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Existence and Multiplicity of Positive Solutions

for Singular p−Laplacian Equations

Haishen Lü and Yi Xie

Abstract. Positive solutions are obtained for the boundary value problem











−∆pu = λ(uβ + 1
uα

) in Ω

u > 0 in Ω

u = 0 on ∂Ω ,

(∗)

where ∆pu = div(|∇u|p−2∇u), 1 < p < N , N ≥ 3, Ω ⊂ R
N is a bounded domain,

0 < α < 1 and p − 1 < β < p∗ − 1
(

p∗ = Np
N−p

)

are two constants, λ > 0 is a real

parameter. We obtain that Problem (∗) has two positive weakly solutions if λ is small
enough.
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1. Introduction

In this paper we study the singular boundary value problem











−∆pu = λ(uβ + 1
uα
) in Ω

u > 0 in Ω

u = 0 on ∂Ω ,

(1)

where ∆pu = div(|∇u|p−2∇u), 1 < p < N , N ≥ 3, Ω ⊂ R
N is a bounded do-

main, 0 < α < 1 and p− 1 < β < p∗ − 1
(

p∗ = Np

N−p

)

are two constants, λ > 0
is a real parameter.
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Definition 1.1. A function u ∈ W 1,p
0 (Ω) is called a positive weakly solution of

Problem (1), if u(x) > 0 for x ∈ Ω and

∫

Ω

(

|∇u|p−2∇u,∇ϕ
)

dx = λ

∫

Ω

uβϕdx+ λ

∫

Ω

ϕ

uα
dx for all ϕ ∈ W 1,p

0 (Ω)

holds.

In the pioneering work [1], A. Ambrosetti, H. Brezis and G. Cerami inves-
tigated the problem











−∆u = λua + ub in Ω

u > 0 in Ω

u = 0 on ∂Ω

with 0 < a < 1 < b. In the succeeding work [2], the above problem is extended
to the p-Laplacian by A. Ambrosetti, J. G. Azorero and I. Peral. Motivated by
this, this paper attempt to improve the above results to the singular p-Laplacian
equation, i.e., −1 < a < 0. We must point out that since the functional of (1)
fails to be Frechet differentiable in Ω, critical point theory where [1, 2] have used
could not be applied to obtain the existence of solutions. So the method in [1, 2]
could not be used. So, it is very difficult to find existence and multiplicity of
positive solutions for Problem (1).

The existence of solutions to the elliptic equation

{

−∆u = f(x)
uγ

in Ω

u = 0 on ∂Ω
(2)

on a smooth domain Ω ⊂ R
N has been extensively studied (cf. [5, 7, 8, 11, 12]

and their references). For bounded Ω, in [7] it is shown that Problem (2) with
0 < γ < 1 has a unique positive weakly solution inH1

0 (Ω) if p(x) is a nonnegative
nontrivial function in L2(Ω). For the general problem

{

−∆u = σ
uγ

+ λuβ in Ω

u = 0 on ∂Ω
(3)

It is worth mentioning that, in [10] the existence of a unique positive solution
in the cases when β = 1 and 0 < β < 1 (the sub-linear problem) has been
proved. On the other hand, in [4], Y. Sun, S. Wu and Y. Long have proved that
Problem (3) has at least one positive weakly solution u ∈ H1

0 (Ω) for all λ > 0
and σ ∈ (0, σ∗].

Our goal in this paper is to prove that Problem (1) has two positive weakly
solutions for all λ small enough. In this paper, critical point theory could not be
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applied to obtain the existence of solutions since the associate functional fails
to be Frechet differentiable in Ω. We mainly rely on the Ekeland’s variational
principle [6] and careful estimates inspirsed by Lair-Shaker [7] and Tarantello [3].

We work on the Sobolev space W 1,p
0 (Ω) equipped with the norm ‖u‖ =

(
∫

Ω
|∇u|pdx)

1

p . For u ∈ W 1,p
0 (Ω) we define I : W 1,p

0 (Ω)→ R by

I(u) =
1

p

∫

Ω

|∇u|pdx−
λ

β + 1

∫

Ω

|u|β+1dx−
λ

1− α

∫

Ω

|u|1−αdx.

On the other hand, Lp(Ω) denote Lebesgue’s spaces, the norm in Lp is denoted
by ‖ · ‖p; C1, C2, · · · denote (possibly different) positive constants. Our main
results is the following:

Theorem 1.2. Let Ω be a bounded domain in R
N , N ≥ 3. Let 0 < α < 1,

p < β+1 < p∗. Then there exists λ0 > 0 such that for all λ ∈ (0, λ0) Problem (1)
possesses at least two positive weakly solutions u1(·), u2(·) ∈W 1,p

0 (Ω) and

∫

Ω

|∇ui|
p−2∇ui ·∇ϕdx = λ

∫

Ω

uβ
i ϕdx+λ

∫

Ω

ϕ

uα
i

dx for all ϕ ∈ W 1,p
0 (Ω), i = 1, 2.

Moreover, u1 is a local minimizer of I in W 1,p
0 (Ω) with I(u1) < 0; and u2 is a

minimizer of I on Λ− (Λ− is defined behind) with I(u2) ≥ 0.

Remark 1.3. The conclusion of Theorem 1.2 can be extended to the case of
the more general problem















−∆pu = µ
(

f(x)
uρ

+ g(x)uτ
)

in Ω

u > 0 in Ω

u = 0 on ∂Ω ,

where f, g : Ω→ R are two given non-negative and non-trival function in Lp(Ω).

Remark 1.4. When N = 1, the type of equations has been studied by Agarwal
and O’Regan [9] who proved that the equation

{

−(|u′|q−2u′)′ = ς
(

1
uα1

+ uβ1 + 1
)

for 0 < t < 1, 1 < q <∞

u(0) = u(1) = 0 ,

where α1 > 0, β1 > q − 1 and 0 < ς < 2q

3

(

q

q−1+α

)q−1
, has two solutions u1,

u2 ∈ C[0, 1] ∩ C1(0, 1) with u1 > 0, u2 > 0 on (0, 1) and ‖u1‖∞ < 1 < ‖u2‖∞.



28 Haishen Lü and Yi Xie

2. Preliminary lemmas

Let us define

Λ =

{

u ∈ W 1,p
0 (Ω) : ‖u‖p − λ‖u‖β+1β+1 − λ

∫

Ω

|u|1−α = 0

}

.

It is easy to see that Λ\{0} is a Nehari manifold, see [14]. Notice that if u is a
weak of (1), then u ∈ Λ. For the sake of the convenience, we record

A =
p− 1 + α

β + α
, B =

β − p+ 1

β + α
, D =

p+ α− 1

β + 1− p

E =
p∗ − β − 1

p∗(β + 1)
, F =

β + α

β + 1
.

(4)

Further, we define G : W 1,p
0 (Ω)→ R by

G(u) = A‖u‖p − λ‖u‖β+1β+1 .

In succession, let

Λ+ = {u ∈ Λ : G(u) > 0}

Λ0 = {u ∈ Λ : G(u) = 0}

Λ− = {u ∈ Λ : G(u) < 0} .

For the sake of the convenience, we list some inequalities which we will use in
the next section. By Sobolev’s embedding Theorem, we have

‖u‖p ≤ C0‖u‖ ∀u ∈W 1,p
0 (Ω)

‖u‖p∗ ≤

(

1

S

)
1

p

‖u‖ ∀u ∈W 1,p
0 (Ω), (5)

where C0 > 0 is a constant and S > 0 is the best Sobolev constant. By Hölder
inequalities we have

‖u‖β+1 ≤ |Ω|
E‖u‖p∗ ∀u ∈ W 1,p

0 (Ω) (6)
∫

Ω

|u|1−αdx ≤ |Ω|F‖u‖1−α
β+1 ∀u ∈ W 1,p

0 (Ω). (7)

By (5) and (6), we have

‖u‖β+1 ≤ C1‖u‖ ∀u ∈ W 1,p
0 (Ω) (8)

where C1 = |Ω|
E
(

1
S

)
1

p . By (7) and (8), we have
∫

Ω

|u|1−αdx ≤ C2‖u‖
1−α ∀u ∈W 1,p

0 (Ω) (9)

where C2 = |Ω|
F+E(1−α)S

α−1

p .
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Lemma 2.1. Let

λ1 =

(

AδBS
1

p

|Ω|E+F

)
1

D

, (10)

where A, B, D, E, F, S are defined in (4) and (5). Then, for all λ ∈ (0, λ1),
we have the following conclusions:

1. For every u ∈ Λ, u 6 ≡0, then G(u) 6= 0, (i.e., Λ0 = {0});

2. Λ− is closed in W 1,p
0 (Ω).

Proof. 1. Suppose, by contradiction that there exists some u ∈ Λ, u 6≡ 0 such
that G(u) = 0. Then

‖u‖β+1β+1 =
A

λ
‖u‖p. (11)

So

0 = ‖u‖p − λ‖u‖β+1β+1 − λ

∫

Ω

|u|1−αdx = ‖u‖p − A‖u‖p − λ

∫

Ω

|u|1−αdx.

Thus
∫

Ω

|u|1−αdx =
1− A

λ
‖u‖p =

B

λ
‖u‖p. (12)

By (11) and (12) we have

B

λ
‖u‖p

(

A

λ

)D
‖u‖pD

‖u‖
(β+1)D
β+1

−

∫

Ω

|u|1−αdx = 0. (13)

On the other hand, by (7) and (8) we have

B

λ
‖u‖p

(

A

λ

)D
‖u‖pD

‖u‖
(β+1)D
β+1

−

∫

Ω

|u|1−αdx ≥
B

λ

(

A

λ

)D
S

1

p

|Ω|E
‖u‖pD+p

β+1

‖u‖
(β+1)D
β+1

− |Ω|F‖u‖1−α
β+1

=

(

ADB

λ1+D

S
1

p

|Ω|E
− |Ω|F

)

‖u‖1−α
β+1 .

If 0 < λ < λ1, then
ADB
λ1+D

S
1
p

|Ω|E
− |Ω|F > 0. Thus

B

λ
‖u‖p ·

(

A

λ

)D
‖u‖pσ

‖u‖
(β+1)D
β+1

−

∫

Ω

|u|1−αdx > 0 ,

which yields a contraction by (13). So Λ0 = {0}.

2. Let {un} ⊂ Λ− be a sequence such that un → u0 in W 1,p
0 (Ω). Then

un → u0 in Lβ+1(Ω) and u0 ∈ Λ− ∪ Λ0. Now we prove u0 ∈ Λ−. Suppose
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u0 ∈ Λ0. Since Λ0 = {0}, it follows that u0 = 0. On the other hand, for all
u ∈ Λ−,

A

λ
≤
‖u‖β+1β+1

‖u‖p
.

By (8), we have

AS

λ|Ω|Ep
≤ ‖u‖β+1−p

β+1 . (14)

Thus
AS

λ|Ω|Ep
≤ ‖un‖

β+1−p
β+1 for n ∈ N.

Let n→∞, we have

AS

λ|Ω|Ep
≤ ‖u0‖

β+1−p
β+1 .

So u0 6≡ 0. Hence u0 ∈ Λ−.

Lemma 2.2. Let

λ2 = A
D

1−D ·B
1

1−D ·
S

|Ω|pE+F
(15)

where A, B, D, E, F, S are defined in (4) and (5). If 0 < λ < λ2, then for all
u ∈W 1,p

0 (Ω), u 6 ≡0, there exists a unique t+ = t+(u) > 0 such that t+u ∈ Λ−.

Proof. For all u ∈ W 1,p
0 (Ω), u 6 ≡0, define H : [0,∞)→ (−∞,∞) by

H(t) = tp−1+α‖u‖p − λtβ+α‖u‖β+1β+1.

Easy computations show that H achieves its maximum at

t0 =

(

A

λ

‖u‖p

‖u‖β+1β+1

)
1

β+1−p

.

So

H(t0) =

(

A

λ

)D

B ·

[

‖u‖p(β+α)

‖u‖
(β+1)(p+α−1)
β+1

]
1

β+1−p

.

If λ ∈ (0, λ2), then λ|Ω|F‖u‖1−α
β+1 < H(t0). By (7), λ

∫

|u|1−αdx ≤ λ|Ω|F‖u‖1−α
β+1.

So λ
∫

|u|1−αdx < H(t0).

On the other hand, H ′(t) < 0 for t ∈ (t0,∞) and limt→+∞H(t) = −∞.
So, there exists a unique t+ ∈ (t0,∞) such that H(t+) = λ

∫

|u|1−αdx, i.e.,

‖t+u‖p − λ‖t+u‖β+1β+1 = λ
∫

Ω
|tu|1−αdx. So t+u ∈ Λ. By

H ′(t+) = (p− 1 + α)(t+)p−2+α‖u‖p − λ(β + α)(t+)β+α−1‖u‖β+1β+1 < 0,

we have G(t+u) = (A‖t+u‖p − λ‖t+u‖β+1β+1) ≤ 0. So t+u ∈ Λ−.

Remark 2.3. From Lemma 2.2 it follows that the set Λ− is nonempty.
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Lemma 2.4. Given u ∈ Λ−, then there exist ε > 0 and a continuous function
f = f(w) > 0, w ∈ W 1,p

0 (Ω), ‖w‖ < ε, satisfying

f(0) = 1, f(w)(u+ w) ∈ Λ− for all w ∈W 1,p
0 (Ω), ‖w‖ < ε.

Proof. Define F : R×W 1,p
0 (Ω)→ R as follows:

F (t, w) = tp−1+α‖u+ w‖p − λtβ+α‖u+ w‖β+1β+1 − λ

∫

Ω

|u+ w|1−αdx.

Since u ∈ Λ−(⊂ Λ), it follows that F (1, 0) = 0 and

Ft(1, 0) = (p− 1 + α)‖u‖p − λ(β + α)‖u‖β+1β+1 < 0,

then we can apply the implicit function theorem at the point (1, 0) and obtain
ε > 0 and a continuous function f = f(w) > 0, w ∈ W 1,p

0 (Ω), ‖w‖ < ε,
satisfying f(0) = 1, F (f(w), w) = 0 for all w ∈ W 1,p

0 (Ω), ‖w‖ < ε. Hence
f(w)(u + w) ∈ Λ. Let ε ∈ (0, ε) small enough, we have f(w)(u + w) ∈ Λ− for
all w ∈ W 1,p

0 (Ω), ‖w‖ < ε.

Lemma 2.5. Let

λ3 =

(

β + 1

1− α

)B

DB|Ω|FB AS

|Ω|Ep
. (16)

Then, for all λ ∈ (0, λ3], the whole set Λ− lies at the nonnegative level, that is
I(u) ≥ 0, for all u ∈ Λ−.

Proof. We argue by contradiction. Suppose that exists u0 ∈ Λ− ⊂ Λ such that
I(u0) < 0, i.e.,

1

p
‖u0‖

p −
λ

β + 1
‖u0‖

β+1
β+1 −

λ

1− α

∫

Ω

|u0|
1−αdx < 0. (17)

By u0 ∈ Λ, we have ‖u0‖
p = λ‖u0‖

β+1
β+1 + λ

∫

Ω
|u0|

1−αdx. By (17), we have

λ

(

1

p
−

1

β + 1

)

‖u0‖
β+1
β+1 + λ

(

1

p
−

1

1− α

)
∫

Ω

|u0|
1−αdx < 0,

and by (7), we have

‖u0‖
β+α
β+1 ≤

D(1 + β)

1− α
|Ω|F .

By (14) (noticing u0 ∈ Λ−), we have

(

AS

λ|Ω|Ep

)
β+α

β+1−p

≤ ‖u0‖
β+α
β+1 .

If 0 < λ < λ3, we have

‖u0‖
β+α
β+1 ≤

D(1 + β)

1− α
|Ω|F < (

AS

λ|Ω|Ep
)

β+α
β+1−p ≤ ‖u0‖

β+α
β+1 .

This is a contradiction. So I(u0) ≥ 0.
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3. Proof of Theorem 1.2

In this section, we prove that there exist λ0 > 0 such that, for all λ ∈ (0, λ0),
there exist at least two positive functions u1(·), u2(·) ∈ W 1,p

0 (Ω) such that
∫

Ω

|∇ui|
p−2∇ui ·∇ϕdx = λ

∫

Ω

uβ
i ϕdx+λ

∫

Ω

ϕ

uα
i

dx for all ϕ ∈ W 1,p
0 (Ω), i = 1, 2.

Moreover u1 is a local minimizer of I in W 1,p
0 (Ω) with I(u1) < 0; and u2 is a

minimizer of I on Λ−.

Proof of Theorem 1.2. Using the inequalities (8) and (9), we have

I(u) ≥
1

p
‖u‖p − λC3‖u‖

β+1 − λC4‖u‖
1−α, ∀u ∈ W 1,p

0 (Ω),

where C3, C4 > 0 are positive constants. From this we readily find that there
exists λ4 > 0 such that for all λ ∈ (0, λ4] there are r, a > 0 such that

(i) I(u) ≥ a for all ‖u‖ = r;

(ii) I is bounded on Br =
{

u ∈W 1,p
0 (Ω) : ‖u‖ ≤ r

}

;

Let λ0 = min {λ1, λ2, λ3, λ4} where λi(i = 1, 2, 3) are the values found in (10),
(15), (16), and λ4 is defined as above. Next, we fix λ ∈ (0, λ0).

Existence of u1. In view of of [6, Theorem 1.2 ] the infinimum of I on Br

can be achieved at a point u1 ∈ Br. Note that, since 1− α < 1, it follows that
for every v > 0, I(tv) < 0 as t > 0 small. So there exists v1 ∈ Br such that
I(v1) < 0. Hence I(u1) = infu∈Br

I(u) ≤ I(v1) < 0. This, together with (i),
implies that u1 /∈ ∂B1. Hence u1 is a local minimizer of I in the W 1,p

0 topology.
Clearly, u1 6≡ 0. Moreover, since I(|u|) = I(u), we may assume that u1 ≥ 0
in Ω. Then, for any ϕ ∈ W 1,p

0 , ϕ ≥ 0,

0 ≤ I(u1 + tϕ1)− I(u1)

=
1

p

(

‖u1 + tϕ‖p − ‖u1‖
p
)

+
λ

β + 1

(

‖u1‖
β+1
β+1 − ‖u1 + tϕ‖β+1β+1

)

+
λ

1− α

(
∫

Ω

|u1|
1−αdx−

∫

Ω

|u1 + tϕ|1−αdx

)

≤
1

p

(

‖u1 + tϕ‖p − ‖u1‖
p
)

,

i.e.,

0 ≤
1

p

∫

Ω

(

|∇(u1 + tϕ)|p − |∇u1|
p
)

dx (18)

provided t > 0 small enough. Dividing (18) by t > 0 and passing to the limit
as t→ 0, we derive

∫

Ω

|∇u1|
p−2∇u1 · ∇ϕdx ≥ 0 for ϕ ∈ W 1,p

0 (Ω), ϕ ≥ 0,
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which means u1 ∈ W 1,p
0 (Ω) satisfies in a weak sense that −∆pu1 ≥ 0 in Ω. Since

u1 ≥ 0, u1 6≡ 0, then the strong maximum principle yields

u1 > 0 in Ω.

On the other hand, from (18), we have

λ

1− α

(
∫

Ω

|u1 + tϕ|1−αdx−

∫

Ω

|u1|
1−αdx

)

≤
1

p

(

‖u1 + tϕ‖p − ‖u1‖
p
)

−
λ

β + 1

(

‖u1 + tϕ‖β+1β+1 − ‖u1‖
β+1
β+1

)

.

(19)

Dividing (19) by t > 0 and passing to the limit, it follows that

λ

1− α
lim inf
t→0+

∫

Ω
|u1 + tϕ|1−αdx−

∫

Ω
|u1|

1−αdx

t

≤

∫

Ω

|∇u1|
p−2∇u1 · ∇ϕdx− λ

∫

Ω

uβ
1ϕdx.

(20)

Observing

1

1− α

∫

Ω

(u1 + tϕ)1−α − u1−α
1

t
dx =

∫

Ω

(u1 + θtϕ)−αϕdx,

where θ → 0+ as t→ 0+ and (u1+ θtϕ)−αϕ→ u−α
1 ϕ a.e. in Ω as t→ 0+. Since

0 ≤ (u1 + θtϕ)−αϕ, for all x ∈ Ω. By Fatou’s Lemma, we have

1

1− α
lim inf
t→0+

∫

Ω

(u1 + tϕ)1−α − u1−α
1

t
dx ≥

∫

Ω

u−α
1 ϕdx. (21)

Combining (20) and (21), we have, for all ϕ ∈ W 1,p
0 (Ω), ϕ ≥ 0,

0 ≤

∫

Ω

|∇u1|
p−2∇u1 · ∇ϕdx− λ

∫

Ω

uβ
1ϕdx− λ

∫

Ω

u−α
1 ϕdx . (22)

On the other hand, there exists η1 ∈ (0, 1) such that u1 + tu1 ∈ Br for |t| ≤ η1.
We define h1 : [−η1, η1]→ R by h1(t) ≡ I((1+t)u1).We have that h1(t) achieves
its minimum at t = 0. Therefore,

dh1
dt

∣

∣

∣

t=0
=

∫

Ω

[

|∇u1|
p − λuβ+1

1 − λu1−α
1

]

dx = 0. (23)

Therefore, u1 ∈ Λ.

We next prove that u1 is a positive weakly solution. Suppose φ ∈ W 1,p
0 (Ω)

and ε > 0. Let Ψ ≡ (u1 + εφ)+, where (u1 + εφ)+ = max {u1 + εφ, 0} . Then
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Ψ ∈ W 1,p
0 (Ω) and Ψ ≥ 0. Inserting Ψ into (22) and using (23) again, we infer

that

0 ≤

∫

Ω

|∇u1|
p−2∇u1 · ∇Ψdx− λ

∫

Ω

uβ
1Ψdx− λ

∫

Ω

u−α
1 Ψdx

=

∫

Ω\Ωε

[

|∇u1|
p−2∇u1 · ∇(u1 + εφ)− λuβ

1 (u1 + εφ)− λu−α
1 (u1 + εφ)

]

dx

=

∫

Ω

[

|∇u1|
p − λuβ+1

1 − λu1−α
1

]

dx

+ ε

∫

Ω

|∇u1|
p−2∇u1 · ∇φdx− λε

∫

Ω

uβ
1φdx− λε

∫

Ω

u−α
1 φdx

−

∫

Ωε

[

|∇u1|
p−2∇u1 · ∇(u1 + εφ)− λuβ

1 (u1 + εφ)− λu−α
1 (u1 + εφ)

]

dx

≤ ε

∫

Ω

[

|∇u1|
p−2∇u1 · ∇φ− λuβ

1φ− λu−α
1 φ

]

dx− ε

∫

Ωε

|∇u1|
p−2∇u1 · ∇φdx,

where Ωε = {x ∈ Ω : u1(x) + εφ(x) < 0} . Since the measure of Ωε tends to zero
as ε → 0, it follows that

∫

Ωε
|∇u1|

p−2∇u1 · ∇φdx → 0 as ε → 0. Dividing by ε
and letting ε→ 0 therefore shows

∫

Ω

[

|∇u1|
p−2∇u1 · ∇φ− λuβ

1φ− λu−α
1 φ

]

dx ≥ 0.

Noting that φ is arbitrary, this holds equally for −φ. So
∫

Ω

[

|∇u1|
p−2∇u1 · ∇φ− λuβ

1φ− λu−α
1 φ

]

dx = 0, for all φ ∈W 1,p
0 (Ω).

Hence, u1 is a positive weak solution of (1) and I(u1) < 0

Next, we prove that (1) has another positive weakly solution u2 such that
I(u2) > 0. We first show that I is coercive on Λ. Indeed, for u ∈ Λ, we have

‖u‖p − λ‖u‖β+1β+1 − λ

∫

Ω

|u|1−αdx = 0. (24)

By (24) and (9), we have

I(u) =
1

p
‖u‖p −

λ

β + 1
‖u‖β+1β+1 −

λ

1− α

∫

Ω

|u|1−αdx

≥

(

1

p
−

1

β + 1

)

‖u‖p − λC2

(

1

1− α
−

1

β + 1

)

‖u‖1−α.

So, I is coercive on Λ. Since Λ− is a closed set in W 1,p
0 (Ω), we apply Ekeland’s

variational Principle to the minimization problem infΛ− I. It gives a minimizing
sequence {wn} ⊂ Λ− with the following properties:
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(i) I(wn) < infΛ− I +
1
n
;

(ii) I(w) ≥ I(wn)−
1
n
‖w − wn‖, ∀w ∈ Λ−.

Since I(|u|) = I(u), we may assume that wn ≥ 0 in Ω. By coerciveness, {wn} is
bounded in W 1,p

0 (Ω), i.e.,

‖wn‖ ≤ C5, n = 1, 2, . . . , (25)

where C5 > 0 is some constant independent on n. So there exists a subsequence
(without loss of generality, suppose it is itself) and a function u2 ≥ 0 such that

wn → u2 a.e. x ∈ Ω

wn

strongly
→ u2 in Lβ+1

wn

weakly
→ u2 in W 1,p

0 .

On the other hand, by (14)

AS

λ|Ω|Ep
≤ ‖wn‖

β+1−p
β+1 , (26)

so u2 6≡ 0. In addition, for the minimizing sequence {wn} there exists a suitable
constant C6 > 0 such that

A‖wn‖
p − λ‖wn‖

β+1
β+1 ≤ −C6 n = 1, 2, . . . . (27)

Suppose, by contradiction, that for a subsequence, which is still denoted by
{wn}, we have

A‖wn‖
p − λ‖wn‖

β+1
β+1 = o(1).

Using {wn} ⊂ Λ− and (26), we have

I(wn) =
1

p
‖wn‖

p −
λ

β + 1
‖wn‖

β+1
β+1 −

1

1− α
‖wn‖

p +
λ

1− α
‖wn‖

β+1
β+1

= −
β + α

p(1− α)
G(wn)−

λ(β + 1− p)

β + 1
‖wn‖

β+1
β+1

≤ −
β + α

p(1− α)
G(wn)− C7 for n = 1, 2, . . . ,

where C7 > 0 is some constant independent of n. Passing to the limit as n→∞,
we get limn→∞ I(wn) ≤ −C7. This, together with I(wn) ≥ infΛ− I(u) implies
infu∈Λ− I(u) ≤ −C7 < 0, which is clearly impossible because from Lemma 2.5.
It follows that infu∈Λ− I(u) ≥ 0.
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For all ϕ ∈ W 1,p
0 (Ω), ϕ ≥ 0, applying Lemma 2.4, with u = wn, w = tϕ,

t > 0 small, we find fn(t) = fn(tϕ) such that fn(0) = 1 and fn(t)(wn+tϕ) ∈ Λ−.
Note that, since

0 = f p
n(t)‖wn + tϕ‖p − λfβ+1

n ‖wn + tϕ‖β+1β+1 − f 1−α
n (t)

∫

Ω

(wn + tϕ)1−αdx

and 0 = ‖wn‖
p − λ‖wn‖

β+1
β+1 − λ

∫

Ω
w1−α

n dx, so

0 = f p
n(t)‖wn + tϕ‖p − λfβ+1

n ‖wn + tϕ‖β+1β+1 − λf 1−α
n (t)

∫

Ω

(wn + tϕ)1−αdx

− ‖wn‖
p + λ‖wn‖

β+1
β+1 + λ

∫

Ω

w1−α
n dx

=
(

f p
n(t)− 1

)

‖wn + tϕ‖p +
(

‖wn + tϕ‖p − ‖wn‖
p
)

− λ
(

fβ+1
n − 1

)

‖wn + tϕ‖β+1β+1 − λ
(

‖wn + tϕ‖β+1β+1 − ‖wn‖
β+1
β+1

)

− λ
(

f 1−α
n − 1

)

∫

Ω

(wn + tϕ)1−αdx− λ

∫

Ω

[

(wn + tϕ)1−α − w1−α
n

]

dx

≤
(

f p
n(t)− 1

)

‖wn + tϕ‖p +
(

‖wn + tϕ‖p − ‖wn‖
p
)

− λ
(

fβ+1
n − 1

)

‖wn + tϕ‖β+1β+1 − λ
(

‖wn + tϕ‖β+1β+1 − ‖wn‖
β+1
β+1

)

− λ
(

f 1−α
n − 1

)

∫

Ω

(wn + tϕ)1−αdx.

Dividing by t > 0 and letting t→ 0, we infer that

0 ≤ pf
′

n+(0)‖wn‖
p + p

∫

Ω

|∇wn|
p−2∇wn · ∇ϕdx

− λf
′

n+(0)(β + 1)‖wn‖
β+1
β+1 − λ(β + 1)

∫

Ω

wβ
nϕdx− λ(1− α)f

′

n+(0)

∫

Ω

w1−α
n dx

= f
′

n+(0)
[

p‖wn‖
p − λ(β + 1)‖wn‖

β+1
β+1 − λ(1− α)‖wn‖

1−α
1−α

]

+ p

∫

Ω

|∇wn|
p−2∇wn · ∇ϕdx− λ(β + 1)

∫

Ω

wβ
nϕdx

= f
′

n+(0)
[

(p+ α− 1)‖wn‖
p − λ(β + α)‖wn‖

β+1
β+1

]

+ p

∫

Ω

|∇wn|
p−2∇wn · ∇ϕdx− λ(β + 1)

∫

Ω

wβ
nϕdx ,

i.e.,

0 ≤ f
′

n+(0)
[

(p+ α− 1)‖wn‖
p − λ(β + α)‖wn‖

β+1
β+1

]

+ p

∫

Ω

|∇wn|
p−2∇wn · ∇ϕdx− λ(β + 1)

∫

Ω

wβ
nϕdx ,

(28)
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where f
′

n+(0) = limt→0+
fn(t)−fn(0)

t
. For the sake of simplicity, we assume hence-

forth that the right derivate of fn at t = 0 exists. Indeed, if it doesn’t exist,
we let tk → 0 (instead of t → 0), tk > 0 is chosen in such a way that fn sat-

isfies qn := limk→∞
fn(tk)−fn(0)

tk
, then replace f

′

n+(0) by qn. We next prove that

f
′

n+(0) 6= ±∞.

By (8) and (25)
∣

∣

∣

∣

p

∫

Ω

|∇wn|
p−2∇wn · ∇ϕdx− λ(β + 1)

∫

Ω

wβ
nϕdx

∣

∣

∣

∣

≤ p‖wn‖
p−1‖ϕ‖p + λ(β + 1)‖wn‖

β
β+1‖ϕ‖β+1 ≤ C8,

(29)

where C8 > 0 is a positive constant. For (27), (28) and (29), we know immedi-
ately that f

′

n+(0) 6= +∞. Now we prove that f
′

n+(0) 6= −∞. By contradiction,
we assume that f

′

n+(0) = −∞, and so for t > 0 small there holds fn(t) < 1.
Then

‖fn(t)(wn + tϕ)− wn‖ =

(
∫

Ω

∣

∣fn(t)(∇wn + t∇ϕ)−∇wn

∣

∣

p
dx

)
1

p

=

(
∫

Ω

∣

∣(fn(t)− 1)∇wn + tfn(t)∇ϕ
∣

∣

p
dx

)
1

p

≤
[

1− fn(t)
]

‖wn‖+ tfn(t)‖ϕ‖

provided t > 0 small. Thus, from (ii) we have 1
n
‖w − wn‖ ≥ I(wn)− I(w). So

[

1−fn(t)
]‖wn‖

n
+ tfn(t)

‖ϕ‖

n

≥
1

n
‖fn(t)(wn + tϕ)− wn‖

≥ I(wn)− I
(

fn(t)(wn + tϕ)
)

=
1

p
‖wn‖

p −
λ

β + 1
‖wn‖

β+1
β+1 −

λ

1− α

∫

Ω

|wn|
1−αdx−

1

p
‖fn(t)(wn + tϕ)‖p

+
λ

β + 1
‖fn(t)(wn + tϕ)‖β+1β+1 +

λ

1− α

∫

Ω

∣

∣fn(t)(wn + tϕ)
∣

∣

1−α
dx

Using

−
λ

1− α

∫

Ω

|wn|
1−αdx = −

1

1− α
‖wn‖

p +
λ

1− α
‖wn‖

β+1
β+1

and

λ

1− α

∫

Ω

∣

∣fn(t)(wn + tϕ)
∣

∣

1−α
dx =

1

1− α
f p
n(t)‖wn + tϕ‖p

−
λ

1− α
fβ+1
n (t)‖wn + tϕ‖β+1β+1 ,
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we have

[

1−fn(t)
]‖wn‖

n
+ tfn(t)

‖ϕ‖

n

≥

(

1

p
−

1

1− α

)

‖wn‖
p −

(

λ

β + 1
−

λ

1− α

)

‖wn‖
β+1
β+1

−

(

1

p
−

1

1− α

)

f p
n(t)‖wn + tϕ‖p

+ λ

(

1

β + 1
−

1

1− α

)

fβ+1
n (t)‖wn + tϕ‖β+1β+1

=
p+ α− 1

p(1− α)

(

‖wn + tϕ‖p − ‖wn‖
p
)

+
p+ α− 1

p(1− α)

(

f p
n(t)− 1

)

‖wn + tϕ‖p

− λ
β + α

(β + 1)(1− α)
fβ+1
n (t)

(

‖wn + tϕ‖β+1β+1 − ‖wn‖
β+1
β+1

)

− λ
β + α

(β + 1)(1− α)

[

fβ+1
n (t)− 1

]

‖wn‖
β+1
β+1 .

Dividing by t > 0 and passing to the limit as t→ 0, we have

−f
′

n+(0)
‖wn‖

n
+
‖ϕ‖

n

≥
p+ α− 1

p(1− α)

∫

Ω

|∇wn|
p−2∇wn · ∇ϕdx+

p+ α− 1

1− α
f
′

n+(0)‖wn‖
p

−
β + α

1− α

∫

Ω

|wn|
βϕdx− λ

β + α

1− α
f
′

n+(0)‖wn‖
β+1
β+1

=
1

1− α

[

(p+ α− 1)‖wn‖
p − λ(β + α)‖wn‖

β+1
β+1

]

f
′

n+(0)

+
1

1− α

[

(p+ α− 1)

∫

Ω

|∇wn|
p−2∇wn · ∇ϕdx− λ(β + α)

∫

Ω

|wn|
βϕdx

]

,

i.e.,

‖ϕ‖

n
≥

1

1− α

[

(p+ α− 1)‖wn‖
p − λ(β + α)‖wn‖

β+1
β+1 +

1− α

n
‖wn‖

]

f
′

n+(0)

+
1

1− α

[

(p+ α− 1)

∫

Ω

|∇wn|
p−2∇wn · ∇ϕdx

− λ(β + α)

∫

Ω

|wn|
βϕdx

]

.

(30)

By (25) and (27), there exist N0 > 0 and C9 > 0 (independent of n) such that,
for n ≥ N0,

1

1− α

[

(p+ α− 1)‖wn‖
p − λ(β + α)‖wn‖

β+1
β+1 +

1− α

n
‖wn‖

]

≤ −C9 .



Positive Solutions 39

On the other hand, by (8) and (25), we have, for n ≥ N0,
∣

∣

∣

∣

1

1− α

[

(p+ α− 1)

∫

Ω

|∇wn|
p−2∇wn · ∇ϕdx− λ(β + α)

∫

Ω

|wn|
βϕdx

]∣

∣

∣

∣

≤ C10 ,

where C10 > 0 (independent of n) is a suitable constant. By (30), it is impos-
sible that f

′

n+(0) = −∞. Furthermore, (28) and (30) imply that |f ′
n+(0)| ≤

C11 for n = 1, 2, . . . , where C11 > 0 is a suitable constant.

Now we prove that u2 ∈ Λ− is a positive weakly solution of (1). From
condition (ii) we infer 1

n
‖w − wn‖ ≥ I(wn)− I(w), i.e.,

1

n
[|fn(t)− 1|‖wn‖+ tfn(t)‖ϕ‖]

≥
1

n
‖fn(t)(wn + tϕ)− wn‖

≥ I(wn)− I
(

fn(t)(wn + tϕ)
)

=
1

p
‖wn‖

p −
λ

β + 1
‖wn‖

β+1
β+1 −

λ

1− α

∫

Ω

|wn|
1−αdx

−
1

p
‖fn(t)(wn + tϕ)‖p +

λ

β + 1
‖fn(t)(wn + tϕ)‖β+1β+1

+
λ

1− α

∫

Ω

∣

∣fn(t)(wn + tϕ)
∣

∣

1−α
dx

= −
f p
n(t)− 1

p
‖wn‖

p + λ
fβ+1
n (t)− 1

β + 1
‖wn‖

β+1
β+1 + λ

f 1−α
n (t)− 1

1− α

∫

Ω

|wn|
1−αdx

−
f p
n(t)

p

(

‖wn + tϕ‖p − ‖wn‖
p
)

+
λ

β + 1
fβ+1
n (t)

(

‖wn + tϕ‖β+1β+1 − ‖wn‖
β+1
β+1

)

+
λ

1− α
f 1−α
n (t)

∫

Ω

[(wn + tϕ)1−α − w1−α
n ]dx.

Dividing by t > 0 and passing to the limit as t→ 0, this yields

1

n

[

|f
′

n+(0)|‖wn‖+ ‖ϕ‖
]

≥ −f
′

n+(0)‖wn‖
p + λf

′

n+(0)‖wn‖
β+1
β+1 + λf

′

n+(0)

∫

Ω

|wn|
1−αdx

−

∫

Ω

|∇wn|
p−2∇wn · ∇ϕdx+ λ

∫

Ω

wβ
nϕdx

+ lim inf
t→0+

λ

1− α

∫

Ω

(wn + tϕ)1−α − w1−α
n

t
dx

= −

∫

Ω

|∇wn|
p−2∇wn · ∇ϕdx+ λ

∫

Ω

wβ
nϕdx

+ lim inf
t→0+

λ

1− α

∫

Ω

(wn + tϕ)1−α − w1−α
n

t
dx.
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Since (wn(x) + tϕ(x))1−α − w1−α
n (x) ≥ 0, for all x ∈ Ω, t > 0, then by Fatou’s

Lemma, we have

λ

∫

Ω

w1−α
n ϕdx ≤ lim inf

t→0+

λ

1− α

∫

Ω

(wn + tϕ)1−α − w1−α
n

t
dx.

So

λ

∫

Ω

w−α
n ϕdx ≤

1

n

[

|f
′

n+(0)|‖wn‖+ ‖ϕ‖
]

+

∫

Ω

|∇wn|
p−2∇wn · ∇ϕdx− λ

∫

Ω

wβ
nϕdx

≤
C11C5 + ‖ϕ‖

n
+

∫

Ω

|∇wn|
p−2∇wn · ∇ϕdx− λ

∫

Ω

wβ
nϕdx.

Let n→∞, we have

lim inf
n→∞

λ

∫

Ω

w−α
n ϕdx ≤

∫

Ω

|∇u2|
p−2∇u2 · ∇ϕdx− λ

∫

Ω

uβ
2ϕdx;

then using once more Fatou’s Lemma, we infer that, for all ϕ ∈W 1,p
0 (Ω), ϕ ≥ 0,

∫

Ω

|∇u2|
p−2∇u2 · ∇ϕdx− λ

∫

Ω

uβ
2ϕdx− λ

∫

Ω

w−α
2 ϕdx ≥ 0 , (31)

which means that u2 satisfies −∆pu2 ≥ 0 in Ω. Since u2 ≥ 0 and u2 6≡ 0 in Ω,
then the strong maximum principle yields u2 > 0 in Ω. In particular, using (31)
with ϕ = u2, we infer that

‖u2‖
p − λ‖u2‖

β+1
β+1 − λ

∫

Ω

u1−α
2 dx ≥ 0.

On the other hand, by weakly lower semi-continuity of the norm

‖u2‖
p ≤ λ‖u2‖

β+1
β+1 + λ

∫

Ω

u1−α
2 dx.

So

‖u2‖
p = lim

n→∞
‖wn‖

p = λ‖u2‖
β+1
β+1 + λ

∫

Ω

u1−α
2 dx. (32)

Consequently

wn

strongly
→ u2 in W 1,p

0 (Ω)

and I(u2) = infΛ− I. Also from Lemma 2.1, it follows that necessarily u2 ∈ Λ−.
Then, following the same arguments as in proving the existence of u1 and using
(31)–(32), we obtain u2 ∈ Λ− is a positive weakly solution of (1). This completes
the proof of Theorem 1.2.
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