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On the Extension of a Certain Class

of Carleman Operators

S. M. Bahri

Dedicated to the memory of E. L. Alexandrov

Abstract. The integral operators of Carleman play an important role in the spectral
theory of selfadjoint operators and made the object of several works such those of
G. I. Targonski [Proc. Amer. Math. Soc. 18 (1967)(3)], V. B. Korotkov [Sib. Math. J.

11 (1970)(1)], and J. Weidmann [Manuscripta Math. (1970)(2)]. In the present paper,
we study a certain class of these operators in the Hilbert space L2 (X,µ). Precisely, we
give necessary and sufficient conditions so that they possess equal defeciency indices.
Such operators find their applications in the theory of random variable approximation.
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1. Preliminaries

Let H be a Hilbert space endowed with the inner product (., .), and let A :
D(A) ⊂ H −→ H be a densely defined closed linear operator whose range is
denoted R(A). The defect number is the dimension of the orthogonal comple-
ment to R(A)

dA = dim(H ªR(A)) = dimker(A∗),

where A∗ is the adjoint operator of A and ker(A∗) = {f ∈ D(A∗) : A∗f = 0},
D(A∗) being the domain of A∗.

Let A be a symmetric operator, Ã its symmetric extension, then the follow-
ing relation holds

A ⊂ Ã ⊂ Ã∗ ⊂ A∗. (1)

The interest of (1) resides in the following conclusion: all symmetrical extension

of A comes of a restriction of the domain of A∗. So D(Ã) is a subspace between

D(A) and D(A∗). To construct the extensions Ã it is therefore well to examine
the structure of the space D(A∗).
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We now introduce the defect spaces of A

Nλ = ker(A
∗ − λI) and Nλ = ker(A

∗ − λI), (=mλ > 0) . (2)

I denotes the identity operator in H.The numbers n+(A) = dimNλ and n−(A)
= dimNλ are called deficiency indices of the symmetric operator A. It being,
we have an important result.

Theorem 1.1 ([2]). In the Hilbert space D(A∗) we have the following Hilberti-
enne decomposition:

D(A∗) = D(A)⊕Nλ ⊕Nλ.

Lemma 1.2 ([4]). The operator A possesses self adjoint extensions if and only if
n+(A) = n−(A). One gets in this case all self extensions of A from all surjective
isometries F defined from Nλ to Nλ.

2. Carleman operators

One can find necessary information about Carleman operators, for example,
in [3], [5]–[8]. In this section we shall present only a part of it. Let X be
an arbitrary set, µ a σ-finite measure on X (µ is defined on a σ-algebra of
subsets of X, we don’t indicate this σ-algebra), L2 (X,µ) the Hilbert space of
square integrable functions with respect to µ. Instead of writing ’µ-measurable’,
’µ-almost everywhere’ and ‘dµ(x)’ we write ‘measurable’, ‘almost everywhere’
and ‘dx’.

Definition 2.1 ([8]). A linear operator A : D (A) −→ L2 (X,µ), where the
domain D (A) is a dense linear manifold in L2 (X,µ), is said to be integral if
there exists a measurable function K on X ×X, a kernel, such that, for every
f ∈ D (A) ,

Af (x) =

∫

X

K (x, y) f (y) dy almost everywhere in X.

A kernel K on X × X is said to be a Carleman kernel if K (x, y) ∈ L2 (X,µ)
for almost every fixed x, that is to say

∫

X

|K (x, y)|2 dy <∞ almost everywhere.

An integral operator A with a kernel K is called Carleman operator if K is a
Carleman kernel. Every Carleman kernel K defines a Carleman function k from
X to L2 (X,µ) by k (x) = K (x, .) for all x in X for which K (x, .) ∈ L2 (X,µ) .
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Now we shall be interested, in the Hilbert space L2 (X,µ), with a class of
Carleman integral operators whose kernel is defined by

K (x, y) =
∞∑

p=0

apψp (x)ψp (y), (3)

where {ψp (x)}
∞

p=0 is an orthonormal sequence in L
2 (X,µ) such that

∞∑

p=0

|ψp (x)|
2
<∞ almost everywhere in X, (4)

and {ap}
∞

p=0 a real number sequence verifying

∞∑

p=0

a2p |ψp (x)|
2
<∞ almost everywhere in X. (5)

We call {ψp (x)}
∞

p=0 Carleman sequence.

2.1. Example of Carleman sequences. We need the following lemma.

Lemma 2.2 ([7]). Let (X,µ) a measured space. Then it exists a sequence {Yn}
∞

1

of measurable subset’s of the set X such that

(i) Ym ∩ Yn = ∅, m 6= n;

(ii) X =
∞⋃
n=1

Yn;

(iii) µ (Yn) > 0, n = 1, 2, . . .;

(iv) for all n ∈ N
∗, L2 (Yn, µ) is of infinite dimension.

We choose a function ϕ (x) ∈ L2 (X,µ) verifying

1. ϕ (x) > 0 for all x ∈ X

2. ϕn (x) = 1Yn
(x)ϕ (x) , ∈ N

∗, with ‖ϕn‖
2
L2
= 1

2n
, where 1Yn

(x) is the
characteristic function of Yn and {Yn}

∞

1 a sequence of measurable sub-
set’s of the set X verifying (i)–(iv) of Lemma 2.2. Therefore, we will
have‖ϕ‖2L2

=
∑

∞

n=1 ‖ϕn‖
2
L2
=
∑

∞

n=1
1
2n
= 1.

This being we put

– ψ0 (x) = ϕ (x) , x ∈ X

– ψ1 (x) =





−ϕ (x) , x ∈ Y1

ϕ (x) , x ∈
∞⋃
k=2

Yk
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– ψn (x) =





0, x ∈
n−1⋃
k=1

Yk

−2
n−1

2 ϕ (x) , x ∈ Yn

2
n−1

2 ϕ (x) , x ∈
∞⋃

k=n+1

Yk

, for all n ≥ 2.

We can show easily that the sequence {ψp (x)}
∞

p=0 verifies

a) ‖ψn‖
2
L2
= 1, n ∈ N

b) (ψm, ψn) = 0, m 6= n

c)
∞∑
p=1

|ψp (x)|
2
<∞ almost everywhere in X

d) ψ0 (x) +
∞∑
n=1

2
n−1

2 ψn (x) = 0 almost everywhere in X.

2.2. Deficiency indices. Here, we give the necessary and sufficient conditions
so that the Carleman operator A possesses equal deficiency indices n+(A) =
n−(A).

The domain of the adjoint operator A∗ of A is defined by

D (A∗) =

{
f ∈ L2 (X,µ) :

∫

X

K (x, y) f (y) dy ∈ L2 (X,µ)

}
.

The kernel (3) verifying condition (4) will be a Hilbert–Schmidt kernel if and
only if

∑
∞

p=0 a
2
p < ∞. In this work we consider the case

∑
∞

p=0 a
2
p = ∞. Let

L (ψ) be the closed set of linear combinations of elements of the orthogonal
sequence {ψp (x)}

∞

p=0 . It is lucid that the orthogonal complement L
⊥ (ψ) =

L2 (X,µ)ª L (ψ) is contained in D(A) and annul the operator A.

Theorem 2.3. The operator A possesses equal deficiency indices n+(A) =

n−(A) = m, (m < ∞), if and only if there exist sequences
{
γ
(k)
p

}∞
p=0

(k =

1, 2, . . . ,m) verifying

1. for all k,

θk (x) =
∞∑

p=0

γ(k)p ψp (x) ∈ L
⊥ (ψ) (k = 1, 2, . . . ,m); (6)

2. for all λ (=mλ 6= 0),

∞∑

p=0

∣∣∣∣∣
γ
(k)
p

ap − λ

∣∣∣∣∣

2

<∞ (k = 1, 2, . . . ,m); (7)

3. the linear space of the sequences
{
γ
(k)
p

}∞
p=0

(k = 1, 2, . . . ,m) verifying (6)

and (7) is m-dimensional.
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Proof. First we have for all f ∈ D (A), f(x) =
∑

∞

p=0 cp ψp (x) + q (x) , q ∈

L⊥ (ψ) , then

A∗f (x) =
∞∑

p=0

apcpψp (x) , cp = (f, ψp) .

Indeed, let fn (x) =
∑

∞

p=0 cpψp (x) + q (x) , as
∑n

p=0 cpψp (x) ∈ L (ψ), then
limn→∞ fn (x) = f (x) and

A∗f (x) = lim
n→∞

(
fn (x) , K (x, y)

)
=

∞∑

p=0

ap (f, ψp)ψp (x) .

Necessary condition. We suppose that A possesses equal deficiency indices
n+(A) = n−(A) = m (m <∞) . Let ϕ1λ, ϕ

2
λ, . . . , ϕ

m
λ be a base of the defect

space (2)
Nλ = L2 (X,µ)ª

(
A− λI

)
D (A) .

Let us write ϕkλ (k = 1, 2, . . . ,m) as

ϕkλ (x) =
∞∑

p=0

β(k)p (λ) ψp (x) + qk (x) (k = 1, 2, . . . ,m)

with
∞∑

p=0

∣∣β(k)p (λ)
∣∣2 <∞ and qk ∈ L

⊥ (ψ) (k = 1, 2, . . . ,m) .

We have on the one hand ϕkλ ∈ Nλ, then

A∗ϕkλ (x) = λϕkλ (x) (k = 1, 2, . . . ,m) .

On the other hand

A∗ϕkλ (x) =
∞∑

p=0

apβ
(k)
p (λ)ψp (x) (k = 1, 2, . . . ,m) .

Thus
∞∑

p=0

(ap − λ) β(k)p (λ)ψp (x) = λqk (x) (k = 1, 2, . . . ,m) .

Therefore if we put

γ(k)p (λ) = (ap − λ) β(k)p (λ) (k = 1, 2, . . . ,m)

it ensures that

θk (x) =
∞∑

p=0

γ(k)p ψp (x) ∈ L
⊥ (ψ) (k = 1, 2, . . . ,m)
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and
∞∑

p=0

∣∣∣∣∣
γ
(k)
p

ap − λ

∣∣∣∣∣

2

=
∞∑

p=0

∣∣β(k)p (λ)
∣∣2 <∞.

For condition 3), let us suppose that there exist numbers xk (k = 1, 2, . . . ,m)

no all hopeless as
∑m

k=1 xkγ
(k)
p = 0. For λ 6= 0,

m∑

k=1

xkϕ
k
λ (x) =

m∑

k=1

xk

(
∞∑

p=0

γ
(k)
p

ap − λ
ψp (x) +

1

λ
θk (x)

)

=
∞∑

p=0

γ
(k)
p

ap − λ
ψp (x)

(
m∑

k=1

xkϕ
k
λ (x)

)
+
1

λ

m∑

k=1

xkθk (x)

=
1

λ

m∑

k=1

xkθk (x) ∈ L
⊥ (ψ) .

Or if f ∈ L⊥ (ψ), then A∗f = 0, from where

A∗

(
m∑

k=1

xkϕ
k
λ (x)

)
= λ

m∑

k=1

xkϕ
k
λ (x) = 0,

so as the ϕkλ (k = 1, 2, . . . ,m) are linearly independent it follows that x1 = x2 =
. . . = xm = 0.

Sufficient condition. We suppose that there exist sequences
{
γ
(k)
p

}∞
p=0

(k =

1, 2, . . . ,m) verifying conditions 1–3. It is easy to see that the functions

ϕ
(k)
λ (x) =

∞∑

p=0

γ
(k)
p

ap − λ
ψp (x) (k = 1, 2, . . . ,m)

are solutions of the equation A∗y = λy. Indeed, we have

A∗ϕ
(k)
λ (x) =

∞∑

p=0

ap
γ
(k)
p

ap − λ
ψp (x)

=
∞∑

p=0

(ap − λ+ λ)
γ
(k)
p

ap − λ
ψp (x)

= λ

∞∑

p=0

γ
(k)
p

ap − λ
ψp (x) ,

from where ϕ
(k)
λ ∈ Nλ (k = 1, 2, . . . ,m) . Therefore the operator A possesses

equal deficiency indices n+(A) = n−(A) = m (m <∞) .
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Remark 2.4. The sequences
{
γ
(k)
p

}∞
p=0

(k = 1, 2, . . . ,m) are as
∑

∞

p=0

∣∣γ(k)p

∣∣2 =
∞. Indeed, let us suppose that it exists k◦ such that

∞∑

p=0

∣∣γ(k◦)p

∣∣2 <∞ (k = 1, 2, . . . ,m) ,

then from
∑

∞

p=0 |ψp (x)|
2
< ∞, we have

∑
∞

p=0

∣∣γ(k◦)p ψp (x)
∣∣2 < ∞, from where

θk◦ (x) =
∑

∞

p=0 γ
(k◦)
p ψp (x) ∈ L (ψ) , therefore the condition (7) of Theorem 2.3

is not verified anymore.

Corollary 2.5. If for all p (p = 1, 2, . . .) |ap| ≤ c (constant), then the operator
A is self adjoint.

Proof. Indeed, we will have

∞∑

p=0

∣∣γ(k)p

∣∣2

a2p + 1
≥

1

c2 + 1

∞∑

p=0

∣∣γ(k)p

∣∣2 =∞.

3. Stochastic processes with Carleman operators

The class of Carleman integral operators studied here find its application in
the stochastic processes survey. Let (Ω; F ; P) a probability space, ξ a random
variable. We have

∀t ∈ R, {ω : ξ (ω) < t} = {ξ < t} ∈ F .

It means that {ξ < t} is an event. We designate by L2 (Ω) = L2 (Ω; F ; P) the
Hilbert space of random variables ξ such that E |ξ|2 < ∞ (E : expectation)
provided of the scalar product 〈ξ, η〉 = Eξη. A function ν : Ω → H is said to
be a random element if for all f ∈ H, (f, ν) is a random variable. The operator

A : H → L2 (Ω)

defined by

Af = (f, ν) , f ∈ D (A) = {f ∈ H : (f, ν) ∈ L2 (Ω)}

is an operator of Carleman. The correlation operator K = A∗A is also an
operator of Carleman.
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The considered questions are the following:

(i) decomposition of the process by the eigenfunctions of K;

(ii) linear approximation of the random variable η by the random variables
(f, ν) = Af, i.e., to find f0 ∈ H− such that

‖ξ − Af0‖Ω = min
f∈H−

‖ξ − Af‖Ω ,

where H− = H
(
for a certain norm ‖.‖

−

)
.

We will treat the case which corresponds to our class of Carleman operators:

L2 (Ω) = H = L2 (X; µ)

ν (x) =
∞∑

p=0

apψp (x)ψp (y)

Af = (f, ν) =
∞∑

p=0

ap (f, ψp)ψp

Kf = A∗Af =
∞∑

p=0

|ap|
2 (f, ψp)ψp

H− =

{
f =

∞∑

p=0

αpψp :
∞∑

p=0

|αpψp|
2 <∞

}
.
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