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Asymptotics of Determinants and Traces

of Toeplitz Matrices with Symbols

in Weighted Wiener Algebras

Alexei Yu. Karlovich

Abstract. We prove asymptotic formulas for determinants and traces of finite block
Toeplitz matrices with symbols belonging to Wiener algebras with weights satisfying
natural submultiplicativity, monotonicity, and regularity conditions. The remainders
in these formulas depend on the weights and go rapidly to zero for very smooth
symbols. These formulas refine or extend some previous results by Szegő, Widom,
Böttcher, and Silbermann.
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1. Introduction and main results

1.1. Finite block Toeplitz matrices. Let Z,N,Z+, and C be the sets of
integers, positive integers, nonnegative integers, and all complex numbers, re-
spectively. Suppose N ∈ N. For a Banach space X, let XN and XN×N be the
spaces of vectors and matrices with entries in X. Let T be the unit circle. For
1 ≤ p ≤ ∞, let Lp := Lp(T) and Hp := Hp(T) be the standard Lebesgue and
Hardy spaces of the unit circle. For a ∈ L1N×N one can define

ak =
1

2π

∫ 2π

0

a
(
eiθ
)
e−ikθdθ (k ∈ Z),

the sequence of the Fourier coefficients of a. Let I be the identity operator, P be
the Riesz projection of L2 onto H2, Q := I − P , and define I, P , and Q on L2N
elementwise. For a ∈ L∞N×N and t ∈ T, put ã(t) := a( 1

t
) and (Ja)(t) := t−1ã(t).
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Campus de Gualtar, 4710-057, Braga, Portugal; oleksiy@math.uminho.pt
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Define Toeplitz operators

T (a) := PaP |ImP, T (ã) := JQaQJ |ImP

and Hankel operators

H(a) := PaQJ |ImP, H(ã) := JQaP |ImP.

The function a is called the symbol of T (a), T (ã), H(a), H(ã). We are interested
in the asymptotic behavior of the determinants and traces of finite block Toeplitz
matrices Tn(a) = [aj−k]

n
j,k=0 generated by (the Fourier coefficients of) the symbol

a as n → ∞. Many results in this direction are contained in the books by
Grenander and Szegő [9], Böttcher and Silbermann [2, 3, 4], and Simon [14].

1.2. Szegő-Widom limit theorems. Let us formulate precisely the most
relevant results. Let K2

N×N be the Krein algebra [11] of matrix functions a in
L∞N×N satisfying

∞∑

k=−∞

‖ak‖
2(|k|+ 1) <∞,

where ‖·‖ is any matrix norm on CN×N . The following beautiful theorem about
the asymptotics of finite block Toeplitz matrices was proved by Widom [16].

Theorem 1.1 (see [16, Theorem 6.1]). Let N ≥ 1. If a ∈ K2
N×N and the

Toeplitz operators T (a) and T (ã) are invertible on H2
N , then T (a)T (a

−1)− I is
of trace class and, with appropriate branches of the logarithm,

log detTn(a) = (n+ 1) logG(a) + log detT (a)T (a−1) + o(1) as n→∞, (1)

where

G(a) := lim
r→1−0

exp

(
1

2π

∫ 2π

0

log det ar(e
iθ)dθ

)
, ar(e

iθ) :=
∞∑

n=−∞

anr
|n|einθ. (2)

Here detT (a)T (a−1) refers to the determinant defined for operators on
Hilbert space differing from the identity by an operator of trace class [8, Ch. 4].

The proof of the above result in a more general form is contained in [2,
Theorem 6.11] and [4, Theorem 10.30] (in this connection see also [5]).

Let λ
(n)
1 , . . . , λ

(n)
(n+1)N denote the eigenvalues of Tn(a) repeated according to

their algebraic multiplicity. Let spA denote the spectrum of a bounded linear
operator A and trM denote the trace of a matrix M . Theorem 1.1 is equivalent
to the assertion
∑

i

log λ
(n)
i = tr log Tn(a) = (n+ 1) logG(a) + log detT (a)T (a−1) + o(1).
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Widom [16] noticed that Theorem 1.1 yields even a description of the asymptotic
behavior of tr f(Tn(a)) if one replaces f(λ) = log λ by an arbitrary function f
analytic in an open neighborhood of the union spT (a)∪ spT (ã) (we henceforth
call such f simply analytic on spT (a) ∪ spT (ã)).

Theorem 1.2 (see [16, Theorem 6.2]). Let N ≥ 1. If a ∈ K2
N×N and if f is

analytic on spT (a) ∪ spT (ã), then

tr f(Tn(a)) = (n+ 1)Gf (a) + Ef (a) + o(1) as n→∞, (3)

where

Gf (a) :=
1

2π

∫ 2π

0

(tr f(a))(eiθ)dθ,

Ef (a) :=
1

2πi

∫

∂Ω

f(λ)
d

dλ
log detT [a− λ]T [(a− λ)−1]dλ,

and Ω is any bounded open set containing spT (a) ∪ spT (ã) on the closure of
which f is analytic.

The proof of Theorem 1.2 for smooth symbols a is also given in [4, Sec-
tion 10.90].

In the scalar case (N = 1) Theorems 1.1 and 1.2 go back to Gabor Szegő
(see [9] and historical remarks in [2, 3, 4, 14]).

1.3. The Böttcher-Silbermann higher order asymptotic formulas. Fol-
lowing [16] and [4, Sections 7.5–7.6], for n ∈ Z+ and a ∈ L∞N×N define the
operators Pn and Qn on H2

N by

Pn :
∞∑

k=0

akt
k 7→

n∑

k=0

akt
k, Qn := I − Pn.

The operator PnT (a)Pn : PnH
2
N → PnH

2
N may be identified with the finite

block Toeplitz matrix Tn(a) := [aj−k]
n
j,k=0. For a unital Banach algebra A we

will denote by GA the group of all invertible elements of A. Put

H∞
± :=

{
a ∈ L∞ : a∓n = 0 for n ∈ N

}

and for a Banach subalgebra A of L∞, put A±N×N := (A ∩H∞
± )N×N . One says

that a ∈ AN×N admits canonical right and left Wiener-Hopf (WH) factoriza-
tions in AN×N if there are functions u+, v+ ∈ GA+N×N and u−, v− ∈ GA−N×N
such that a = u−u+ = v+v−.

If a is smooth enough one can expect a higher speed of convergence in (1)
and (3). Let ω : Z → (0,∞) be a weight. Consider weighted Wiener algebras

(Wω)N×N :=

{
a : T → CN×N : a(t) =

∞∑

n=−∞

ant
n,

∞∑

n=−∞

‖an‖ω(n) <∞

}
.
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If ω : Z → [1,∞) is a power weight of the form

ω(n) :=

{
(−n+ 1)α for n ∈ Z \ Z+,
(n+ 1)β for n ∈ Z+,

(α, β > 0), (4)

then (Wω)N×N will be denoted by W α,β
N×N . Böttcher and Silbermann [1] proved

among other things the following result.

Theorem 1.3. Let N ≥ 1. Suppose a ∈ W α,β
N×N (α, β > 0) and the Toeplitz

operators T (a) and T (ã) are invertible on H2
N .

(a) The matrix function a admits canonical right and left Wiener-Hopf fac-
torizations a = u−u+ = v+v− in W

α,β
N×N .

(b) If α + β > 1, then T (a)T (a−1) − I is of trace class and (1) is true with
o(1) replaced by o(1/nα+β−1).

(c) If α + β > 1
p
for some p ∈ N \ {1}, then there exist a constant Ẽ(a) 6= 0

such that

log detTn(a) = (n+ 1) logG(a) + log Ẽ(a)

+ tr

[
n∑

`=1

p−1∑

j=1

1

j

(
p−j−1∑

k=0

G`,k(b, c)

)j ]
+ o
(
1/n(α+β)p−1

) (5)

as n→∞, where the correcting terms G`,k(b, c) are given by

G`,k(b, c) := P0T (c)Q`

(
Q`H(b)H(c̃)Q`

)k
Q`T (b)P0 (`, k ∈ Z+) (6)

and the functions b, c are given by b := v−u
−1
+ and c := u−1− v+.

The proof of Theorem 1.3 (for p = 1, 2, 3) is contained in [2, Sections 6.18–
6.20] and in [4, Theorem 10.35 and Corollary 10.38].

1.4. Our main results. The aim of this paper is to extend or refine the above
results in the case of symbols that belong to more general weighted Wiener
algebras (Wω)N×N , where the weight ω : Z → [1,∞) satisfies

1 ≤ ω(i+ j) ≤ ω(i)ω(j) (i, j ∈ Z), (7)

ω(±n) ≤ ω(±(n+ 1)) (n ∈ Z+), (8)

lim
n→+∞

n
√
ω(n) = lim

n→+∞

1
n
√
ω(−n)

= 1. (9)

For n ∈ Z+, put

ϕn :=
[
ω(n+ 1)ω(−(n+ 1))

]−1
.

Our first main result is the following extension of Theorem 1.3.



Asymptotics of Determinants and Traces 47

Theorem 1.4. Let N ≥ 1 and let ω : Z → [1,∞) be a weight satisfying (7)–(9).
Suppose Σ is a compact set in the complex plane, a : Σ→ (Wω)N×N is a contin-
uous function, and the Toeplitz operators T (a(λ)) and T ([a(λ)]˜) are invertible
on H2

N for all λ ∈ Σ.

(a) For every λ ∈ Σ, the function a(λ) : T → C admits canonical right

and left Wiener-Hopf factorizations a(λ) = u−(λ)u+(λ) = v+(λ)v−(λ).
These factorizations can be chosen so that b, c : Σ → (Wω)N×N given by
b := v−u

−1
+ and c := u−1− v+ are continuous.

(b) If
∑∞

k=1 ϕk < ∞, then T (a(λ))T ([a(λ)]−1) − I is of trace class for every
λ ∈ Σ and

log detTn(a(λ)) = (n+ 1) logG(a(λ))

+ log detT (a(λ)T ([a(λ)]−1) + o

(
∞∑

k=n+1

ϕk

)
(10)

as n→∞, where the convergence is uniform with respect to λ ∈ Σ.

(c) If
∑∞

k=1 ϕ
p
k < ∞ for some p ∈ N \ {1}, then for every λ ∈ Σ there exists

a constant Ẽ(a, λ) 6= 0 such that

log detTn(a(λ)) = (n+ 1) logG(a(λ)) + log Ẽ(a, λ)

+ tr

[
n∑

`=1

p−1∑

j=1

1

j

(
p−j−1∑

k=0

G`,k(b(λ), c(λ))

)j ]

+ o

(
∞∑

k=n+1

ϕpk

)
(11)

as n → ∞, where the correcting terms G`,k(b(λ), c(λ)) are defined by (6)
and the functions b, c : Σ → (Wω)N×N are chosen as in (a). The conver-
gence in (11) is uniform with respect to λ ∈ Σ.

Clearly the power weight (4) satisfies all the conditions (7)–(9). So, Theo-
rem 1.3 follows from Theorem 1.4. An example constructed in the proof of [10,
Theorem 23] shows that Theorem 1.4 is stronger than Theorem 1.3.

Our second main result is the following refinement of Theorem 1.2.

Theorem 1.5. Let N ≥ 1 and let ω : Z → [1,∞) be a weight satisfying (7)–(9).
If a ∈ (Wω)N×N , f is analytic on spT (a) ∪ spT (ã), and

∑∞
k=1 ϕk < ∞, then

(3) is true with o(1) replaced by the same o(. . . ) as in (10).

1.5. On the higher order asymptotic formula of Vasil’ev, Maksimen-

ko, and Simonenko. For Wiener algebras with power weights Theorem 1.5
has a very simple form and is obviously predicted by the Böttcher-Silbermann
Theorem 1.3(b).
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Corollary 1.6. Let N ≥ 1. Suppose a ∈ W α,β
N×N (α, β > 0) and f is analytic

on spT (a) ∪ spT (ã). If α + β > 1, then (3) is true with o(1) replaced by
o(1/nα+β−1).

In particular, if γ > 1 and a ∈W
γ/2,γ/2
N×N , then (3) is true with o(1) replaced

by o(1/nγ−1). Recently Vasil’ev, Maksimenko, and Simonenko [15] stated (with-
out proofs) that if a satisfies

∞∑

k=−∞

‖ak‖+
∞∑

k=−∞

‖ak‖
2(|k|+ 1)γ <∞ (12)

for some γ > 1, then the o(1) in (3) can be replaced by o(1/nγ−1). Obviously,
the class (W ∩ F`2γ/2)N×N of matrix functions a satisfying (12) is larger than

W
γ/2,γ/2
N×N for a fixed γ. However, Theorems 1.3–1.5 allow different behavior of

the negative and positive parts of the Fourier series. Consider the following
example. For a given γ > 1, put β = 1

2
(1 + γ), α = 1

4
(1 + γ), and

a(t) := a0 +
∞∑

k=1

k−βt−k (t ∈ T, a0 ∈ C).

Then a ∈ W α,γ−α
1×1 , however a /∈ (W ∩ F`2γ/2)1×1. This means that Theorem 1.5

is applicable to a and gives the speed o(1/nγ−1), while the theorem of Vasil’ev,
Maksimenko, and Simonenko is not applicable to this function.

1.6. About this paper. This paper can be considered as a continuation of [10].
It is organized as follows. In Sections 2.1–2.2 we collect necessary facts on
weighted Wiener algebras and canonical Wiener-Hopf factorizations in these
algebras. Sections 2.3–2.4 contain some auxiliary estimates. In Section 3.1 we
state an analogue of Theorem 1.1 for weighted Wiener algebras. Section 3.2
contains a key observation, Lemma 3.2 by Böttcher and Silbermann, which
allows us to get better speed than o(1) in (1) and (3) if the symbol a is sufficiently
smooth. In Section 3.3 we prepare the proof of Theorem 1.4 and actually show
that a decomposition required by the hypothesis of Lemma 3.2 can be made
even uniform with respect to a parameter λ ∈ Σ, where Σ is a compact set as in
Theorem 1.4. Sections 3.4 and 3.5 are dedicated to the proofs of Theorems 1.4
and 1.5, respectively.

2. Auxiliary results

2.1. On weighted Wiener algebras. It is well known that if (7) is fulfilled,
then (Wω)N×N is a Banach algebra with respect to the norm

‖a‖ω,N :=
∞∑

k=−∞

‖ak‖ω(k)
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and (Wω)N×N ⊂ WN×N ⊂ CN×N . Here W is the standard Wiener algebra of
scalar functions with absolutely convergent Fourier series and C = C(T) is the
set of all continuous scalar functions on T. In the scalar case (N = 1) the
weighted Wiener algebra is commutative. The maximal ideal space of Wω :=
(Wω)1×1 is homeomorphic to the unit circle T if (9) is satisfied. These results
can be found in [6, Chapter III, Section 19.4] and in [7].

2.2. Two facts on canonical Wiener-Hopf factorizations. The first fact
is about stability of the factors in canonical Wiener-Hopf factorizations in
weighted Wiener algebras.

Theorem 2.1. Let N ≥ 1 and let ω : Z → [1,∞) be a weight satisfying (7).
Suppose a, c ∈ (Wω)N×N admit canonical right and left WH factorizations in
the algebra (Wω)N×N . Then for any ε > 0 there exists a δ > 0 such that if

‖a−c‖ω,N < δ, then for every canonical right WH factorization a = a
(r)
− a

(r)
+ and

for every canonical left WH factorization a = a
(l)
+ a

(l)
− one can choose a canonical

right WH factorization c = c
(r)
− c

(r)
+ and a canonical left WH factorization c =

c
(l)
+ c

(l)
− such that

∥∥a(r)± − c
(r)
±

∥∥
ω,N

< ε,
∥∥[a(r)± ]−1 − [c

(r)
± ]−1

∥∥
ω,N

< ε,
∥∥a(l)± − c

(l)
±

∥∥
ω,N

< ε,
∥∥[a(l)± ]−1 − [c

(l)
± ]−1

∥∥
ω,N

< ε.

This theorem follows from a more general result due to Shubin [13] on
the stability of the factors in Wiener-Hopf factorizations with the same par-
tial indices in general decomposing algebras. Its proof can be found in [12,
Theorem 6.15].

The second fact gives some sufficient conditions for the factorability of a in
the algebra (Wω)N×N .

Proposition 2.2. (see [10, Proposition 3]). Let N ≥ 1 and let ω : Z → [1,∞)
be a weight satisfying (7) and (9). If a ∈ (Wω)N×N and the Toeplitz operators
T (a) and T (ã) are invertible on H2

N , then a admits canonical right and left
Wiener-Hopf factorizations in (Wω)N×N .

2.3. Tails of the norms of functions in weighted Wiener algebras. For
a ∈ (Wω)N×N and n ∈ Z+, put

R+n (a) :=
∞∑

k=n+1

‖ak‖ω(k), R−n (a) :=
∞∑

k=n+1

‖a−k‖ω(−k). (13)
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Proposition 2.3. Let ω : Z → [1,∞) be a weight satisfying (7). Let Σ be
a compact set in the complex plane and a : Σ → (Wω)N×N be a continuous
function. Then

lim
n→∞

max
λ∈Σ

R+n (a(λ)) = 0, lim
n→∞

max
λ∈Σ

R−n (a(λ)) = 0. (14)

Proof. Let us prove the first equality. Assume the contrary. Then there exist a
positive constant C > 0, a number n0 ∈ N, and a sequence {λn}

∞
n=n0

such that

R+n (a(λn)) ≥ C. (15)

Since {λn}
∞
n=n0

is bounded, there is a convergent subsequence {λnj
}∞j=1. Let λ0

be the limit of this subsequence. Clearly, λ0 ∈ Σ because Σ is closed. Since a :
Σ→ (Wω)N×N is continuous, for every ε ∈ (0, C) there exists a δ > 0 such that
for every λ′, λ′′ ∈ Σ such that |λ′ − λ′′| < δ one has ‖a(λ′)− a(λ′′)‖ω,N < ε. On
the other hand, for that δ there exists a number J ∈ N such that |λnj

−λ0| < δ
for all j ≥ J . Hence, for all j ≥ J ,

∣∣R+nj
(a(λnj

))−R+nj
(a(λ0))

∣∣ ≤
∞∑

k=nj+1

∣∣∣
∥∥[a(λnj

)]k
∥∥−

∥∥[a(λ0)]k
∥∥
∣∣∣ω(k)

≤ R+nj

(
a(λnj

)− a(λ0)
)

≤ ‖a(λnj
)− a(λ0)‖ω,N < ε.

(16)

Since nj ≥ n0, (15) implies that

R+nj
(a(λnj

)) ≥ C for all j ≥ J. (17)

On the other hand,

R+nj
(a(λ0)) ≥ R+nj

(a(λnj
))−

∣∣R+nj
(a(λ0))−R+nj

(a(λnj
))
∣∣. (18)

From (16)–(18) it follows that

lim inf
j→∞

R+nj
(a(λ0)) ≥ C − ε > 0,

but this contradicts the fact that a(λ0) ∈ (Wω)N×N . Hence, the first equality
in (14) is proved. The second equality in (14) can be proved by analogy.

2.4. Norms of truncations of Hankel and Toeplitz operators. The fol-
lowing proposition is stated in [10, Propositions 16, 17].

Proposition 2.4. Let N ≥ 1 and ω : Z → [1,∞) be a weight satisfying (7)–(8).
If a ∈ (Wω)N×N and n ∈ Z+, then

‖QnH(a)‖ ≤
R+n (a)

ω(n+ 1)
, ‖H(ã)Qn‖ ≤

R−n (a)

ω(−(n+ 1))
,

‖QnT (a)P0‖ ≤
R+n (a)

ω(n+ 1)
, ‖P0T (a)Qn‖ ≤

R−n (a)

ω(−(n+ 1))
.
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3. Asymptotic formulas

3.1. The Szegő-Widom limit theorem for weighted Wiener algebras.

The following version of Theorem 1.1 was established in [10, Theorem 20(a)].

Theorem 3.1. Let N ≥ 1 and let ω : Z → [1,∞) be a weight satisfying (7)–(9).
Suppose a ∈ (Wω)N×N and the operators T (a) and T (ã) are invertible on H2

N .

If
∑∞

k=1 ϕk < ∞, then the operator T (a)T (a−1) − I is of trace class and (1)
holds.

Notice that the above theorem is not a corollary of Theorem 1.1.

3.2. The Böttcher-Silbermann decomposition. The following result from
[2, Section 6.16], [4, Section 10.34] is the basis for our asymptotic analysis.

Lemma 3.2. Let N ≥ 1. Suppose a ∈ L∞N×N satisfies the following hypotheses:

(i) there are two factorizations a = u−u+ = v+v−, where u+, v+ belong to
G(H∞

+ )N×N and u−, v− belong to G(H∞
− )N×N ;

(ii) u− ∈ CN×N or u+ ∈ CN×N .

Define the functions b, c by b := v−u
−1
+ , c := u−1− v+ and the matrices Gn,k(b, c)

by (6). Suppose for all sufficiently large n (say, n ≥ N0) there exists a decom-
position

tr log

{
I −

∞∑

k=0

Gn,k(b, c)

}
= −trHn + sn, (19)

where {Hn}
∞
n=N0

is a sequence of N × N matrices and {sn}
∞
n=N0

is a sequence

of complex numbers. If
∑∞

n=N0
|sn| <∞, then there exist a constant Ẽ(a) 6= 0,

depending on {Hn}
∞
n=N0

and arbitrarily chosen N ×N matrices H1, . . . , HN0−1,

such that for all n ≥ N0,

log detTn(a) = (n+ 1) logG(a) + tr (H1 + · · ·+Hn) + log Ẽ(a) +
∞∑

k=n+1

sk,

where the constant G(a) is given by (2).

3.3. The key estimate. The following result will be used to show that a
decomposition (19) satisfying all requirements of Lemma 3.2 exists.

Proposition 3.3. Suppose ω : Z → [1,∞) is a weight satisfying (7)–(8). Let
Σ be a compact set in the complex plane and b, c : Σ→ (Wω)N×N be continuous
functions. For n, k ∈ Z+ and λ ∈ Σ, put

Gn,k(λ) := Gn,k(b(λ), c(λ)), Mn(b, c) :=

(
max
λ∈Σ

R+n (b(λ))

)(
max
λ∈Σ

R−n (c(λ))

)
,
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where Gn,k(·, ·) and R
±
n (·) are defined by (6) and (13), respectively. If p ∈ N,

then there exist a constant Cp ∈ (0,∞) and a number N0 ∈ N such that

∣∣∣∣∣tr log
{
I −

∞∑

k=0

Gn,k(λ)

}
+ tr

[
p−1∑

j=1

1

j

(
p−j−1∑

k=0

Gn,k(λ)

)j ]∣∣∣∣∣

≤ Cp[ϕnMn(b, c)]
p

(20)

for all λ ∈ Σ and all n ≥ N0.

Proof. For n,m ∈ Z+ and λ ∈ Σ, put

An(m,λ) :=
m−1∑

k=0

Gn,k(λ), Bn(m,λ) :=
∞∑

k=m

Gn,k(λ), Cn(m,λ) :=
∞∑

j=m

1

j
Bj
n(0, λ).

Then

log

{
I −

∞∑

k=0

Gn,k(λ)

}
+

p−1∑

j=1

1

j

(
p−j−1∑

k=0

Gn,k(λ)

)j

= −Cn(1, λ) +

p−1∑

j=1

1

j
Bj
n(0, λ)−

p−1∑

j=1

1

j
Bj
n(0, λ) +

p−1∑

j=1

1

j
Aj
n(p− j, λ)

= −Cn(p, λ)−

p−1∑

j=1

1

j

[
An(p− j, λ) +Bn(p− j, λ)

]j
+

p−1∑

j=1

1

j
Aj
n(p− j, λ).

(21)

Taking into account that

trAα
n(m,λ)Bβ

n(m,λ) = trBβ
n(m,λ)Aα

n(m,λ)

for all α, β ∈ N and all m ∈ Z+, we get

tr

[
p−1∑

j=1

1

j

[
An(p− j, λ) +Bn(p− j, λ)

]j
−

p−1∑

j=1

1

j
Aj
n(p− j, λ)

]

=

p−1∑

j=1

j−1∑

`=0

(
j − 1

`

)
tr [A`

n(p− j, λ)Bj−`
n (p− j, λ)].

(22)

Let us estimate ‖A`
n(p− j, λ)‖ and ‖Bj−`

n (p− j, λ)‖. In view of Proposition 2.3,
taking into account (8), one can choose a number N0 ∈ N such that

ϕnMn(b, c) < 1 (23)
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for all n ≥ N0. Then, by Proposition 2.4 and (23),

‖A`
n(p− j, λ)‖ ≤ ‖An(p− j, λ)‖`

≤

(
p−j−1∑

k=0

‖Gn,k(λ)‖

)`

≤

(
p−j−1∑

k=0

[ϕnMn(b, c)]
k+1

)`

≤

(
p−j−1∑

k=0

max
0≤k≤p−j−1

[ϕnMn(b, c)]
k+1

)`

=
[
(p− j)ϕnMn(b, c)

]`

≤ pp [ϕnMn(b, c)]
`

(24)

for all j ∈ {1, . . . , p− 1}, ` ∈ {0, . . . , j − 1}, n ≥ N0, and λ ∈ Σ.

Similarly, taking into account Proposition 2.4 and (23), we obtain

‖Bj−`
n (p− j, λ)‖ ≤ ‖Bn(p− j, λ)‖j−`

≤

(
∞∑

k=p−j

‖Gn,k(λ)‖

)j−`

≤

(
∞∑

k=p−j

[ϕnMn(b, c)]
k+1

)j−`

=

(
[ϕnMn(b, c)]

p−j+1

1− ϕnMn(b, c)

)j−`

≤ [ϕnMn(b, c)]
(p−j+1)(j−`)

(25)

for all j ∈ {1, . . . , p− 1}, ` ∈ {0, . . . , j − 1}, n ≥ N0, and λ ∈ Σ.

It is easy to see that

(p− j + 1)(j − `) + `− p = (p− j)(j − 1− `).

Since j ∈ {1, . . . , p− 1} and ` ∈ {0, . . . , j − 1}, the latter equality implies that

(p− j + 1)(j − `) + ` ≥ p. (26)

From (23)–(26) we get for j ∈ {1, . . . , p − 1}, ` ∈ {0, . . . , j − 1}, n ≥ N0, and
λ ∈ Σ,
∣∣tr [A`

n(p− j, λ)Bj−`
n (p− j, λ)]

∣∣ ≤
∥∥A`

n(p− j, λ)Bj−`
n (p− j, λ)

∥∥

≤ pp [ϕnMn(b, c)]
`[ϕnMn(b, c)]

(p−j+1)(j−`)

≤ pp [ϕnMn(b, c)]
p.

(27)



54 A. Yu. Karlovich

Combining (22) and (27), we obtain
∣∣∣∣∣tr
[

p−1∑

j=1

1

j

[
An(p− j, λ) +Bn(p− j, λ)

]j
−

p−1∑

j=1

1

j
Aj
n(p− j, λ)

]∣∣∣∣∣

≤

p−1∑

j=1

j−1∑

`=0

(
j − 1

`

)
pp [ϕnMn(b, c)]

p

= C̃p[ϕnMn(b, c)]
p,

(28)

where C̃p := pp
∑p−1

j=1 2
j−1. Similarly we can estimate the trace of Cn(p, λ):

|trCn(p, λ)| ≤
∞∑

j=p

1

j

∥∥∥∥∥

∞∑

k=0

Gn,k(λ)

∥∥∥∥∥

j

≤

∞∑

j=p

(
∞∑

k=0

‖Gn,k(λ)‖

)j

≤
∞∑

j=p

(
∞∑

k=0

[ϕnMn(b, c)]
k+1

)j

=
∞∑

j=p

(
ϕnMn(b, c)

1− ϕnMn(b, c)

)j

≤
∞∑

j=p

[ϕnMn(b, c)]
j

=
[ϕnMn(b, c)]

p

1− ϕnMn(b, c)

≤ [ϕnMn(b, c)]
p

(29)

for all λ ∈ Σ and all n ≥ N0. Combining (21) and (28)–(29), we arrive at (20)

with Cp = 1 + C̃p.

3.4. Proof of Theorem 1.4. Part (a) follows from Proposition 2.2 and The-
orem 2.1.

Let p ∈ N and b, c : Σ → (Wω)N×N be chosen as in part (a). By Propo-
sition 3.3, there exists a number N0 ∈ N such that for all n ≥ N0 and all
λ ∈ Σ,

tr log

{
I −

∞∑

k=0

Gn,k(λ)

}
= −tr

[
p−1∑

j=1

1

j

(
p−j−1∑

k=0

Gn,k(λ)

)j ]

+O
(
[ϕnMn(b, c)]

p
)

(30)
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and O
(
[ϕnMn(b, c)]

p
)
is uniform with respect to λ ∈ Σ and n ≥ N0. Obviously,

Mk+1(b, c) ≤Mk(b, c) for all k ∈ Z+. (31)

From (31) and Proposition 2.3 it follows that

∞∑

k=n+1

[ϕkMk(b, c)]
p ≤ [Mn(b, c)]

p

∞∑

k=n+1

ϕpk = o

(
∞∑

k=n+1

ϕpk

)
as n→∞ (32)

and this holds uniformly with respect to λ ∈ Σ.

Applying Lemma 3.2 to the decomposition(30) and taking into account (32),

we deduce that for every λ ∈ Σ there exists a constant Ẽ(a, λ) 6= 0 such that (11)
is satisfied for every p ∈ N uniformly with respect to λ ∈ Σ. This finishes the
proof of part (c).

If we take p = 1 in (11), then

log detTn(a(λ)) = (n+ 1) logG(a(λ)) + log Ẽ(a, λ) + o

(
∞∑

k=n+1

ϕk

)
(33)

and the convergence is uniform with respect to λ ∈ Σ.

On the other hand, by Theorem 3.1, T (a(λ))T ([a(λ)]−1)−I is of trace class
and

log detTn(a(λ)) = (n+1) logG(a(λ)) + log detT (a(λ))T ([a(λ)]−1) + o(1) (34)

as n→∞ for every λ ∈ Σ. Combining (33) and (34), we get

log Ẽ(a, λ) = log detT (a(λ))T ([a(λ)]−1)

and therefore (10) holds uniformly with respect to λ ∈ Σ. Part (b) and Theo-
rem 1.4 are proved.

3.5. Proof of Theorem 1.5. Suppose λ /∈ spT (a) ∪ spT (ã). Since a − λ
is continuous with respect to λ as a function from a neighborhood of ∂Ω to
(Wω)N×N , Theorem 1.4(b) shows that

log detTn(a− λ) = (n+ 1) logG(a− λ) + log detT [a− λ]T [(a− λ)−1]

+ o

(
∞∑

k=n+1

ϕk

)
as n→∞

and the convergence is uniform with respect to λ in a neighborhood of ∂Ω.
Hence, we can differentiate both sides with respect to λ, multiply by f(λ), and
integrate over ∂Ω. The proof is finished by a literal repetition of Widom’s proof
of Theorem 1.2 (see [16, p. 21] or [4, Section 10.90]) with o(1) replaced by the
same o(. . . ) as in the above formula.
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