Σ,
and therefore the oscillatory integral (5.1) exists. Using representation (2.12)
we find for sufficiently large l and l′

∣

∣∂αξ ∂
β
xqL(x, ξ)

∣

∣ =

∣

∣

∣

∣

(2π)−n∂αξ ∂
β
x

∫

Rn

∫

Rn

e−iy·η
(

1 + |y|2
)−l′

(1−4η)
l′

·
{

(1 + |η|2)−l(1−4y)
lq(x, ξ + η;x+ y, ξ)

}

dy dη

∣

∣

∣

∣

≤ c1

∫

Rn

∫

Rn

(

1 + |η|2
)−l(

1 + |y|2
)−l′ (1 + ψ(ξ + η))

m
2

(1 + |ξ + η|2) |α|2
·
(

1 + ψ(ξ)
)
m′

2 dy dη

≤ c2
(1 + ψ(ξ))

m+m′

2

(1 + |ξ|2) |α|2
,

i.e., qL(x, ξ) ∈ Sψ,m+m′

1,0 .

Lemma 5.2. Let ψ be an admissible continuous negative definite function, and

q ∈ Sψ,m,m′

1,0 . Then ∂
γ
ξ q(x, ξ;x

′, ξ′) ∈ Sψ,m−|γ|,m′

1,0 .

Proof. Clearly, in view of (5.4) we have

∣

∣∂αξ ∂
β
x∂

α′

ξ′ ∂
β′

x′ (∂
γ
ξ q(x, ξ;x

′, ξ′))
∣

∣ =
∣

∣∂
α+γ
ξ ∂βx∂

α′

ξ′ ∂
β′

x′ q(x, ξ;x
′, ξ′)

∣

∣

≤ c1
(1 + ψ(ξ))

m
2

(1 + |ξ|2) |α+γ|2

(1 + ψ(ξ))
m′

2

(1 + |ξ|2) |α
′|
2

≤ c2
(1 + ψ(ξ))

m+m′−|γ|
2

(1 + |ξ|2) |α|+|α
′|

2

,

which proves the Lemma.
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Lemma 5.3. Let ψ be an admissible continuous negative definite function, and

q ∈ Sψ,m,m′

1,0 . Then qL(x, ξ)− q(x, ξ, x, ξ) ∈ Sψ,m+m′−1
1,0 .

Proof. Although the proof is analogous to those of Theorem 3.1, p. 75, from
[19], we will give a short outline. By Taylor’s formula we have

q(x, ξ + η, x+ z, ξ) = q(x, ξ, x+ z, ξ)

+
∑

|γ|=1

ηγ
∫ 1

0

∂
γ
ξ q(x, ξ + tη, x+ z, ξ′)

∣

∣

ξ′=ξ
dt,

where ηγ := ηi, if γ = (0, 0, . . . , 1
i
, 0, . . . , 0) ∈ N

n
0 . From Theorem 5.1 we derive

(2π)−nqL(x, ξ) = Os −
∫

Rn

∫

Rn

e−izηq(x, ξ, x+ z, ξ) dz dη

+
∑

|γ|=1

Os −
∫

Rn

∫

Rn

e−izηqγ(x, z, ξ, η) dη

= I0 +
∑

|γ|=1

Iγ,

where qγ(x, z, ξ, η) =
∑

|γ|=1 η
γ
∫ 1

0
∂
γ
ξ q(x, ξ + tη, x + z, ξ′)

∣

∣

ξ′=ξ
dt. Clearly, I0 =

q(x, ξ;x, ξ) ∈ Sψ,m+m′

1,0 .

Due to (5.3) and (5.4) we find

∣

∣∂αξ ∂
β
x∂

α′

ξ′ ∂
β′

z qγ(x, z, ξ, η)
∣

∣ =

∣

∣

∣

∣

∫ 1

0

∂αξ ∂
β
x∂

α′

ξ′ ∂
β′

z ∂
γ
ξ q(x, ξ + tη;x+ z, ξ′)

∣

∣

ξ′=ξ
dt

∣

∣

∣

∣

≤ c1

∫ 1

0

(1 + ψ(ξ + tη))
m
2

(1 + |ξ + tη|2) |α|+1−2l
2

(1 + ψ(ξ))
m′

2

(1 + |ξ|2) |α
′|
2

dt

≤ c2
(1 + ψ(ξ))

m+m′

2

(1 + |ξ|2) |α|+1
2

(1 + |η|2) |α|+|α
′|+1+m
2 .

Then by (2.12) we obtain for 2l ≥ |α|+ 1 +m+ n and 2n0 > n

∣

∣∂αξ ∂
β
xIγ(x, ξ)

∣

∣ ≤ c1
(1 + ψ(ξ))

m+m′

2

(1 + |ξ|2) |α|+1
2

∫

Rn

∫

Rn

(

1 + |η|2
)

|α|+1+m
2

(

1 + |z|2
)−n0

dz dη

≤ c2
(1 + ψ(ξ))

m+m′−1
2

(1 + |ξ|2) |α|2
.

Thus Iγ ∈ Sψ,m+m′−1
1,0 (Rn), and the Lemma is proved.
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Theorem 5.4. Let ψ be an admissible continuous negative definite function,

which satisfies E, and q(x, ξ) ∈ Sψ,21,0 . Then the equation

(λ+ q(x,D))u = f, (5.5)

is uniquely solvable for all f ∈ Lp, λ > 0, and the solution belongs to Hψ,2
p .

Proof. First we show that the operator (qλ(x,D), Hψ,2
p ), qλ(x,D) = λ+q(x,D),

is closed, i.e., the graph norm of qλ(x,D) in Lp is equivalent to the norm in Hψ,2
p .

Denote by (qλ(x,D))−1 the operator with symbol 1
qλ(x, ξ)

, and consider the

composition

(qλ(x,D))−1 ◦ qλ(x,D)u(x)

:= (2π)−
3n
2

∫

Rn

eix·ξq−1λ (x, ξ)

∫

Rn

e−ix
′·ξ

∫

Rn

eix
′·ξ′qλ(x

′, ξ′)û(ξ′) dξ′ dx′ dξ

= (2π)−
3n
2

∫

Rn

∫

Rn

∫

Rn

ei(x−x
′)·ξ+ix′·ξ′ qλ(x

′, ξ′)

qλ(x, ξ)
û(ξ′) dξ′ dx′ dξ

= q̃L(x,D)u,

where q̃L(x,D) is an operator with double symbol qλ(x
′, ξ′)

qλ(x, ξ)
. By Lemma 5.3,

q̃L(x, ξ) can be decomposed as q̃L(x, ξ) = 1 + q(1)(x, ξ) with some q(1) ∈ Sψ,−11,0 ,

(the latter is because q−1λ (x, ξ) ∈ S
ψ,−2
1,0 ). Due to Theorem 2.9 we obtain for

u ∈ Hψ,2
p that

‖u‖Hψ,2
p
≤ c1

(

‖(qλ(x,D))−1 ◦ qλ(x,D)u‖Hψ,2
p

+ ‖q(1)(x,D)u‖Hψ,2
p

)

≤ c2
(

‖qλ(x,D)u‖Lp + ‖u‖Hψ,1
p

)

.

Since for all u ∈ Hψ,2
p the inequality ‖u‖Hψ,1

p
≤ ε‖u‖Hψ,2

p
+ c

ε
‖u‖Lp holds for an

arbitrary small ε > 0 and some positive constant c (see [10, Corollary 4.3.23]),
we arrive at

‖u‖Hψ,2
p
≤ c3(‖qλ(x,D)u‖Lp + ‖u‖Lp), (5.6)

which together with Theorem 2.9 gives

c4‖u‖Hψ,2
p
≤ ‖qλ(x,D)u‖Lp + ‖u‖Lp ≤ c5‖u‖Hψ,2

p
.

Therefore (qλ(x,D), Hψ,2
p ) is closed.

To prove the solvability of (5.5) we use the Fredholm principle, i.e., the
equation Au = g, where (A,D(A)) is a closed operator in a Banach space X,
is uniquely solvable for all g ∈ X if and only if KerA∗ = {0}, where A∗ is the
adjoint operator.
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Due to Lemma 5.3 we can decompose the symbol of the operator adjoint to
qλ(x,D) as

q∗λ(x, ξ) = q(x, ξ) + q(2)(x, ξ), where q(2) ∈ Sψ,11,0 .

Let (q∗λ(x,D))−1 be the operator with symbol 1
q∗λ(x, ξ)

∈ Sψ,−21,0 . By Lemma 5.3

symb ((q∗λ(x,D))−1 ◦ q∗λ(x,D)) = 1 + q(3)(x, ξ),

where q(3) ∈ Sψ,−11,0 (Rn), and due to Theorem 2.9 for v ∈ D(q∗λ(x,D)) = Lp′ we
have

‖v‖Lp′ ≤ ‖((q
∗
λ(x,D))−1 ◦ q∗λ(x,D)v‖Lp′ + ‖q

(3)(x,D)v‖L′p
≤ c6

(

‖q∗λ(x,D)v‖Hψ,−2

p′
+ ‖v‖Hψ,−1

p′

)

.
(5.7)

Suppose that v is such that q∗λ(x,D)v = 0. Then from (5.7) we obtain that
v = 0 a.e. in Lp′ . Thus Ker q∗λ(x,D) = {0}, and by Fredholm alternative
R(qλ(x,D)) = Lp, which proves the theorem.

Since (−q(x,D), Hψ,2
p ) is an Lp-Dirichlet operator (by structure), we arrive,

using the Hille–Yosida theorem, at

Theorem 5.5. Let ψ be an admissible continuous negative definite function

which satisfies E, q(x,D) be a pseudo-differential operator, the symbol q(x, ξ)
of which is a continuous negative definite function with respect to ξ ∈ R

n, and

q ∈ S
ψ,2
1,0 . Then the operator (−q(x,D), Hψ,2

p ) generates an Lp-sub-Markovian
semigroup.

6. Solvability of the boundary-value problem for some
pseudo-differential operator

In the end we generalize Theorem 3.1 for the case when A is a pseudo-differential
operator q(x,D) with continuous negative definite symbol q(x, ξ), satisfying
certain restrictions. In what follows we use the notation q(x, ξ) = q(x, ξ ′, ξn),
ξ = (ξ′, ξn) ∈ R

n.

Theorem 6.1. Let ψ be an admissible continuous negative definite function

which satisfies E, q(x,D) be a pseudo-differential operator, the symbol q(x, ξ)
of which is a continuous negative definite function with respect to ξ ∈ R

n,

and q ∈ S
ψ,2
1,0 . In addition assume that q(x, ξ) satisfies the condition F with

respect to ξn. If the conditions a) or b) of Theorem 3.1 are satisfied, then
(−q(x,D), Hψ,2

p,+) generates an Lp-sub-Markovian semigroup.
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Proof. Since the operator (−q(x,D), Hψ,2
p ) satisfies the conditions of Theo-

rem 5.5, it is a generator of an Lp-sub-Markovian semigroup in R
n. The proof of

Theorem 6.1 will follow from the proof of Theorem 3.1 if we show that λ+q(x,D)
is an isomorphism between Hψ,2

p,+ and Lp(R
n
+).

The conditions of Theorem 3.1 imply that there exists the trace space of
Hψ,2
p on R

n−1. Then H̃ψ,2
p,− is the closure of the space C∞0 (Rn

0−) of infinitely many
differentiable functions with compact support in R

n
0− with respect to the norm

‖ · ‖Hψ,2
p

. Analogously, H̃ψ,2
p,+ is the closure of the space C∞0 (Rn

0+) with respect

to ‖ · ‖Hψ,2
p

. Due to the decomposition Hψ,2
p = H

ψ,2
p,+⊕ H̃ψ,2

p,− it is enough to show

that for u ∈ C∞0 (Rn
0−), we have supp(λ+ q(x,D))u ∈ R

n
0−, or, to show that for

u ∈ C∞0 (Rn
0+), we have (λ+ q(x,D))u = 0.

We will follow Theorem 2.10.3 from [22], see also [18, 17]. Let u ∈ C∞0 (R),
suppu ⊂ [ε,∞) for some ε > 0, and let M ∈ N large enough. Taking the
Fourier–Laplace transform of g we derive the estimate

∣

∣(1 + |z|)M ĝ(z)
∣

∣ ≤ Cg,Me
εImz. (6.1)

Consider for u ∈ C∞0 (Rn), suppu ⊂ R
n × [ε,∞)

q(x,D)u(x) =

∫

Rn−1

∫ ∞

−∞

eiξ
′·x′+iξnxnq(x, ξ′, ξn)û(ξ

′, ξn) dξndξ
′.

Since the function λ+q(x, ξ ′, z) has no zeros in the upper half-plane, by Cauchy’s
theorem we obtain

(λ+ q(x,D))u(x)

=

∫

Rn−1

∫ iN+∞

iN−∞

eiξ
′·x′+ixnz(λ+ q(x, ξ′, z))û(ξ′, z) dz dξ′

=

∫

Rn−1

∫ +∞

−∞

eiξ
′·x′+ixnτ−Nxn(λ+ q(x, ξ′, τ + iN))û(ξ′, τ + iN) dτ dξ′.

The condition q ∈ S
ψ,2
1,0 implies, taking in account the growth at infinity of a

continuous negative definite function, the estimate

|q(x, ξ)| ≤ (1 + ψ(ξ)) ≤ C(1 + |ξ|)2.

Then taking M in (6.1) large enough we get

∣

∣eiξ
′·x′+ixnτ−Nxn(λ+ q(x, ξ′, τ + iN))û(ξ′, τ + iN)

∣

∣

≤ Cu,M
Ce−(xn−ε)N

(1 + |ξ′|+
√
τ 2 +N2)M−2

.
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By Lebesgue dominated convergence theorem we obtain for xn > ε

∫

Rn−1

∫ +∞

−∞

eiξ
′·x′+ixnτ−Nxn(λ+ q(x, ξ′, τ + iN))û(ξ′, τ + iN) dτ dξ′ → 0

as N→∞. Thus for u ∈ C∞0 (Rn), suppu ⊂ R
n
0+, we have (λ + q(x,D))u = 0,

and thus λ+ q(x,D) is an isomorphism between H̃ψ,2
p,− and Lp(R

n
−), and, conse-

quently, between Hψ,2
p,+ and Lp(R

n
+).
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