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Abstract. Let A0 and A1 be quasi-Banach spaces with A0 ↪→ A1. By means of a
direct approach, we show that the interpolation spaces on (A0, A1) generated by the
function parameter tθ(1 + | log t|)−b can be expressed in terms of classical real inter-
polation spaces. Applications are given to Zygmund spaces Lp(logL)b(Ω), Lorentz-
Zygmund function spaces and operator spaces defined by using approximation num-
bers.

Keywords. Logarithmic interpolation spaces, real interpolation with a parame-
ter function, Zygmund function spaces, Lorentz-Zygmund function spaces, operator
spaces defined by using approximation numbers

Mathematics Subject Classification (2000). Primary 46B70, 46E30, 47B10,
secondary 46E35

1. Introduction

In 1993, Triebel [31] studied the degree of compactness of the embedding from

the (fractional) Sobolev space H
n/p
p (Ω) into the Orlicz space L∞(logL)b(Ω).

Here Ω is a bounded domain in R
n with smooth boundary, 1 < p < ∞ and

b < 1
p
− 1. The investigation of this limiting case of the well known Sobolev

embedding theorem goes back to Trudinger [33] and Strichartz [29]. The “Lp-
counterpart” to the “L∞-case” considered by Triebel, was studied by Edmunds
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A. Mart́ınez: Departamento de Matemática Aplicada I, E.T.S. Ingenieros Industria-
les, Universidad de Vigo, 36200 Vigo, Spain; antonmar@uvigo.es
Authors have been supported in part by the Spanish Ministerio de Educación y Cien-
cia (MTM2004-01888).



66 F. Cobos et al.

and Triebel [9, 10], where they determined the behaviour of entropy numbers
of the embedding from Hs

np/(n+sp)(Ω) into the Zygmund space Lp(logL)b(Ω).

A basic tool in the approach of Edmunds and Triebel is a representation
theorem of Zygmund spaces Lp(logL)b(Ω) in terms of Lp(Ω) spaces. This
characterization has intrinsic interest and has led Edmunds and Triebel to in-
troduce in [9, 10] the so-called logarithmic Sobolev spaces, and to study in [11]
the abstract construction that comes up replacing in the representation spaces
Lp(Ω) by complex interpolation spaces. They called logarithmic interpolation
spaces to the spaces defined in this way.

More recently, Triebel and the first two present authors [7] have investigated
a similar construction but now based on the real interpolation spaces (A0, A1)θ,q.
In this case, it turns out that logarithmic spaces coincide with those spaces
obtained by real interpolation with the function parameter tθ(1 + | log t|)−b.
As a consequence they have established representation theorems for Zygmund
spaces Lp(logL)b(Ω) in terms of Lorentz spaces Lr,s(Ω), and characterizations
for Lorentz-Zygmund operator spaces Lp,q,b(H) in terms of Lorentz operator
spaces Lr,s(H). Here H is a Hilbert space.

The results of [7] refer to the Banach case. They do not apply to spaces
Lp(logL)b(Ω) for 0 < p < 1, and they do not cover the extension of Lp,q,b(H)
to operator spaces on Banach spaces, because operator spaces defined in terms
of approximation numbers are only quasi-Banach spaces, even if 1 < p, q <∞.
To accomplish these results one should study logarithmic interpolation spaces
in the class of quasi-Banach spaces.

From the point of view of extrapolation theory, logarithmic spaces are spe-
cial cases of the more general notion of “one-sided” Σ(p)− and δ(p)− spaces in
the sense of Karadzhov and Milman [19]. In that recent paper (see also [13])
it is given an extensive study of the Σ(p) and ∆(p) methods of extrapolation,
complementing the previous work of Jawerth and Milman [18, 22] which deals
mainly with the Σ(1) and ∆(∞) methods. Since results of [19] work for quasi-
Banach spaces, one can apply them to derive results on abstract and concrete
logarithmic interpolation spaces. In particular, Theorems 4.4 and 4.7 of [19]
show that representation theorems for Lp(logL)b(Ω) in terms of spaces Lr,s(Ω)
hold for the full range of parameters.

In this paper we study quasi-Banach logarithmic interpolation spaces by
following a direct approach, based on ideas of [7]. We start by showing that
logarithmic spaces generated by quasi-Banach couples coincide also with inter-
polation spaces obtained by using function parameters. Then we investigate
the role of the scalar parameter q of real interpolation in logarithmic spaces.
The value of q is the same for all real interpolation spaces that appear in the
definition of logarithmic spaces (see Definition 2.1 below) and it coincides with
the power of the summation over j as well. This is a help for computations



Logarithmic Interpolation Spaces 67

but it is also the reason why representation theorems of [7] for Lp(logL)b(Ω)
are given in terms of Lorentz spaces, instead of the simpler Lebesgue spaces.
We show here that the construction of logarithmic spaces is sufficiently flexi-
ble to allow certain changes of q with the summing index j. As a consequence,
applying the abstract results to Zygmund spaces Lp(logL)b(Ω), we derive repre-
sentations that only require Lebesgue spaces and that work for 0 < p < 1 as
well.

Moreover, we apply the abstract results to spaces Lp,q,b(E,F ), formed by all
operators T acting between the quasi-Banach spaces E and F , whose approxi-
mation numbers {am(T )} lie in the Lorentz-Zygmund sequence space `p,q(log `)b
(see [5] and [6]). Spaces Lp,q,b(E,F ) are the natural extension of Lp,q,b(H). Some
results on bounded linear maps between spaces Lp,q,b(E,F ) are also established.
This kind of application is not considered in [19]. It is also not covered by the
results of [13].

The organization of the paper is as follows. In Section 2 we study loga-
rithmic interpolation spaces in the quasi-Banach setting. Section 3 deals with
the applications to function spaces. Finally, in Section 4, we give the applica-
tions to operator spaces.

2. Logarithmic interpolation spaces

Let A0, A1 be quasi-Banach spaces with A0 ↪→ A1, where the notation ↪→ means
continuous inclusion. The Peetre’s K-functional and J-functional are defined
by

K(t, a) = K(t, a;A0, A1)

= inf
{

‖a0‖A0 + t‖a1‖A1 : a = a0 + a1, aj ∈ Aj

}

, t > 0, a ∈ A1,

and

J(t, a) = J(t, a;A0, A1) = max
{

‖a‖A0 , t‖a‖A1

}

, t > 0, a ∈ A0.

For 0 < θ < 1 and 0 < q ≤ ∞, the real interpolation space Aθ,q = (A0, A1)θ,q
is formed by all those elements a ∈ A1 having a finite quasi-norm

‖a‖Aθ,q
=











(

∫∞

0

(

t−θK(t, a)
)q dt

t

)
1
q

if 0 < q <∞

sup
t>0
{t−θK(t, a)} if q =∞

(see [4] and [30]). It is well known that the equivalence theorem still holds in
the quasi-Banach setting (see [4, Theorem 3.11.3]), so Aθ,q can be equivalently
realized as a J-space.



68 F. Cobos et al.

Using that A0 ↪→ A1, it is not hard to check that ‖a‖Aθ,q
is equivalent to

any of the following quasi-norms:

( ∞
∑

m=1

2−θmq Kq(2m, a)

)
1
q

, inf

{( ∞
∑

m=1

2−θmq Jq(2m, am)

)
1
q

: a =
∞
∑

m=1

am

}

(with the usual modification if q = ∞), where the infimum is extended over
all representations a =

∑∞
m=1 am (convergence in A1), with am ∈ A0 and

(
∑∞

m=1 2
−θmq Jq(2m, am)

)
1
q <∞. Constants in equivalences depend on θ and q,

but if θ runs on a compact subset of (0, 1), say

θ ∈ {η + 2−j : j ≥ j0} ∪ {η − 2−j : j ≥ j0} ∪ {η}

as it is the case in Definition 2.1, then it is possible to choose uniform constants
for all those values of θ. Subsequently, we denote any of these three quasi-norms
by the symbol ‖ · ‖Aθ,q

. This will cause no confusion.

Replacing in the definition of Aθ,q the function t
θ by a more general function

parameter %(t) we obtain the spaces A%;q = (A0, A1)%;q that have been studied
in [24, 16, 17] or [25]. We will mainly work here with the special function
parameters

%(t) = %θ,b(t) = tθ(1 + | log t|)−b, t > 0,

where 0 < θ < 1 and b ∈ R. Again, we have

‖a‖A%;q =

(

∫ ∞

0

(

K(t, a)

%(t)

)q
dt

t

)
1
q

∼

( ∞
∑

m=1

Kq(2m, a)

%q(2m)

)
1
q

∼ inf























( ∞
∑

m=1

Jq(2m, am)

%q(2m)

)
1
q

:

a =
∞
∑

m=1

am with {am} ⊆ A0 and

( ∞
∑

m=1

Jq(2m, am)

%q(2m)

)
1
q

<∞























.

Here ∼ means equivalence of quasi-norms.

Since A0 ↪→ A1, we have for 0 < p, q ≤ ∞

(A0, A1)µ,p ↪→ (A0, A1)θ,q if 0 < µ < θ < 1 (1)

(see [4, Theorem 3.4.1]). Let Aθ+ =
⋂

θ<η<1Aη,q , where 0 < q ≤ ∞ and
0 < θ < 1. By (1), the space Aθ+ is independent of q.

We shall now introduce logarithmic interpolation spaces in the quasi-Banach
case by extending the definition of [7]. We denote by N the collection of all
natural numbers.
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Definition 2.1. Let A0, A1 be quasi-Banach spaces with A0 ↪→ A1. Let 0 <
θ < 1 and let j0 = j0(θ) ∈ N such that, for all j ∈ N with j ≥ j0,

σj = θ + 2−j < 1 and λj = θ − 2−j > 0.

Let 0 < q ≤ ∞.

(i) Assume b < 0. We let Aθ,q(logA)b denote the space of all a ∈ Aθ+ which
have a finite quasi-norm

‖a‖Aθ,q(logA)b =

( ∞
∑

j=j0

2jbq ‖a‖qAσj,q

)
1
q

(with the usual modification if q =∞).

(ii) Let b > 0. The space Aθ,q(logA)b consists of all a ∈ A1 which can be
represented as

a =
∞
∑

j=j0

aj, convergence in A1, with aj ∈ Aλj ,q (2)

such that
(
∑∞

j=j0
2jbq ‖aj‖

q
Aλj,q

)
1
q <∞. We put

‖a‖Aθ,q(logA)b = inf

{

( ∞
∑

j=j0

2jbq ‖aj‖
q
Aλj,q

)
1
q

}

where the infimum is taken over all sequences {aj} satisfying (2).

(iii) If b = 0, then Aθ,q(logA)b = Aθ,q.

Next we show that in the quasi-Banach setting the equality between loga-
rithmic interpolation spaces and real interpolation spaces generated by function
parameters %θ,b still holds. This result follows from [19, Theorems 4.2 and 4.6],
because Aθ,q(logA)b can be realized as a δ(p)− extrapolation space for b < 0 and
as a Σ(p)− space for b > 0. However we prefer to give a direct and simpler proof,
following the main lines of [7, Theorem 1].

Theorem 2.2. Let 0 < q ≤ ∞, 0 < θ < 1 and b ∈ R. Let %θ,b(t) = tθ (1 +
| log t|)−b, t > 0. Then we have, with equivalent quasi-norms,

Aθ,q(logA)b = A%θ,b;q.

Proof. The proof of the case b ≤ 0 goes through as in the Banach case (see [7,
Theorem 1/Step 1]), because triangle inequality is not used there. To establish
the case b > 0, howewer, we have to modify the argument given in [7]. Assume
therefore that b > 0. Take any a ∈ Aθ,q(logA)b and suppose that 0 < q < ∞.
Given any ε > 0, we can find a representation a =

∑∞
j=j0

aj with aj ∈ Aλj ,q and

∞
∑

j=j0

2jbq ‖aj‖
q
Aλj,q

≤ (1 + ε)‖a‖qAθ,q(logA)b
.
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Choose now decompositions aj =
∑∞

m=1 a
m
j , j ≥ j0 , such that {amj } ⊆ A0 and

∞
∑

m=1

2−mq(θ−2−j) Jq(2m, amj ) ≤ (1 + ε)‖aj‖
q
Aλj,q

.

Let cj be the constant in the triangle inequality of Aj (j = 0, 1), put c =
max{c0, c1} and define r by the formula (2c)r = 2. We can suppose that the cj
are large, so that r < q. Let 1

s
= 1

r
− 1

q
. By Hölder’s inequality, we have

( ∞
∑

j=j0

J(2m, amj )
r

)
1
r

≤

( ∞
∑

j=j0

2−mq(θ−2−j)+jbq Jq(2m, amj )

)
1
q
( ∞
∑

j=j0

2ms(θ−2−j)−jbs

)
1
s

∼ 2mθm−b

( ∞
∑

j=j0

2−mq(θ−2−j)+jbq Jq(2m, amj )

)
1
q

, (3)

where the last equivalence follows by using that b > 0 (see (33) in [7]).

The sum in (3) is finite as the argument below shows. Since the quasi-
norm J(2m, ·) is a c-norm, it follows from [4, Lemma 3.10.2] that

∑∞
j=j0

amj is
convergent in A0, say to am, with

J(2m, am) ≤ C 2mθm−b

( ∞
∑

j=j0

2−mq(θ−2−j)+jbq Jq(2m, amj )

)
1
q

.

Consequently, a =
∑∞

m=1 a
m with

‖a‖qA%;q
≤

∞
∑

m=1

Jq(2m, am)

%qθ,b(2
m)

∼

∞
∑

m=1

2−mθqmbq Jq(2m, am)

≤ Cq

∞
∑

j=j0

2jbq
∞
∑

m=1

2−mq(θ−2−j) Jq(2m, amj )

≤ Cq(1 + ε)
∞
∑

j=j0

2jbq ‖aj‖
q
Aλj,q

≤ Cq(1 + ε)2‖a‖qAθ,q(logA)b
.

This implies that Aθ,q(logA)b ↪→ A%θ,b;q. The case q = ∞ can be treated
analogously.
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The converse embedding can be checked by using the same argument as in
[7, Theorem 1/Step 2] . Suppose q <∞. The proof when q =∞ can be carried
out in the same way. Let a ∈ A%θ,b;q and take any representation a =

∑∞
m=1 am

with {am} ⊆ A0 and
∑∞

m=1
Jq(2m,am)
%q
θ,b
(2m)

<∞. Put

aj =
2j−j0+1−1
∑

m=2j−j0

am for j ≥ j0.

Then we have aj ∈ Aλj ,q , a =
∑∞

j=j0
aj and

‖a‖qAθ,q(logA)b
≤

∞
∑

j=j0

2jbq ‖aj‖qAλj,q

≤
∞
∑

j=j0

2jbq
2j−j0+1−1
∑

m=2j−j0

2−mq(θ−2−j) Jq(2m, am)

∼
∞
∑

m=1

2−mqθmbq Jq(2m, am).

This yields that A%θ,b;q ↪→ Aθ,q(logA)b and finishes the proof.

In the proof of Theorem 2.2, it has been a help that summation over j
in Definition 2.1 is taken to the same power q as in the spaces Aσj ,q and Aλj ,q.
Howewer, in applications to concrete couples we shall need that q changes with j.
Next we show that the choices of q that we shall take later generate the same
logarithmic interpolation spaces. More general results valid for Σ(p) and ∆(p)

extrapolation spaces can be found in [19, Theorems 2.13 and 3.4].

Theorem 2.3. Let A0, A1 be quasi-Banach spaces with A0 ↪→ A1. Let 0 < θ < 1
and let j0 = j0(θ) ∈ N such that, for all j ∈ N, j ≥ j0, σj = θ + 2−j < 1. Let
b < 0, 0 < q ≤ ∞ and r > 0. Put 1

sj
= 1

q
+ 1

r2j
, j ≥ j0. Then Aθ,q(logA)b

consists of all a ∈ Aθ+ such that

‖a‖∗ =

( ∞
∑

j=j0

2jbq ‖a‖qAσj,sj

)
1
q

<∞.

Moreover, the quasi-norms ‖ · ‖Aθ,q(logA)b and ‖ · ‖∗ are equivalent.

Proof. Since sj < q for any j ≥ j0, we have

‖a‖Aσj,q
=

( ∞
∑

m=1

2−mqσj Kq(2m, a)

)
1
q

≤

( ∞
∑

m=1

2−msjσj Ksj(2m, a)

)
1
sj

= ‖a‖Aσj,sj
.
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Hence, given any a ∈ Aθ+, we get

‖a‖Aθ,q(logA)b ≤

( ∞
∑

j=j0

2jbq ‖a‖qAσj,sj

)
1
q

= ‖a‖∗.

On the other hand, we claim that there exists M > 0 such that

‖a‖Aσj,sj
≤M‖a‖Aσj+1,q

for all j ≥ j0.

Indeed, using Hölder’s inequality, we get

‖a‖Aσj,sj
=

( ∞
∑

m=1

2−msjσjKsj(2m, a)

)
1
sj

≤

( ∞
∑

m=1

2−mqσj+1Kq(2m, a)

)
1
q
( ∞
∑

m=1

2mr2j(σj+1−σj)

)
1

r2j

= ‖a‖Aσj+1,q

( ∞
∑

m=1

2−mr/2

)
1

r2j

≤M‖a‖Aσj+1,q
.

Consequently, for any a ∈ Aθ+, we derive ‖a‖∗ ≤M2−b‖a‖Aθ,q(logA)b .

The corresponding result for b > 0 reads as follows.

Theorem 2.4. Let A0, A1 be quasi-Banach spaces with A0 ↪→ A1. Let b > 0,
0 < θ < 1, 0 < q < ∞, r > 0 and let j0 = j0(θ) ∈ N such that, for all j ∈ N,
j ≥ j0, λj = θ − 2−j > 0 and 1

rj
= 1

q
− 1

r2j
> 0. Then Aθ,q(logA)b is formed by

all those a ∈ A1 which can be represented as a =
∑∞

j=j0
aj, convergence in A1,

with aj ∈ Aλj ,rj and
(
∑∞

j=j0
2jbq ‖aj‖

q
Aλj,rj

)
1
q <∞. Moreover,

‖a‖∗∗ = inf

{

( ∞
∑

j=j0

2jbq ‖aj‖
q
Aλj,rj

)
1
q

}

is an equivalent quasi-norm in the space Aθ,q(logA)b. Here the infimum is taken
over all representations of the described type.

Proof. First we show that if
∑∞

j=j0
2jbq ‖aj‖

q
Aλj,rj

<∞, then
∑∞

j=j0
aj is conver-

gent in A1. Let c be the constant in the triangle inequality of A1 and define
s by the formula (2c)s = 2. We may assume that s < q. Put 1

p
= 1

s
− 1

q
. If

a ∈ Aλj ,rj , we have

‖a‖A1 ∼ K(2, a) ≤ 2θ ‖a‖Aλj,rj
.
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Whence, applying Hölder’s inequality, we obtain

( ∞
∑

j=j0

‖aj‖
s
A1

)
1
s

≤ 2θ
( ∞
∑

j=j0

2jbq‖aj‖
q
Aλj,rj

)
1
q
( ∞
∑

j=j0

2−jbp

)
1
p

<∞.

This yields that
∑∞

j=j0
aj is convergent in A1.

Since q < rj, it follows that ‖a‖∗∗ ≤ ‖a‖Aθ,q(logA)b . To establish the converse
inequality, we proceed as in Theorem 2.3. For any j ≥ j0 and any a ∈ Aλj ,rj ,
we get

‖a‖Aλj+1,q
=

( ∞
∑

m=1

2−mqλj+1Kq(2m, a)

)
1
q

≤

( ∞
∑

m=1

2−mrjλjKrj(2m, a)

)
1
rj

( ∞
∑

m=1

2m(λj−λj+1)r2
j

)
1

r2j

= ‖a‖Aλj,rj

( ∞
∑

m=1

2−mr/2

)
1

r2j

≤M‖a‖Aλj,rj
.

This implies that ‖a‖Aθ,q(logA)b ≤M2b‖a‖∗∗.

Remark 2.5. Let 1
s∗j

= 1
q
− 1

r2j
and 1

r∗j
= 1

q
+ 1

r2j
. It is easy to check that

Theorem 2.3 still holds for q <∞ if we replace sj by s
∗
j . Similarly, Theorem 2.4

is also valid if we replace rj by r∗j .

Logarithmic spaces in the case θ = 0 and q =∞ will be also useful later. If
A0, A1 are quasi-Banach spaces with A0 ↪→ A1 and b < 0, we let A0,∞(logA)b
denote the space of all a ∈ A0+ which have a finite quasi-norm

‖a‖A0,∞(logA)b = sup
j≥1

{

2jb‖a‖A
2−j ,∞

}

.

Here
‖a‖A

2−j ,∞
= sup

m≥1

{

2−2
−jmK(2m, a)

}

.

We put %0,b(t) = (1 + | log t|)−b, t > 0, and we denote by (A0, A1)%0,b;∞ the
collection of all those a ∈ A1 which have a finite quasi-norm

‖a‖A%0,b;∞
= sup

t≥1

{

K(t, a)

%0,b(t)

}

.

Theorem 2.6. Let b < 0. Then we have, with equivalent quasi-norms,

A0,∞(logA)b = A%0,b;∞.

Proof. The result follows by using the same arguments as in Theorem 2.2.
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Remark 2.7. Spaces Aθ,q(logA)b might be considered as a quantitative coun-
terpart to the notion of inclusion indices relative to an interpolation scale
(see [12]).

3. Applications to function spaces

In this section we specialize the abstract results of Section 2 to Lorentz-Zygmund
function spaces.

Let Ω be a domain in R
n with finite Lebesgue measure |Ω|. For 0 < p <∞,

0 < q ≤ ∞ and b ∈ R, the Lorentz-Zygmund function space Lp,q(logL)b(Ω)
is formed by all (equivalent classes of) Lebesgue-measurable functions f on Ω
which have a finite quasi-norm

‖f‖Lp,q(logL)b(Ω) =

(
∫ |Ω|

0

[

t
1
p (1 + | log t|)b f ∗(t)

]q dt

t

)
1
q

(with the obvious modification if q = ∞). Here f ∗ is the non-increasing rear-
rangement of f

f ∗(t) = inf
{

s > 0 : |{x ∈ Ω : |f(x)| > s
}

| ≤ t}.

We refer to [2, 3] and [23] for properties of Lorentz-Zygmund function spaces.
Note that if p = q, we get the Zygmund spaces Lp(logL)b(Ω). In particular, for
b = 0 we obtain the Lebesgue spaces Lp(Ω). The case b = 0 and p 6= q gives the
Lorentz function spaces Lp,q(Ω).

The following result extends [10, Theorem 2.6.2/2] to the range 0 < p < 1.

Corollary 3.1. Let Ω be a domain in R
n with finite Lebesgue measure. Let

0 < p < ∞ and let j0 = j0(p) ∈ N such that, for all j ∈ N with j ≥ j0,
1

pλj
= 1

p
− 1

n2j
> 0. Put 1

pσj
= 1

p
+ 1

n2j
.

(i) Let b < 0. Then Lp(logL)b(Ω) is the set of all Lebesgue-measurable func-
tions f on Ω such that

( ∞
∑

j=j0

2jbp ‖f‖pL
p
σj (Ω)

)
1
p

<∞. (4)

Moreover, (4) defines an equivalent quasi-norm on Lp(logL)b(Ω).

(ii) Let b > 0. Then Lp(logL)b(Ω) is the set of all Lebesgue-measurable func-
tions f on Ω which can be represented as

f =
∞
∑

j=j0

fj , fj ∈ Lpλj (Ω) (5)
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such that
( ∞
∑

j=j0

2jbp ‖fj‖
p
L
p
λj
(Ω)

)
1
p

<∞. (6)

Moreover, the infimum over expression (6) taken over all representations
(5), (6) is an equivalent quasi-norm on Lp(logL)b(Ω).

Proof. Take 0 < r < p and let θ = r
p
. Consider the spaces L∞(Ω) and Lr(Ω).

Since |Ω| <∞, we have L∞(Ω) ↪→ Lr(Ω). According to [4, Theorem 5.2.1],

K(t, f ;L∞(Ω), Lr(Ω)) ∼ t

(
∫ t−r

0

(f ∗(s))rds

)
1
r

. (7)

Hence, interpolating with %θ,b(t) = tθ(1 + | log t|)−b, t > 0, we get

(L∞(Ω), Lr(Ω))%θ,b;p = Lp(logL)b(Ω)

with equivalent quasi-norms.

Put 1

p
σj
∗

= 1
p
+ 1

r2j
and 1

p
λj
∗

= 1
p
− 1

r2j
. Then

(L∞(Ω), Lr(Ω))θ+2−j ,p
σj
∗

= L
p
σj
∗

(Ω)

and
(L∞(Ω), Lr(Ω))

θ−2−j ,p
λj
∗

= L
p
λj
∗

(Ω)

with equivalence of quasi-norms where the constants do not depend on j.
Whence, for b < 0, it follows from Theorems 2.2 and 2.3 that Lp(logL)b(Ω)
is the set of all measurable functions f on Ω such that

( ∞
∑

j=j0

2jbp ‖f‖pL
p
σj
∗

(Ω)

)
1
p

<∞. (8)

On the other hand, for b > 0, Theorems 2.2 and 2.4 imply that Lp(logL)b(Ω)
consists of all measurable functions f on Ω which can be represented as

f =
∞
∑

j=j0

fj , fj ∈ L
p
λj
∗

(Ω)

such that
( ∞
∑

j=j0

2jbp ‖fj‖
p
L
p
λj
∗

(Ω)

)
1
p

<∞. (9)

Finally, using Hölder’s inequality and the fact that |Ω| <∞, it is not difficult to
show that (8) and (4) are equivalent, and that the infimum over expression (9)
is an equivalent quasi-norm to the one defined by (6).
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Part (i) in Corollary 3.1 was proved by Edmunds and Triebel in [10, Theo-
rem 2.6.2/1] by direct calculations. Then, using duality, they derived part (ii)
in Corollary 3.1 for 1 ≤ p < ∞ (see [10, Theorem 2.6.2/2]). Note that their
technique does not allow to cover the case 0 < p < 1, because in this range
(Lp(Ω))

′ = {0}.

If p = ∞, we can recover from the outcome for θ = 0 the following result
due to Triebel [31].

Corollary 3.2. Let Ω be a domain in R
n with finite Lebesgue measure, let b < 0

and let pσj = n2j. Then L∞(logL)b(Ω) is the set of all Lebesgue-measurable
functions f on Ω such that

sup
j≥1

{

2jb ‖f‖L
p
σj (Ω)

}

<∞. (10)

Moreover the expression in (10) defines an equivalent norm on L∞(logL)b(Ω).

Proof. Using (7) and Hardy’s inequality (see [3, p. 246] or [2, Theorem 6.4]),
we get

‖f‖(L∞(Ω),L1(Ω))%0,b;∞
= sup

t≥1

{

K(t, f ;L∞(Ω), L1(Ω))

(1 + | log t|)−b

}

= sup
t≥1

{

(1 + | log t|)b t

∫ 1
t

0

f ∗(s) ds

}

= sup
0<t≤1

{

(1 + | log t|)b
1

t

∫ t

0

f ∗(s)ds

}

∼ sup
0<t≤1

{

(1 + | log t|)bf ∗(t)
}

= ‖f‖L∞(logL)b(Ω).

On the other hand, we have

‖f‖(L∞(Ω),L1(Ω))2−j ,∞
= sup

m≥1

{

2−2
−jmK(2m, f)

}

∼ sup
t>0

{

t1−2
−j

∫ 1
t

0

f ∗(s)ds

}

∼ sup
t>0

{

t2
−j

f ∗(t)
}

,

where the constants in the equivalences do not depend on j. Since |Ω| < ∞,
for all j ∈ N and any f ∈ Lpσj (Ω), we have

sup
t>0

{

t2
−j

f ∗(t)
}

≤ max
{

1, |Ω|
n−1
2n

}

‖f‖L
p
σj (Ω).
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Moreover, if n < 2j0 , then we can find M > 0 such that for all j ≥ j0 and any
f ∈ L2j+j0 ,∞(Ω), we get

‖f‖L
p
σj (Ω) ≤M sup

t>0

{

t2
−(j+j0)

f ∗(t)
}

.

Now the result follows from Theorem 2.6.

Next we show that [7, Corollary 2], holds for the full range of parameters.
This result is due to Karadzhov and Milman [19, Theorems 4.4 and 4.7].

Corollary 3.3. Let Ω be a domain in R
n with finite Lebesgue measure. Let

0 < p < ∞, 0 < q ≤ ∞ and let j0 = j0(p) ∈ N such that, for all j ∈ N with
j ≥ j0,

1
pνj

= 1
p
− 2−j > 0. Put 1

pµj
= 1

p
+ 2−j.

(i) Let b < 0. Then Lp,q(logL)b(Ω) is the set of all measurable functions f
on Ω such that

( ∞
∑

j=j0

2jbq ‖f‖qL
p
µj ,q

(Ω)

)
1
q

<∞

(equivalent norms).

(ii) Let b > 0. Then Lp,q(logL)b(Ω) is the set of all measurable functions f
on Ω which can be represented as

f =
∞
∑

j=j0

fj , fj ∈ Lpνj ,q(Ω) (11)

such that
( ∞
∑

j=j0

2jbq ‖fj‖
q
L
p
νj ,q

(Ω)

)
1
q

<∞. (12)

The infimum of the expression in (12) taken over all admissible represen-
tations (11), (12) is an equivalent quasi-norm in Lp,q(logL)b(Ω).

Proof. The argument is similar to the one in the proof of Corollary 3.1. Take
0 < r < min{1, p, q} and let θ = r

p
. Using (7), we have

(L∞(Ω), Lr(Ω))%θ,b;q = Lp,q(logL)b(Ω).

Put σj = θ + 2−j , λj = θ − 2−j , 1
pηj

= 1
p
+ 1

r2j
and 1

pτj
= 1

p
− 1

r2j
. Then

(L∞(Ω), Lr(Ω))σj ,q = Lpηj ,q(Ω) and (L∞(Ω), Lr(Ω))λj ,q = Lpτj ,q(Ω)
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with equivalence of quasi-norms where the constants are independent of j. Since
1

pηj
− 1

pµj
= 1−r

r2j
→ 0 as j →∞, we have

‖f‖L
p
ηj ,q

(Ω) =

(
∫ |Ω|

0

(

t
1

p
ηj f ∗(t)

)q dt

t

)
1
q

≤ sup
0<t<|Ω|

{

t
1−r

r2j

}

(
∫ |Ω|

0

(

t
1

p
µj f ∗(t)

)q dt

t

)
1
q

≤ |Ω|
1−r

r2j ‖f‖L
p
µj ,q

(Ω)

≤M‖f‖L
p
µj ,q

(Ω).

Similarly ‖f‖L
p
νj ,q

(Ω) ≤M‖f‖L
p
τj ,q

(Ω). Let j1 > j0 with 1 < r2j1 . Since

1

pµj
−

1

pηj1+j
=

1

pτj1+j
−

1

pνj
=

r2j1 − 1

r2j1+j
→ 0 as j →∞,

we derive

‖f‖L
p
µj ,q

(Ω) ≤M1‖f‖L
p
ηj1+j ,q

(Ω)

‖f‖L
p
τj1+j ,q

(Ω) ≤M1‖f‖L
p
νj ,q

(Ω).

Applying Theorem 2.2 to the couple (L∞(Ω), Lr(Ω)), we obtain a represen-
tation of Lp,q(logL)b(Ω) in terms of the Lorentz spaces Lpηj ,q(Ω) if b < 0, and
in terms of Lpτj ,q(Ω) if b > 0. Then the result follows with the aid of the rela-
tionships between spaces Lpηj ,q(Ω) and Lpµj ,q(Ω), and between spaces Lpτj ,q(Ω)
and Lpνj ,q(Ω), that we have shown before.

Remark 3.4. Other kind of decompositions for Lorentz-Zygmund function
spaces can be found in [8, 3.4.4] and the references given there.

Remark 3.5. As we have said in the Introduction, Corollary 3.1 is the basic
tool for the estimates on entropy numbers derived in [9]. Another kind of
applications can be found in the book by Edmunds and Triebel [10, Remark 5,
pp. 74–75]. It refers to the Hardy-Littlewood maximal function

(Mf)(x) = sup
x∈Q

1

|Q|

∫

Q

|f(y)| dy,

where the supremum is taken over all cubes Q containing x and with sides
parallel to the coordinate axes. A classical result of Hardy and Littlewood says
that if f ∈ L1(logL)1(Ω), then Mf ∈ L1(Ω). This assertion can be extended to
L1(logL)1+b(Ω) with b ≥ 0. Indeed, see [28, p. 23] or [2, Theorem 3.4], it holds

‖Mf‖L1(logL)b(Ω) ≤ c ‖f‖L1(logL)b+1(Ω). (13)
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In [10, p. 75] one can find a simple proof of (13) by using Corollary 3.1.
Next consider the related operator

Mrf =
[

M(|f |r)
]

1
r

where 0 < r < 1. This operator is useful in several situations (see, for example,
[32, pp. 78, 108]). Inequality (13) yields that

Mr : Lr(logL)b+1/r(Ω) −→ Lr(logL)b(Ω)

is bounded. Indeed,

‖Mrf‖Lr(logL)b(Ω) =

(
∫ |Ω|

0

t (1 + | log t|)brM(|f |r)∗(t)
dt

t

)
1
r

≤ c
∥

∥|f |r
∥

∥

1
r

L1(logL)br+1(Ω)

= c

(
∫ |Ω|

0

(

t
1
r (1 + | log t|)b+

1
r f ∗(t)

)r dt

t

)
1
r

= c‖f‖Lr(logL)b+1
r
(Ω).

4. Applications to operator spaces

In this final section we apply the abstract results of Section 2 to operator spaces
defined in terms of approximation numbers.

Let E, F be quasi-Banach spaces and let L(E,F ) be the quasi-Banach
space of all bounded linear operators acting from E into F . For k ∈ N, the k-th
approximation number ak(T ) of T is defined by

ak(T ) = inf
{

‖T −R‖ : R ∈ L(E,F ) with rankR < k
}

.

Let c be the constant in the triangle inequality of F and let s be defined by the
equation (2c)s = 2. It is easy to check that for S, T ∈ L(E,F ) and k,m ∈ N, it
holds

ask+m−1(S + T ) ≤ ask(S) + asm(T ). (14)

For 0 < p < ∞, 0 < q ≤ ∞ and b ∈ R, we define the Lorentz-Zygmund
operator spaces Lp,q,b(E,F ) as the collection of all those T ∈ L(E,F ) having a
finite quasi-norm

‖T‖p,q,b =

( ∞
∑

m=1

(m
1
p (1 + logm)bam(T ))

qm−1

)
1
q

(15)
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(with the usual modification if q =∞). In Banach spaces these operator spaces
have been studied in [5] and [6]. For b = 0, we get the Lorentz operator spaces
(Lp,q(E,F ), ‖ · ‖p,q) (see [21] and [27]). The special case b = 0 and p = q gives
the spaces (Lp(E,F ), ‖ · ‖p), which are the analogues of the Schatten p-classes
for approximation numbers (see [14] and [26]).

Approximation numbers coincide with singular numbers for operators in
Hilbert space H. If E = F = H, 1 < p < ∞, 1 ≤ q ≤ ∞ and b ∈ R, then the
functional obtained from (15) replacing am(T ) by m−1

∑m
j=1 aj(T ) is a norm,

equivalent to ‖ · ‖p,q,b. The resulting Banach space was denoted by Lp,q,b(H)
in [7], where it has been shown a representation theorem for Lp,q,b(H) in terms
of spaces Lp,q(H). Next we establish the corresponding results for operators
spaces in quasi-Banach spaces. We start with a result on the K-functional. In
the Banach case, this was proved by König [20, Proposition 1].

Given two non-negative functions (or two sequences) u(t), v(t), we write
u(t) . v(t) if there is a positive constant c such that u(t) ≤ cv(t) for all t. The
equivalence u(t) ∼ v(t) holds if u(t) . v(t) and v(t) . u(t).

Lemma 4.1. Let E, F be quasi-Banach spaces and let 0 < r <∞. Then

K (t, T ;Lr(E,F ),L(E,F )) ∼ K (t, {am(T )}; `r, `∞) .

Proof. It t ≤ 1, we have

K (t, T ;Lr(E,F ),L(E,F )) ∼ t ‖T‖ = t ‖{am(T )}‖`∞ = K (t, {am(T )}; `r, `∞) .

Suppose t > 1 . Choose Tt ∈ L(E,F ) such that rank(Tt) < [tr] and
‖T − Tt‖ ≤ 2a[tr](T ). Here [ · ] is the greatest integer function. If m < [tr], it
follows from (14) that

asm(Tt) ≤ asm(T ) + ‖T − Tt‖
s ≤ (1 + 2s)asm(T ).

If m ≥ [tr], then am(Tt) = 0. Whence

K (t, T ;Lr(E,F ),L(E,F )) ≤ ‖Tt‖r + t ‖T − Tt‖

≤ c1

( [tr]
∑

m=1

arm(T )

)
1
r

+ 2t a[tr](T )

≤ c1

( [tr]
∑

m=1

arm(T )

)
1
r

+ c2
(

[tr]ar[tr](T )
)

1
r

≤ c3

( [tr]
∑

m=1

arm(T )

)
1
r

.
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We claim that

K (t, T ;Lr(E,F ),L(E,F )) ∼

( [tr]
∑

m=1

arm(T )

)
1
r

. (16)

Indeed, take any S ∈ Lr(E,F ) and let s be again the number appearing
in (14). Without loss of generality we may assume that s < r. Using (14) and
Minkowski’s inequality we obtain

( [tr]
∑

m=1

arm(T )

)
1
r

∼

( [tr]
∑

m=1

ar2m−1(T )

)
1
r

≤

( [tr]
∑

m=1

(

asm(S) + asm(T − S)
)
r
s

)
1
r

≤

(

( [tr]
∑

m=1

arm(S)

)
s
r

+

( [tr]
∑

m=1

arm(T − S)

)
s
r

)
1
s

≤ c4

(

( [tr]
∑

m=1

arm(S)

)
1
r

+ t ‖T − S‖

)

≤ c4 (‖S‖r + t ‖T − S‖) .

This yields (16). Now the result follows by using [4, Theorem 5.2.1].

Let 0 < p <∞, 0 < q ≤ ∞ and b ∈ R. Take 0 < r < p and put θ = 1− ( r
p
).

The quasi-Banach space Lr(E,F ) is continuously embedded in L(E,F ). By
Lemma 4.1 and a similar argument as in [5, Theorem 5.2] we get

(Lr(E,F ),L(E,F ))%θ,b;q = Lp,q,b(E,F ).

Now we can establish

Corollary 4.2. Let E and F be quasi-Banach spaces. Let 0 < p <∞, 0 < q ≤
∞ and let j0 = j0(p) ∈ N such that, for all j ∈ N with j ≥ j0,

1
pνj

= 1
p
− 1

2j
> 0.

Put 1
pµj

= 1
p
+ 1

2j
.

(i) Let b < 0. Then Lp,q,b(E,F ) is the set of all T ∈ L(E,F ) such that

( ∞
∑

j=j0

2jbq ‖T‖q
pνj ,q

)
1
q

<∞

(equivalent quasi-norms).
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(ii) Let b > 0. Then Lp,q,b(E,F ) consists of all T ∈ L(E,F ) which can be
represented as T =

∑∞
j=j0

Tj with Tj ∈ Lpµj ,q(E,F ) such that

( ∞
∑

j=j0

2jbq ‖Tj‖
q

pµj ,q

)
1
q

<∞. (17)

Furthermore, the infimum over expression (17) is an equivalent quasi-
norm in Lp,q,b(E,F ).

Proof. Take 0 < r < p . Put θ = 1 − ( r
p
), σj = θ + 2−j, λj = θ − 2−j, and let

p
νj
∗ , p

µj
∗ be the numbers defined by 1

p
νj
∗

= 1
p
− 1

r2j
, 1

p
µj
∗

= 1
p
+ 1

r2j
. We have

(Lr(E,F ),L(E,F ))σj ,q = Lp
νj
∗

,q
, (Lr(E,F ),L(E,F ))λj ,q = Lp

µj
∗

,q

with equivalence of quasi-norms where the constants do not depend on j. By
Theorem 2.2, the space Lp,q,b(E,F ) can be represented in terms of spaces
L

p
νj
∗

,q
(E,F ) when b < 0, and in terms of spaces L

p
µj
∗

,q
(E,F ) if b > 0. Then

the result follows by comparing L
p
νj
∗

,q
(E,F ) with Lpνj ,q(E,F ) and L

p
µj
∗

,q
(E,F )

with Lpµj ,q(E,F ).

If p = q, we can derive representations in terms of the simpler spaces
Lr(E,F ):

Corollary 4.3. Let E, F be quasi-Banach spaces. Let 0 < p < ∞ and let
j0 = j0(p) ∈ N such that, for all j ∈ N with j ≥ j0,

1
pνj

= 1
p
− 2−j > 0. Put

1
pµj

= 1
p
+ 2−j.

(i) Let b < 0. Then Lp,p,b(E,F ) is the set of all T ∈ L(E,F ) such that

( ∞
∑

j=j0

2jbp ‖T‖p
pνj

)
1
p

<∞

(equivalent quasi-norms).

(ii) Let b > 0. Then Lp,p,b(E,F ) is the set of all operators T ∈ L(E,F ) which
can be represented as T =

∑∞
j=j0

Tj with Tj ∈ Lpµj (E,F ) such that

( ∞
∑

j=j0

2jbp ‖Tj‖
p
pµj

)
1
p

<∞. (18)

Moreover, the infimum over expression (18) is an equivalent quasi-norm
in Lp,p,b(E,F ).

Proof. The result is a consequence of Theorems 2.2, 2.3, 2.4 and Remark 2.5.
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Next we deal with bounded linear maps between operator spaces. The
corresponding result to (13) reads as follows:

Theorem 4.4. Let E and F be quasi-Banach spaces and let F be a bounded
linear operator from Lp(E,F ) into Lp(E,F ) for 1 < p ≤ 2. If b < 0 and

‖F‖Lp(E,F ),Lp(E,F ) . (p− 1)−1 as p ↓ 1,

then F is bounded from L1,1,b(E,F ) into L1,1,b−1(E,F ).

Proof. According to Corollary 4.3/(i) with p = 1, we have

1

pνj
= 1−

1

2j
or (pνj − 1) ∼ 2−j.

Whence, for any T ∈ L1,1,b(E,F ), using the information on F and Corol-
lary 4.3/(i), we derive

‖FT‖1,1,b−1 ∼

∞
∑

j=j0

2j(b−1) ‖FT‖pνj .

∞
∑

j=j0

2jb ‖T‖pνj ∼ ‖T‖1,1,b.

We finish the paper with a result for the case b = 0. We define the space
LM(E,F ) as the collection of all those T ∈ L(E,F ) having a finite quasi-norm

‖T‖M = sup
m≥1

{

∑m
j=1 aj(T )

1 + logm

}

.

Clearly, L1,1,−1(E,F ) ⊆ LM(E,F ) ⊆ L1,∞,−1(E,F ), and in general the
inclusions are strict. For example, if am(T ) ∼ 1/m, then T ∈ LM(E,F ) but
T /∈ L1,1,−1(E,F ). If am(T ) ∼

1
m
(1 + logm), then T ∈ L1,∞,−1(E,F ), but

T /∈ LM(E,F ).

For operators in Hilbert space H, the space LM(H) is referred in the lite-
rature as one of Macaev ideals (see [15] or [1]).

Lemma 4.5. Let E, F be quasi-Banach spaces. Then we have, with equivalent
quasi-norms,

(L1(E,F ),L(E,F ))%0,−1;∞ = LM(E,F ).

Proof. Using Lemma 4.1, we get

‖T‖%0,−1;∞ = sup
t≥1

{

K(t, T )

1 + | log t|

}

∼ sup
m≥1

{

K(m,T )

1 + logm

}

∼ sup
m≥1

{

∑m
j=1 aj(T )

1 + logm

}

= ‖T‖M.
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In the Hilbert case, interpolation properties of the Macaev ideal can be
found in [1] and [22].

Theorem 4.6. Let E and F be quasi-Banach spaces and let F be a bounded
linear operator from Lp(E,F ) into Lp(E,F ) for 1 < p ≤ 2. If

‖F‖Lp(E,F ),Lp(E,F ) . (p− 1)−1 as p ↓ 1,

then F is bounded from L1(E,F ) into LM(E,F ).

Proof. Let pj = (1 − 2−j)−1. According to Theorem 2.6 and Lemma 4.5, we
have

‖T‖M ∼ sup
j≥1

{

2−j‖T‖∗pj ,∞

}

,

where ‖.‖∗pj ,∞ is the norm in Lpj ,∞(E,F ) obtained by real interpolation on the

couple (L1(E,F ),L(E,F )) with parameters 2−j and ∞. That is

‖T‖∗pj ,∞ = sup
m≥1

{

2−2
−jm

2m
∑

k=1

ak(T )

}

.

This norm satisfies that ‖T‖∗pj ,∞ ≤ ‖T‖pj for all T ∈ Lpj(E,F ). Indeed, using
Hölder’s inequality, we obtain

2−2
−jm

2m
∑

k=1

ak(T ) ≤ 2−2
−jm

( 2m
∑

k=1

a
pj
k (T )

)
1
pj

2
m
(

1− 1
pj

)

≤ ‖T‖pj .

Therefore, for any T ∈ L1(E,F ), we derive

‖FT‖M ∼ sup
j≥1

{

2−j‖FT‖∗pj ,∞
}

≤ sup
j≥1

{

2−j‖FT‖pj
}

. sup
j≥1

{

‖T‖pj
}

≤ ‖T‖1.

In the Hilbert case, Theorem 4.6 can be found in [22].
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