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Elaboration of Some Results

of Srivastava and Choi

Li Hailong and Masayuki Toda

Abstract. In this paper we shall utilize some recent results of S. Kanemitsu, H. Ku-
magai, H. M. Srivastava and M. Yoshimoto in Appl. Math. Comput. 154 (2004) on
an asymptotic as well as an integral formula for the partial sum of the Hurwitz zeta-
function, to elaborate on some results of Srivastava and Choi in Series Associated with

the Zeta and Related Functions (Kluwer 2001), and in some cases to give improved
generalizations thereof. More specifically, we shall give an asymptotic expansion of
the sum of the values derivative of the digamma function. We shall also re-establish
Bendersky–Adamchik’s result and Elizalde’s result.
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1. Introduction and basic results

In [7], an asymptotic as well as an integral formula for the partial sum

Lu(x, a) =
∑

0≤n≤x

(n+ a)u

of the corresponding Hurwitz zeta-function ζ(−u, a) is obtained which we repro-
duce as Proposition 1 below, where u indicates a complex variable, a > 0, x ≥ 0
and the principal value of log(n + a) is taken. The result is far-reaching and
easily applicable, entailing the corresponding result for ζ(−u, a). In a sequal
paper [8] to [7], some applications were made of Proposition 1 and its corollaries
(i.e., the successive derivatives), and it is shown, among other things, that the
theory of the gamma function Γ(a) can be based on that of the (special case of
the derivative of) Hurwitz zeta function ζ ′(0, a) = ∂

∂s
ζ(s, a)|s=0.
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Our aim in this paper is likewise to show that by using Proposition 1 and its
corollaries, we may elaborate on some of the results of Srivastava and Choi and
others scattered around in their book [10] in clearer perspective, and in some
cases, we may give improved generalization thereof; an example, in contrast to
the case of the gamma function, is Theorem 1 which gives a complete asymptotic
expansion of the sum of the values of ψ(ν)(n).

In this section we shall state Proposition 1 and its corollary (Corollary 1)
with its proof in the same lines as those of the proof of [5, Lemma 8]. Then in
Remark 2 we shall make a more explicit statement than that of [7] to the effect
that mere comparison of the Taylor coefficients of (1.11) gives the simplest proof

of the fact that the k-th Laurent coefficient of ζ(s, a) is given by (−1)k
k!

γk(a),
where γk(a) is defined by (1.9). In §2 we shall prove Theorem 1 and other
formulas which are deducible from Proposition 1, while in §3 we shall give some
results which follow from Corollary 1, i.e., from the results on ∂

∂u
Lu(x, a).

We use the following notation: s denotes the complex variable with Re s=σ,
Γ(s) =

∫∞
0
e−tts−1dt the gamma function (σ > 0) and ψ(s) = Γ′

Γ
(s) = (log Γ(s))′

the digamma function, both of which are meromorphically continued to the
whole complex plane with simple poles at non-positive integers;

ζ(s, a) =
∑∞

n=0
1

(n+a)s
denotes the Hurwitz zeta function, σ > 1, a > 0, the

power taking the principal value, and ζ(s) = ζ(s, 1) the Riemann zeta-function,
both of which are continued meromorphically over the complex plane with a
simple pole at s = 1;

B
(α)
r (x) denotes the generalized Bernoulli polynomial of degree r in x, de-

fined through the generating function ( z
ez−1)

αezx =
∑∞

r=0
1
r!
B
(α)
r (x)zn (|z| < 2π)

([10, p. 61]) satisfying the addition formula

B(α+β)
r (x+ y) =

r
∑

k=0

(

r

k

)

B
(α)
k (x)B

(β)
r−k(y) (1.1)

([10, Formula (24), p. 61]) with the properties B
(α)
r = B

(α)
r (0), B

(1)
r (x) = Br(x),

B
(1)
r = Br, where Br(x) and Br = Br(0) are the r-th Bernoulli polynomial and
the r-th Bernonlli number defined by (1.1) with α = 1. For a real number y, we
denote its integral part and fractional part by [y] and {y}, respectively. Then
Br(x) = Br({x}) denotes the r-th periodic Bernoulli polynomial.

We are in a position to state basic results from which we start our investi-
gation, both results due to [7].
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Proposition 1 ([7, Theorem 1], Integral Representations). Let

Lu(x, a) =
∑

0≤n≤x

(n+ a)u.

Then, for any l ∈ N with l > Reu+ 1,Rea > 0 we have

Lu(x, a) =
l
∑

r=1

Γ(u+ 1)

Γ(u+ 2− r)

(−1)r
r!

Br(x)(x+ a)
u−r+1

+
(−1)l
l!

Γ(u+ 1)

Γ(u+ 1− l)

∫ ∞

x

Bl(t)(t+ a)
u−ldt

+







1

u+ 1
(x+ a)u+1 + ζ(−u, a), u 6= −1

log(x+ a)− ψ(a), u = −1.

(1.2)

Also the asymptotic formula

Lu(x, a) =
l
∑

r=1

(−1)r
r

(

u

r − 1

)

Br(x)(x+ a)
u−r+1 +O

(

xReu−l
)

+







1

u+ 1
(x+ a)u+1 + ζ(−u, a), u 6= −1

log(x+ a)− ψ(a), u = −1

(1.3)

holds true as x → ∞. On the other hand, formula (1.2) with x = 0 yields the
integral representation

ζ(−u, a) = au − 1

u+ 1
au+1 −

l
∑

r=1

(−1)r
r

(

u

r − 1

)

Bra
u−r+1 (1.4)

+ (−1)l+1
(

u

l

)
∫ ∞

0

Bl(t)(t+ a)
u−ldt,

which is true for all u 6= −1, and l can be any natural number satisfying l >
Re u + 1; the integral being absolutely convergent in the region Reu < l − 1,
where it is analytic except at u = −1. The counterpart of (1.4) for u = −1
reads

ψ(a) = log a− 1
2
a−1 −

l
∑

r=2

Br

r
a−r +

∫ ∞

0

Bl(t)(t+ a)
−l−1dt. (1.5)
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Corollary 1. For any complex u and any natural number l ∈ N with l > Re u+1
we have

d

du
Lu(x, a) =

∑

0≤n≤x

(n+ a)u log(n+ a)

=
l
∑

r=1

(−1)r
r!

Br(x)(x+ a)
u−r+1 Γ(u+ 1)

Γ(u+ 2− r)

×
{

(ψ(u+ 1)− ψ(u+ 2− r)) + log(x+ a)
}

+
(−1)l
l!

∫ ∞

x

Bl(t)(t+ a)
u−l Γ(u+ 1)

Γ(u+ 1− l)

×
{

(ψ(u+ 1)− ψ(u+ 1− l)) + log(t+ a)
}

dt

+

{

(x+a)u+1

u+1
log(x+ a)− (x+a)u+1

(u+1)2
− ζ ′(−u, a), u 6= −1

1
2
log2(x+ a) + γ1(a), u = −1,

where in general logk(x+ a) is an abbreviation for (log(x+ a))k.

Remark 1. The notation Γ(u+1)
Γ(u+1−r) is preferred to r!

(

u

r

)

, where
(

u

r

)

means the

binomial coefficient u(u−1)···(u−r+1)
r!

just because it is feasible for differentiation,
and in applications, the binomial coefficients are to be used. Similarly, for
negative integer values of u, the seemingly singular function ψ(u+1)−ψ(u+1−l)
is to mean ψ(−u)− ψ(l − u) (cf. Lemma 2 below).

The proof of Proposition 1 is given in [7]. Since the integral is an analytic
function in the region Re u < l − 1, we may deduce Corollary 1 for u 6= −1,
by differentiation with respect to the complex variable u. But the case u = −1
is exceptional and needs a special treatment. In view of this, we shall give a
direct proof of Corollary 1, modelled on the proof of [5, Lemma 8]. We need
the following two lemmas.

Lemma 1 ([11, p. 26]). Suppose f is piecewise of class C1 on [a, b]. Then for
any l ∈ N,

∑

a<n≤b

f(n) =

∫ b

a

f(t)dt+
l
∑

r=1

(−1)r
r!

[

Br(t)f
(r−1)(t)

]b

a
+
(−1)l+1

l!

∫ b

a

Bl(t)f
(l)(t)dt.

Lemma 2 ([5, (2.6)]). For any u ∈ C and n ∈ N, we have

n−1
∑

k=0

(−1)k
(

u

k

)

1

n− k
= (−1)n−1

(

u

n

)

(ψ(u+ 1)− ψ(u+ 1− n)) ,

which is the most convenient for most cases, but if 0 ≥ u ∈ Z, the right-hand
side is to be interpreted as (−1)n

(

u

n

)

(ψ(n− u)− ψ(−u)).
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Proof of Corollary 1. We need an expression for the n-th derivative of the func-
tion f(t) = (t+ a)u log(t+ a). By Leibniz’s rule we obtain

f (n)(t) =(−1)n−1(t+ a)u−n
n−1
∑

k=0

(−1)k
(

u

k

)

1

n− k
+ n!

(

u

n

)

(t+ a)u−n log(t+ a)

to which we apply Lemma 2 to rewrite it in the form

f (n)(t) = n!

(

u

n

)

{

ψ(u+ 1)− ψ(u+ 1− n) + log(t+ a)
}

(t+ a)u−n (1.6)

or in the alternative form stated in Lemma 2. Applying Lemma 1 to the sum
∑

0<n≤x(n+a)
u log(n+a), thereby substituting (1.6), we may deduce the formula

for it, corresponding to [7, (6)], whence we may argue as in the proof of [7,
Theorem 1] to deduce Corollary 1 in the case u 6= −1.

Now we restrict to the case u = −1. Then noting that
∫ x

0
1

t+a
log(t+ a)dt =

1
2
log2(x+ a)− 1

2
log2 a, we obtain

∑

0≤n≤x

1

n+ a
log(n+ a)

=
1

a
log a+

1

2
log2(x+ a)− 1

2
log2 a+

l
∑

r=1

Br

r
(ψ(1)− ψ(r) + log a)a−r

−
∫ ∞

0

Bl(t)(ψ(1)− ψ(l + 1) + log(t+ a))(t+ a)−1−ldt+O
(

x−1 log x
)

,

(1.7)

by estimating the integral by the second mean value theorem (or by integration
by parts). From (1.7) it follows that as x→∞,

γ1(a) = lim
x→∞

(

∑

0≤n≤x

1

n+ a
log(n+ a)− 1

2
log2(x+ a)

)

=
1

a
log a− 1

2
log2 a+

l
∑

r=1

Br

r
(ψ(1)− ψ(r) + log a)a−r

−
∫ ∞

0

Bl(t)(ψ(1)− ψ(l + 1) + log(t+ a))(t+ a)−l−1dt.

(1.8)

This completes the proof.

Remark 2. In [7, Corollary 1] it is proved that the k-th Laurent coefficient of

the Hurwitz zeta-function is given by (−1)k
k!

γk(a), where

γk(a) = lim
x→∞

(

∑

0≤n≤x

logk(n+ a)

n+ a
− log

k+1(x+ a)

k + 1

)

(1.9)
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by the simplest possible method and that γk(a) admits the integral representa-
tion

γk(a) =
1

2a
logk a− 1

k + 1
logk+1 a

−
∫ ∞

0

B1(t)

(t+ a)2
(

logk(t+ a)− k logk1(t+ a)
)

(1.10)

However, the statement of [7, Corollary 1] does not seem to imply these, For-
mula [7, (9)] reducing to the same result as [7, (8)]. Thus it would be worth
recovering both (1.9) and (1.10) here.

The starting point is [7, (11)], i.e., Proposition 1 with l = 1 and −s (s 6= 1,
σ > 0) for u:

L−s(x, a) =
(x+ a)1−s

1− s
+ ζ(s, a)− B1(x)

(x+ a)s
+ s

∫ ∞

x

B1(t)

(t+ a)s+1
dt . (1.11)

Since both sides of (1.11) are analytic in σ > 0, we may compute the k-th Taylor
coefficient around s = 1. The k-th Taylor coefficient of the left-hand side (as
[7, (12)] should read) is

1

k!

∂k

∂sk
L−s(x, a)|s=1 =

(−1)k
k!

∑

0≤n≤x

(n+ a)−1 logk(n+ a) (1.12)

and that of the right-hand side is

(−1)k
k!

(

logk+1(x+ a)

k + 1
+ γk(a)−

B1(x)

x+ a
logk(x+ a)

+

∫ ∞

x

B1 (t)

(t+ a)2
(

logk (t+ a)− k logk−1 (t+ a)
)

dt

)

;

(1.13)

equating (1.12) and (1.13), we conclude that

γk(a) =
∑

0≤n≤x

(n+ a)−1 logk(n+ a)

− log
k+1(x+ a)

k + 1
+
B1(x)

x+ a
logk(x+ a)

−
∫ ∞

x

B1(t)

(t+ a)2
(

logk(t+ a)− k logk−1(t+ a)
)

dt,

(1.14)

which should substitute [7, (9)].

We now note that (1.14), being valid for any x ≥ 0, implies both (1.9) and
(1.10) by letting x→∞ and x = 0 respectively, a point more advanced than in
Berndt [3].

Needless to say, (1.8) with l = 1 and (1.10) with k = 1 coincide with each
other, and (1.10) with k = 0 is a special case of (1.5) (Cf. (2.13) below).
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2. Applications of Proposition 1

We shall improve and generalize results of Srivastava and Choi on the asymp-
totic formula for the sum of the ν-th derivative of ψ:

∑

k≤x ψ
(ν)(k), which may

be expressed as

(−1)νν!
(

[x]L−ν−1(x)− L−ν(x)−
{

ζ(ν + 1)[x], ν 6= 0
γ[x], ν = 0

)

, (2.1)

where Lu(x) = Lu(x − 1, 1) throughout this section. We shall prove a general
result for the sum

Su(x) := [x]Lu−1(x)− Lu(x)−
{

ζ(−u+ 1)[x], u 6= 0
γ[x], u = 0

(2.2)

for any u ∈ C. Our result reads

Theorem 1. The above sum Su(x) has the asymptotic formula

Su(x) =











1
u(u+1)

xu+1 − ζ(−u)− 1
u

(

B1(x) +
1
2

)

xu, u 6= 0,−1
x log x− x− ζ(0)−

(

B1(x) +
1
2

)

log x, u = 0

− log x− γ − 1 +
(

B1(x) +
1
2

)

x−1, u = −1

+
l
∑

r=2

(−1)r
r(r − 1)

(

u− 1
r − 2

)

B(2)
r ({x}+ 1)xu−r+1 +O(xReu−l),

where B
(2)
r (x+ 1) =

∑r

k=0

(

r

k

)

Br−k(1)Bk(x).

Corollary 2. For n ∈ N we have

n
∑

k=1

ψ(k) = S0(n) = n log n− n+
1

2
+

l
∑

r=2

1

r(r − 1)B
(2)
r (1)n

1−r +O
(

n−l
)

(2.3)

n
∑

k=1

ψ
′

(k) = −S−1(n) = log n+ γ + 1−
l
∑

r=2

1

r
B(2)
r (1)n

−r +O(n−1−l), (2.4)

and for ν ∈ N, ν ≥ 2,
n
∑

k=1

ψ(ν)(k) = (−1)νν!S−ν(n)

= (−1)νν!
(

1

ν(ν − 1)n
1−ν − ζ(ν)

+
l
∑

r=2

1

r(r − 1)

(

ν + r − 2
r − 2

)

B(2)
r (1)n

1−r−ν

)

+O(n−ν−l),

(2.5)
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where in (2.4) and (2.5)

B(2)
r (1) =

r
∑

k=0

(

r

k

)

BkBr−k(n).

Before turning to the proof of Theorem 1 we shall show that the sum
∑

k≤x ψ
(ν)(k) may be expressed as (2.1): From the fundamental difference equa-

tion satisfied by ψ(z):

ψ(z + 1)− ψ(z) =
1

z
(z 6= 0),

we may easily deduce that

ψ(ν)(z +m)− ψ(ν)(z) = (−1)νν!
m
∑

k=1

1

(z + k − 1)ν+1 ,

whence that

ψ(ν)(k) = (−1)νν!
k−1
∑

n=1

1

nν+1
+ ψ(ν)(1). (2.6)

Summing (2.6) over k ≤ x, we obtain

∑

k≤x

ψ(ν)(k) = (−1)νν!
∑

k≤x

(

k
∑

n=1

1

nν+1
− 1

kν+1

)

+ ψ(ν)(1)[x]

= (−1)νν!
(

∑

n≤x

1

nν+1

∑

n≤k≤x

1− L−ν−1(x)

)

+ ψ(ν)(1)[x]

after changing the order of summation. Since
∑

n≤k≤x 1 = [x]−n+1, we see that
the first term reduces to (−1)νν! ([x]L−ν−1(x)− L−ν(x)), Taking into account
that ([10, p. 22])

ψ(ν)(1) =

{

(−1)ν+1ν!ζ(ν + 1), ν 6= 0
−γ, ν = 0,

we conclude the assertion.

We now go on to the proof of Theorem 1. First we state a lemma.

Lemma 3 ([6, Lemma 6], cf. also [9, p. 75]). We have

(

B1(x) +
1

2

)

Br(x) =
1

r + 1

r
∑

k=0

(−1)r−k+1
(

r + 1

k

)

Br−k+1Bk(x) +Br+1(x).
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Proof. Recall the formula

(

B1(x)−
1

2

)

Br (x) =
1

r + 1

r
∑

k=0

(

r + 1

k

)

Br−k+1Bk(x) +Br+1(x). (2.7)

Restricting the range of x to 0 ≤ x < 1 and adding Br(x) to both sides of (2.7),
we have

(

B1(x) +
1

2

)

Br (x)

=
1

r + 1

r−1
∑

k=0

(

r + 1

k

)

Br−k+1Bk(x) +
1

2
Br(x) +Br+1(x).

(2.8)

Recall the relation (−1)r−k+1Br−k+1 = Br−k+1 except for k = r, in which case
it is −B1 =

1
2
. Then the result follows on replacing

(

r+1
k

)

by (−1)r−k+1
(

r+1
k

)

and putting the penultimate term into the sum.

We note that the sum on the right of (2.8) is B
(2)
r (x).

Proof of Theorem 1. Using [x] = x−
(

B1(x) +
1
2

)

, we rewrite (2.2) as

Su(x) = xLu−1(x)− Lu(x)−
(

B1(x) +
1

2

)

Lu−1(x)

−
(

x−
(

B1(x) +
1

2

))

{

ζ(1− u), u 6= 0,
γ, u = 0,

to which we apply (1.3) to obtain

Su(x) =
l
∑

r=1

(−1)r
r

(

u− 1
r − 1

)

Br(x)x
u−r+1 (2.9)

−
l
∑

r=1

(−1)r
r

(

u

r − 1

)

Br(x)x
u−r+1

−
l−1
∑

r=1

(−1)r
r

(

u− 1
r − 1

)(

B1(x) +
1

2

)

Br(x)x
u−r

+















1
u
xu+1 + ζ(1− u)x− 1

u+1
xu+1 − ζ(−u), u 6= 0,−1

x(log x+ γ)− x− ζ(0), u = 0

x (−x−1 + ζ(2))− log x− γ, u = −1
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−















(

B1(x) +
1

2

)(

1

u
xu + ζ(1− u)

)

, u 6= 0
(

B1(x) +
1

2

)

(log x+ γ) , u = 0

−















ζ(1− u)x+

(

B1(x) +
1

2

)

ζ(1− u), u 6= 0

γx+

(

B1(x) +
1

2

)

γ, u = 0

+O
(

xReu−l
)

,

where the first and the second terms combine to yield

−
l
∑

r=2

(−1)r
r

(

u− 1
r − 2

)

Br(x)x
u−r+1,

while the third term may be written as

l
∑

r=2

(−1)r
r − 1

(

u− 1
r − 2

)(

B1(x) +
1

2

)

Br−1(x)x
u−r+1.

Hence we transform (2.9) into

Su(x)

=















1
u(u+1)

xu+1 − ζ(−u)− 1
u

(

B1(x) +
1
2

)

xu, u 6= 0,−1

x log x− γ − ζ(0)−
(

B1(x) +
1
2

)

log x, u = 0

− log x− γ − 1 +
(

B1(x) +
1
2

)

x−1, u = −1

−
l
∑

r=2

(−1)r
(

u− 1
r − 2

)(

1

r
Br(x)−

1

r − 1

(

B1(x) +
1

2

)

Br−1(x)

)

xu−r+1

+O
(

xReu−l
)

(2.10)

Applying Lemma 3, we may transform the penultimate term further. Since the
third factor of xu−r+1 is

− 1

r(r − 1)

(

Br(x)+
r−1
∑

k=0

(−1)r−k
(

r

k

)

Br−kBk(x)

)

= − 1

r(r − 1)

r
∑

k=0

(

r

k

)

Br−k(1)Bk(x),
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which is, by (1.1), equal to − 1
r(r−1)B

(2)
r ({x}+ 1), we conclude that the penulti-

mate term in (2.10) is

l−1
∑

r=2

(−1)r
r(r − 1)

(

u− 1
r − 2

)

B(2)
r ({x}+ 1)xu−r+1.

Substituting this in (2.10) completes the proof.

Remark 3. (2.3) and (2.4) give improved generalizations of [10, (57), p. 22]
and [10, (58), p. 23], respectively, while (2.5) gives the value ζ(ν) for the limit
[10, l.10, p. 27] limn→∞

∑n

k=0

∑∞
m=1

1
(m+k)ν+1 .

We collect here some consequences of Proposition 1. Formula (1.2) in the
case u = −1 reads

N
∑

n=0

1

n+ a
= log(N + a)− ψ(a) +

1

2(N + a)

−
l
∑

r=2

Br

r

1

(N + a)r
+

∫ ∞

N

Bl(t)(t+ a)
−1−ldt,

(2.11)

which gives the generic definition ([10, (2), p. 14]) as implied by (1.3), too,

−ψ(a) = lim
N→∞

(

N
∑

n=0

1

n+ a
− log(N + a)

)

;

cf. (1.9) with k = 0, the Laurent constant.
With a = 1, (2.11) reads

N
∑

n=1

1

n
= logN + γ +

1

2N
− 1

12N2
+

1

120N 4

−
l
∑

r=6

Br

r

1

N r
+

∫ ∞

N

Bl(t)t
−1−ldt,

which corrects [10, (59), p. 23].
We restate Formula (1.5) with first a few terms in explicit form:

ψ (a) = log a− 1

2a
− 1

12a2
+

1

120a4
−

l
∑

r=6

Br

r
a−r+

∫ ∞

0

Bl(t)(t+ a)
−1−ldt (2.12)

in conformity with [10, Problem 16, p. 69]. Formula (2.12) corrects [10, (56),
p. 22]. It should be remarked that the statement in [10, p. 22] that [10, (56),
p. 22] (=(2.12) above) follows from [10, (54), p. 8] (=the asymptotic formula
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for log Γ(z + a), [7, Corollary 2]), is not precise enough and a sound proof is
given in [7]. Cf. also the remark at the end of 3 of [7]. Formula (2.12) reduces
to [10, (37), (38), p. 6] in the case a = 1, and in the case l = 1, it reduces to

∫ ∞

0

B1(t)(t+ a)
−2dt = log a+

1

2a
+ ψ(a), (2.13)

which includes [10, (4), p. 345] as a special case.

We turn to the case u = −s 6= −1. Formula (1.3) with x = N − 1 ∈ N,
a = 1 reads

N
∑

n=1

n−s =−
l
∑

r=1

Br

r!
s · · · (s+ r − 2)N−s−r+1 +

1

1− s
N1−s + ζ(s) +O

(

N−σ−l) ,

which gives a generic definition for σ > −l:

ζ(s) = lim
N→∞

( N
∑

n=1

n−s +
l
∑

r=1

Br

r!
s · · · (s+ r − 2)N−s−r+1 − 1

1− s
N1−s

)

generalizing [10, (23),(24),(25), p. 99], and for s = 2:

N
∑

n=1

1

n2
= −

l
∑

r=1

BrN
−r−1 −N−1 + ζ(2) +O(N−2−l)

=
π2

6
− 1

N
+

1

2N2
− 1

6N3
+

1

30N5
− · · ·

coinciding with [10, (60), p. 23].

Finally, we remark that (1.4) with l = 1 and u = 1− n (2 < n ∈ N) gives

∫ ∞

0

B1(t)(t+ a)
−ndt =

1

n− 1

(

1

2
a1−n +

1

n− 2a
2−n − ζ(n− 1, a)

)

, (2.14)

which is more general than [10, (7), p. 346].

3. Applications of Corollary 1

In this section we shall collect miscellaneous consequences of Corollary 1. The
highlights are Proposition 2 and Theorem 2, which re-establishes Bendersky–
Adamchik’s result and recovers Elizalde’s result, respectively.
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Proposition 2. For m ∈ N ∪ {0}, we have

−ζ ′(−m, a) = lim
N→∞

(

N
∑

n=0

(n+ a)m log(n+ a)

− 1

m+ 1
(N + a)m+1 log(N + a) +

1

(m+ 1)2
(N + a)m+1

− 1
2
(N + a)m log(N + a)−

m+1
∑

r=2

(

m

r − 1

)

Br

r

·
(

1

m
+ · · ·+ 1

m− r + 2
+ log(N + a)

)

(N + a)m−r+1

)

Theorem 2. For m ∈ N ∪ {0}, Re a > 0 and m+ 2 ≤ l ∈ N, we have

ζ ′(−m, a)

=
1

m+ 1
am+1 log a− 1

(m+ 1)2
am+1 − 1

2
am log a+

1

12
am−1 log a

+
m+1
∑

r=4

Br

r

(

r−2
∑

j=0

(−1)j
(

m

j

)

1

r − 1− j
+

(

m

r − 1

)

log a

)

am−r+1

+
1

m+ 1

l
∑

r=m+2

Br

(

r−1
∑

j=0

(−1)j
(

r −m− 2
j

)

1

r − j

)

am−r+1

+ (−1)l+1
∫ ∞

0

(

l−1
∑

j=0

(−1)j
(

l −m− 1
j

)

1

l − j
Bl(t)(t+ a)

m−l

)

dt

(3.1)

where the last integral is O
(

|a|m−l
)

, so that (3.1) gives an asymptotic expansion
for ζ ′(−m, a) for 0 < Re a, |a| ≤ 1.

Corollary 3. For Re a > 0 or more generally for | arg a| < π, we have

log
Γ(a)√
2π
=

(

a− 1
2

)

log a− a−
∫ ∞

0

B1(t)(t+ a)
−1dt.

Proposition 2 and Theorem 2 are restatement of Formulas (1.7) and (1.8)
of [8], respectively. Since the proofs are not given in [8], we shall prove Theo-
rem 2.

Proof of Theorem 2. Since those terms of the sum with r ≥ m+2 for ∂
∂u
Lu(x, a)

have singularities at non-positive integers, we have to take the limit as u→ m

of Γ(u+1)
Γ(u+2−r)(−ψ(u + 2 − r)) or Γ(u+1)

Γ(u+1−l)(−ψ(u + 1 − l)) as the case may be, on

noting that other terms vanish because of simple zeros of Γ(z)−1 at non-positive
integers.
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By the fundamental difference equation satisfied by the gamma function we
deduce for ν ∈ N ∪ {0} that

Γ(z) =
Γ(z + ν + 1)

z · · · (z + ν) . (3.2)

We contend that

lim
z→−ν

ψ(z)

Γ(z)
= −(−1)νν!.

To prove this it suffices to note from (3.2) that in taking the limit

lim
z→−ν

ψ(z)

Γ(z)
= lim

z→−ν

Γ′(z)

Γ(z)2
,

only one term counts, i.e., it is equal to

− lim
z→−ν

Γ(z + ν + 1)

z · · · (z + ν − 1) ((z + ν)Γ(z))2
,

which is −(−1)νν! on recalling the fact Resz=−ν Γ(z) = (−1)ν
ν!

, which in fact
follows from (3.2). Hence

lim
u→m

Γ(u+ 1)

Γ(u+ 2− r)
(−ψ(u+ 2− r)) = (−1)r−m r!

(m+ 1)(m+ 2)
(

r

m+2

)

and

lim
u→m

Γ(u+ 1)

Γ(u+ 1− l)
(−ψ(u+ 1− l)) =

(−1)l−m
(m+ 1)

(

l

m+1

) .

Hence we conclude that

ζ ′ (−m, a) = 1

m+ 1
am+1 log a− 1

(m+ 1)2
am+1

− 1
2
am log a+

1

12
am−1 (1 +m log a)

+
m+1
∑

r=4

Br

r

(

m

r − 1

)(

1

m
+ · · ·+ 1

m− (r − 2) + log a
)

am−r+1

+
(−1)m
m+ 1

l
∑

r=m+2

Br

1

(m+ 2)
(

r

m+2

)am−r+1

+
(−1)m

(m+ 1)
(

l

m+1

)

∫ ∞

0

Bl (t) (t+ a)
m−l

dt,

(3.3)

which is Formula (1.7) of [8].
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In order to deduce (3.1) from (3.3) we have recourse to Lemma 2 and its
counterpart

n−1
∑

j=0

(−1)j
(

u

j

)

1

n− j
= (−1)u 1

(n− u)
(

n

u

)

for n > u ∈ N ([5, Formula (2.6)]). Substituting the formulas

(−1)r−2
(

m

r − 1

)

(

ψ(m+ 1)− ψ(m− r + 2)
)

=
r−2
∑

j=0

(−1)j
(

m

j

)

1

r − 1− j
(r ≤ m+ 1)

1

(m+ 2)
(

r

m+2

) = (−1)r−m
r−1
∑

j=0

(−1)j
(

r −m− 2
j

)

1

r − j
(r ≥ m+ 2)

and

1

(m+ 1)
(

l

m+1

) = (−1)l−m−1
l−1
∑

j=0

(−1)j
(

l −m− 1
j

)

1

l − j

in (3.3), we now complete the proof of Theorem 2.

Remark 4. (i) In the notation

p (N,m) =
1

2
Nm logN +

1

m+ 1
Nm+1

(

logN − 1

m+ 1

)

+m!
m
∑

j=1

Bj+1

(j + 1)! (m− j)!

(

logN + (1− δmj)

j
∑

k=1

1

m− k + 1

)

Nm−j

of Bendersky [2, Proposition 2], in the case a = 1 reads

−ζ ′ (−m) = lim
N→∞

(

N
∑

n=1

nm log n− p (N,m)

)

− Bm+1

m+ 1
Hm, (3.4)

where Hm signifies the m-th harmonic number equal to ψ (m+ 1)−ψ (1). For-
mula (3.4) gives Adamchik’s result [1, (24)] which in turn is posed as Problems 2
and 3 [10, p. 128]. The cases m = 1, 2, 3 of (3.4) give (2) [10, p. 25], (69) [10,
p. 36], and (26) [10, p. 99], and (70) [10, p. 37], and (27) [10, p. 100], respec-
tively, and the limit on the right of (3.4), in the case m = 1 is denoted by logA,
A being called the Glaisher-Kinkelin constant.
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(ii) Although Problem 39 [10, p. 139] looks as if asking for a proof of an
equality, what is asked for is a proof of an asymptotic formula as stated by
Elizalde [4, (17)], and this is given in Theorem 2. We note that our method is
much easier than Elizalde’s who uses

ζ (s, a) =
1

2
a−s +

a1−s

s− 1 + 2
∫ ∞

0

(

a2 + t2
)− s

2 sin

(

s tan−1
t

a

)

dt

e2πt − 1 ,

and automatically gives corresponding asymptotic formulas for higher deriva-
tives, to the study of which we will return at another occasion.

(iii) Corollary 3 is the special case m = 0 of (3.1) (cf. (3.6) below), with

Lerch’s formula ζ ′ (0, a) = log Γ(a)√
2π
incorporated. Solving for

∫∞
0
B1 (t+ a)

−1
dt,

it gives Problem 1 in [10, p. 350] whose special case with a = 1 is [10, (3),
p. 345] and whose another special case is [10, (5), p. 346]. Corollary 3 already
provides us with [10, (56), p. 9], which would follow from [10, (56), p. 22] (see
(1.5) above), but not conversely, in general.

Correspondingly to (2.14), we now prove

Proposition 3. With Γ2 (a)
(

= G (a)−1
)

denoting the double gamma (or the
G-) function of Barnes, we have for a, b > 0

1

2
(a2 log a− b2 log b)− 1

4
(a2 − b2)

−1
2
(a log a− b log b)−

∫ ∞

0

B1 (t) log
t+ a

t+ b
dt

= ζ ′ (−1, a)− ζ ′ (−1, b)

= log
Γ2 (a)

Γ2 (b)
+ (a− 1) log Γ (a)− (b− 1) log Γ (b) .

(3.5)

Example. We have
∫ ∞

0

B1 (t) log
t+ 2

t+ 1
dt = log 2− 3

4

((6) in [10, p. 346]) and
∫ ∞

0

B1 (t) log
t+ 1

2

t− 1
2

dt =
5

4
log 2 +

3

8
log 3− 1

2
+
1

2
log 2π

(Problem 3 in [10, p. 350]).

Proof of Proposition 3. In the first instance, for Re u < 0, u 6= −1, we have

ζ ′ (−u, a) = 1

u+ 1
au+1 log a− 1

(u+ 1)2
au+1 − 1

2
au log a

−
∫ ∞

0

(1 + u log(t+ a))B1(t)(t+ a)
u−1dt .

(3.6)
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We may, however, by Abel’s continuity theorem for infinite integrals, take the
limit as u → 1 of the difference ζ ′ (−u, a) − ζ ′ (−u, b) of (3.6), which gives the
first equality of (3.5). The second equality follows from Formula (33) [10, p. 94]
ζ ′(−1, a) − 1

12
= log Γ2(a) − logA + (a − 1) log Γ(a), where A indicates the

Glaisher–Kinkelin constant ((3.4) with m = 1).
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