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Extreme Points and Strong U-Points

in Musielak-Orlicz Sequence Spaces

Equipped with the Orlicz Norm

Yunan Cui, Henryk Hudzik, Marek WisÃla and Mingxia Zou

Abstract. We give some criteria for extreme points and strong U-points in Musielak–
Orlicz sequence spaces equipped with the Orlicz norm. It follows from these results
that the notion of the strong U-point is essentially stronger than the notion of the
extreme point in these spaces.
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1. Introduction

Let (X, ‖·‖) be a real Banach space and S(X) be the unit sphere of X. By X∗

denote the dual space of X. For any x ∈ S(X), we denote by Grad(x) the set
of all support functionals at x, that is, Grad(x) = {f ∈ S(X∗) : f(x) = ‖x‖} .

A point x ∈ S(X) is called an extreme point if for every y, z ∈ S(X) with
x = y+z

2
, we have y = z = x. A Banach space X is said to be rotund if every

point of S(X) is an extreme point.
A point x ∈ S(X) is said to be a strong U-point (SU-point for short) if for

any y ∈ S(X) with ‖x+ y‖ = 2 , we have x = y. It is obvious that a Banach
space X is rotund if and only if every x ∈ S(X) is an SU-point.

Recall that the nature of SU-points is such that a point x ∈ S(X) is a point
of local uniform rotundity if and only if x is a point of compact local uniform
rotundity and an SU-point (see [4]).
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Mingxia Zou: Department of Mathematics, Harbin University of Science and Tech-
nology, Harbin 150080, P. R. China; zuomxhust@yahoo.com.cn



88 Y.Cui et al.

Extreme points and strongly extreme points in Orlicz sequence spaces have
been investigated in [5] and [11]. The criteria for extreme points and strong
U-points in Orlicz sequence space were obtained in [2, 3, 4] and criteria for
rotundity of Musielak–Orlicz spaces were presented in [7]. In this paper, we
will give criteria for extreme points and SU-points in Musielak–Orlicz sequence
space equipped with the Orlicz norm. As it has been noted in [4], the notions
of extreme point and SU-point are different and the second notion is much
stronger than the first one. As it follows from criteria presented in this paper
the situation in Musielak–Orlicz sequence spaces equipped with the Orlicz norm
is similar.

The sequence M = (Mi)
∞
i=1 is called a Musielak–Orlicz function provided

that for any i ∈ N , Mi : (−∞,+∞)→ [0,+∞] is even, convex, left continuous
on [0,+∞), Mi(0) = 0, and there exists ui > 0 such thatMi (ui) <∞ (see [10]).
By N = (Ni)

∞
i=1 we denote the Musielak–Orlicz function complementary to

M = (Mi) in the sense of Young, i.e.,

Ni(v) = sup
u≥0

{
u |v| −Mi(u)

}

for each v ∈ R and i ∈ N .
Define b(i) = sup{u ≥ 0 : Mi(u) = 0}, B(i) = sup{u ≥ 0 : Mi(u) < ∞},

b̃(i) = sup{v ≥ 0 : Ni(v) = 0} and B̃(i) = sup{v ≥ 0 : Ni(v) < ∞} for
each i ∈ N . Let pi(u) and p−i (u) (qi(v) and q−i (v)) stand for the right and
left derivatives of Mi (of Ni) at u ∈ R with 0 ≤ u < B(i) (at v ∈ R with

0 ≤ v < B̃(i)), respectively. Here we define pi(B(i)) = ∞, p−i (u) = pi(u) = ∞

for u > B(i), qi(B̃(i)) =∞ and q−i (v) = qi(v) =∞ for v > B̃(i).
Moreover, for every u, v ∈ R, we have the following Young inequality:

|uv| ≤Mi(u) +Ni(v).

Further, |uv| = Mi(u) + Ni(v) if and only if p
−
i (|u|) ≤ |v| ≤ pi(|u|), when u is

fixed, or q−i (|v|) ≤ |u| ≤ qi(|v|), when v is fixed (cf. [2], p. 5).
Let l0 denote the space of all real sequences x = (x (i)). Given any

Musielak–Orlicz function M = (Mi), we define on l
0 the convex modular ρM by

ρM(x) =
∞∑

i=1

Mi(x(i)) for any x = (x (i)) ∈ l0.

The space {x ∈ l0 : ρM(λx) <∞ for some λ > 0} equipped with the Luxemburg
norm

‖x‖ = inf
{
λ > 0 : ρM

(
x
λ

)
≤ 1

}

or the Orlicz norm

‖x‖0 = sup
{∑

i

x(i)y(i) : ρN(y) ≤ 1
}
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is a Banach space, denoted according to the norm by lM or l
0
M respectively, and

it is called the Musielak–Orlicz sequence space (see [2, 8, 10]). The subspace
{
x ∈ lM : for any λ > 0, there exists i0 such that

∑

i>i0

Mi(λx(i)) <∞
}

equipped with the norm ‖ · ‖ (or ‖ · ‖0) is also a Banach space, and it is denoted
by hM (resp. h0

M). For Orlicz spaces, i.e. the spaces that are generated by the
Musielak–Orlicz function (Mi)

∞
i=1 with all Mi being the same, we refer to [9].

We say that φ ∈ (l0M)
∗ is a singular functional (φ ∈ F for short), if φ(x) = 0

for any x ∈ h0
M . The dual space of l

0
M is represented in the form (l

0
M)

∗ = lN ⊕F,
i.e., every f ∈ (l0M)

∗ has the unique representation f = y+ φ, where φ ∈ F and
y ∈ lN is the regular functional defined by the formula 〈x, y〉 =

∑∞
i=1 x(i)y(i)

(for any x = (x(i)) ∈ l0M).
For any i ∈ N , we say that a point w ∈ R is a strict convexity point

of Mi, if Mi(
u+v

2
) < 1

2
(Mi(u) +Mi(v)) whenever w =

u+v
2
and u 6= v. We write

then w ∈ SCMi
. An interval [a, b] is called a structurally affine interval ofMi (or

simply SAI ofMi) provided thatMi is affine on [a, b] and it is not affine either on
[a−ε, b] or on [a, b+ε] for any ε > 0. It is obvious that SCMi

= R\(
⋃
n(an, bn)),

where [an, bn] ∈ SAI(Mi), n = 1, 2, . . ..
For any i ∈ N , denote

SC−Mi
= {u ∈ SCMi

: ∃ ε > 0 such that Mi is affine on [u, u+ ε]}

SC+
Mi
= {u ∈ SCMi

: ∃ ε > 0 such that Mi is affine on [u− ε, u]},

SC0
Mi
= SCMi

\ (SC+
Mi
∪ SC−Mi

).

For any x ∈ l0M , we put:

suppx = {i ∈ N : x(i) 6= 0},

θ(x) = inf
{
λ > 0 : there exists i0 such that

∑

i>i0

Mi

(
x(i)
λ

)
<∞

}
.

Let p ◦ kx denote the sequence {pi(kx(i))} and let

k∗x = inf
{
k > 0 : ρN(p ◦ kx) =

∞∑

i=1

Ni

(
pi(kx(i))

)
≥ 1

}

k∗∗x = sup
{
k > 0 : ρN(p ◦ kx) =

∞∑

i=1

Ni

(
pi(kx(i))

)
≤ 1

}

k(x) =

{
[k∗x, k

∗∗
x ], if k∗∗x <∞

[k∗x,∞), if k∗x <∞

and k∗∗x =∞, and k(x) = ∅, if k
∗
x =∞.

For the convenience of reading, we first list some known results.
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Lemma 1.1 (see [12]). If x ∈ l0M \ {0}, then k(x) 6= ∅ if and only if
∑

i∈suppxNi(B̃(i)) > 1 or
∑

i∈suppxNi(B̃(i)) = 1 and supi∈suppx
q−i (B̃(i))

|x(i)|
<∞.

Lemma 1.2 (see [1]). Let x ∈ l0M \ {0}. If
∑

i∈suppxNi(B̃(i)) > 1, then

‖x‖0 = 1
k
(1 + ρM(kx)) if and only if k ∈ k(x), and if

∑
i∈suppxNi(B̃(i)) ≤ 1,

then ‖x‖0 =
∑

i∈suppx |x(i)| (B̃(i)).

Lemma 1.3. If 1 = ‖x‖0
M = 1

k
(1 + ρM(kx)), then f = y + φ is a support

functional of x if and only if

1. ρN(y) + ‖φ‖ = 1,

2. ‖φ‖ = φ(kx),

3. x(i)y(i) ≥ 0 and p−i (k |x(i)|) ≤ |y(i)| ≤ pi(k |x(i)|) for any i ∈ N .

Proof. The proof of this lemma is similar to that of Theorem 1.77 in [12] and [6],
so we omit it here.

Lemma 1.4 (see [6]). For any φ ∈ F, we have

‖φ‖ = sup{φ(x) : ρM(x) <∞} = sup
θ(x)6=0

φ(x)

θ(x)
.

Lemma 1.5. Let x ∈ S(l0M). If θ(kx) < 1 for some k ∈ k(x), then all support

functionals of x are in lN .

Proof. If θ(kx) = 0, then the implication is obvious. Let us suppose that
0 < θ(kx) < 1. Take any support functional f = y + φ of x. By Lemma 1.4,

we have ‖φ‖ = supθ(y)6=0
φ(y)
θ(y)

≥ φ(kx)
θ(kx)

> φ(kx). From Lemma 1.3, it follows that

φ = 0, which completes the proof of the lemma.

2. Main results

We start with a criterion for extreme points of S(l0M).

Theorem 2.1. A point x = (x(i)) ∈ S(l0M) is an extreme point of S(l0M) if and

only if:

(i) k(x) = ∅ and card(suppx) = 1, or

(ii) k(x) 6= ∅ and

(ii-a) card(suppx) = 1 and b(i) = 0 for any i /∈ suppx, or

(ii-b) card(suppx) > 1 and kx(i) ∈ SCMi
for any k ∈ k(x) and any i ∈ N .
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Proof. Necessity. If (i) does not hold, without loss of generality we may
assume that x(1) > 0, x(2) > 0 and k(x) = ∅. By Lemma 1.1 and Lemma 1.2,

we have 1 = ‖x‖0 =
∑∞

i=1 |x(i)| B̃(i).

Take ε1 > 0 and ε2 > 0 satisfying ε1B̃(1) = ε2B̃(2) and x(1)− ε1 > 0,
x(2)− ε2 > 0. Define

y = (x(1)− ε1, x(2) + ε2, x(3), x(4), . . .)

z = (x(1) + ε1, x(2)− ε2, x(3), x(4), . . .).

It is obvious that y + z = 2x and y 6= z. Moreover, by the definitions of the
Orlicz norm and of B̃(i), we can easily obtain that ‖y‖0 ≤

∑∞
i=1 |y(i)| B̃(i) =∑∞

i=1 |x(i)| B̃(i) = 1. In fact, for any v ∈ lN with ρN(v) ≤ 1, by the defini-

tion of B̃(i), we have |v(i)| ≤ B̃(i) for all i ∈ N and hence
∑∞

i=1y(i)v(i) ≤∑∞
i=1 |y(i)| B̃(i). From the definition of the Orlicz norm, it follows that ‖y‖

0 =

sup
{∑∞

i=1y(i)v(i) : ρN(y) ≤ 1
}
≤
∑∞

i=1 |y(i)| B̃(i). Similarly, we have ‖z‖
0 ≤ 1.

Using ‖x+ y‖0 = 2, we get ‖y‖0 = ‖z‖0 = 1, which contradicts the fact that x
is an extreme point.

Suppose (ii-a) fails. Then we may assume without loss of generality that
x = (x(1), 0, 0, . . .) and b(i0) > 0 for some i0 > 1. Take k ∈ k(x) and put

y(i) =

{
x(i), i 6= i0
b(i0)
k
, i = i0

and z(i) =

{
x(i), i 6= i0

− b(i0)
k
, i = i0 .

Then y + z = 2x and y 6= z. We can get a contradiction with the assumption
that x is an extreme point by showing that ‖y‖0 ≤ 1 and ‖z‖0 ≤ 1. Note that
from the definition of b(i0) we get

‖y‖0 ≤
1

k
(1 + ρM(ky)) =

1

k
(1 + ρM(kx)) = ‖x‖

0 = 1.

Similarly, we have ‖z‖0 ≤ 1.

Now we verify the necessity of (ii-b). Otherwise, without loss of generality,
we may assume that x(1) > 0, x(2) > 0, and there exists k ∈ k(x) such that
kx(1) ∈ (a1, b1), where [a1, b1] ∈ SAI(M1) and M1(u) = Au+B for u ∈ [a1, b1].
Take u0 > 0 such that kx(1)± u0 ∈ (a1, b1). By 1 = ‖x‖

0 = 1
k
(1 + ρM(kx)), we

have k = 1 + Akx(1) +B +
∑

i6=1Mi(kx(i)). Put

h = 1 + A(kx(1) + u0) +B +
∑

i6=1

Mi(kx(i))

l = 1 + A(kx(1)− u0) +B +
∑

i6=1

Mi(kx(i)),
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and y = k
h
(x(1) + u0

k
, x(2), x(3), . . .), z = k

l
(x(1) − u0

k
, x(2), x(3), . . .). Then

h + l = 2k and hy + lz = 2kx, i.e., x = h
2k
y + l

2k
z. Moreover, by the left

continuity of p−i , right continuity of pi and the fact that k(x) = [k
∗
x, k

∗∗
x ], we

have

ρN(p
− ◦ hy) = N1(p

−
1 (kx(1) + u0)) +

∑

i6=1

Ni(p
−
i (kx(i)))

= N1(p
−
1 (kx(1))) +

∑

i6=1

Ni(p
−
i (kx(i)))

= ρN(p
− ◦ kx) ≤ 1

and for any η > 0

ρN(p ◦ (1 + η)hy) = N1

(
p1((1 + η)(kx(1) + u0))

)
+
∑

i6=1

Ni

(
pi((1 + η)kx(i))

)

= N1

(
p1((1 + η)kx(1))

)
+
∑

i6=1

Ni

(
pi((1 + η)kx(i))

)

= ρN(p ◦ (1 + η)kx) ≥ 1.

Hence h ∈ k(y), and so

‖y‖0 =
1

h

(
1 + ρM(hy)

)
=
1

h

(
1 + A(kx(1) + u0) +B +

∑

i6=1

Mi(kx(i))

)
= 1.

Similarly we can prove that ‖z‖0 = 1. Noticing that y 6= z, we conclude that
x is not an extreme point. This contradiction shows that condition (ii-b) is
necessary.

Sufficiency. Let y+z = 2x, y, z ∈ S(l0M).We should show that y = z = x.
First, we assume that k(x) = ∅. By (i), without loss of generality, we assume
that x = (x(1), 0, 0, · · · ) and x(1) > 0. Then by Lemma 1.1 and Lemma 1.2, we

have 1 = ‖x‖0 = x(1)B̃(1). Hence, by ‖x‖0 = x(1) ‖e1‖
0 , we get ‖e1‖

0 = B̃(1),
where e1 = (1, 0, 0, . . .).

Now, we are going to prove that y(1) = x(1). In fact, if y(1) > x(1), then
there exist a > 0 such that y(1) > x(1) + a. Therefore

1 = ‖y‖0 ≥ ‖y(1)e1‖
0 = y(1)B̃(1) > (x(1) + a)B̃(1) > 1.

This contradiction shows that y(1) ≤ x(1). If we suppose that y(1) < x(1) − b
for some b > 0, then z(1) > x(1) + b. Using similar arguments as above we get
a contradiction. So y(1) = x(1).

Next, we shall show that k(y) = ∅. Otherwise, there exists k0 > 0 such that
‖y‖0 = 1

k0
(1 + ρM(k0y)). Since k(x) = ∅, we have

1 = ‖y‖0 =
1

k0

(
1 +

∞∑

i=1

Mi(k0y(i))

)
≥
1

k0

(
1 +M1(k0y(1))

)
> ‖x‖0 = 1,
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a contradiction. Therefore

1 = ‖y‖0 =
∞∑

i=1

|y(i)| B̃(i) = x(1)B̃(1) +
∞∑

i=2

|y(i)| B̃(i) = 1 +
∞∑

i=2

|y(i)| B̃(i),

which yields that
∑∞

i=2 |y(i)| B̃(i) = 0. This means that y(i) = 0 = x(i) for any
i > 1. Using the equality y + z = 2x, we get that y = z = x.

Assume now that k(x) 6= ∅ and k ∈ k(x). We will consider the following
three cases.

Case I. k(y) 6= ∅, k(z) 6= ∅, k1 ∈ k(y) and k2 ∈ k(z). In this case, by the
same method as in the proof of Theorem 2.8 in [2], we can prove that x is an
extreme point.

Case II. k(y) = ∅ and k(z) 6= ∅. Since
∥∥y+z

2

∥∥0
= 1 and ‖ · ‖M is a convex

function, we have
∥∥x+y

2

∥∥0
=
∥∥3

4
y + 1

4
z
∥∥0
= 1 and

∥∥x+z
2

∥∥0
= 1.

Take a sequence {kn}
∞
n=1 of positive numbers such that

1
kn
(1 + ρM(kny)) <

‖y‖0 + 1
n
and put hn =

2kkn

k+kn
. Then we have

1 =

∥∥∥∥
x+ y

2

∥∥∥∥
0

≤
1

hn

(
1 + ρM

(
hn
x+ y

2

))

=
k + kn
2kkn

(
1 + ρM

( 2kkn
k + kn

·
x+ y

2

))

≤
k + kn
2kkn

(
1 +

kn
k + kn

ρM(kx) +
k

k + kn
ρM(kny)

)

≤
1

2

(
1

k

(
1 + ρM(kx)

)
+
1

kn

(
1 + ρM(kny)

))

<
1

2

(
‖x‖0 + ‖y‖0 +

1

n

)
→ 1 (as n→∞).

Hence limn→∞
1
hn
(1 + ρM(hn

x+y
2
)) = 1. Since the sequence {hn} is bounded, we

may assume (passing to a subsequence if necessary) that limn→∞hn = h. If we

assume that k(x+y
2
) = ∅, then 1 = ‖x+y‖0

2
< 1

h
(1 + ρM(h

x+y
2
)). Next, we take

i0 ∈ N such that 1 < 1
h
(1 +

∑i0
i=1Mi(h

x(i)+y(i)
2

)), whence

1 <
1

h

(
1 +

i0∑

i=1

Mi

(
h
x(i) + y(i)

2

))

= lim
n→∞

1

hn

(
1 +

i0∑

i=1

Mi

(
hn
x(i) + y(i)

2

))

≤ lim
n→∞

1

hn

(
1 + ρM

(
hn
x+ y

2

))
= 1.



94 Y.Cui et al.

This is a contradiction, which shows that k(x+y
2
) 6= ∅.

Taking h ∈ k(z), the condition

0 =
‖x‖0 + ‖z‖0

2
−

∥∥∥∥
x+ z

2

∥∥∥∥
0

≥
1

2k

(
1+ρM(kx)

)
+
1

2h

(
1+ρM(hz)

)
−
k + h

2kh

(
1+ρM

(
2kh

k + h

(x+ z

2

)))
≥ 0,

implies that
∥∥x+z

2

∥∥0
= k+h

2kh
(1 + ρM(

2kh
k+h
(x+z

2
))), i.e., k(x+z

2
) 6= ∅.

Put y
′

= x+y
2
and z

′

= x+z
2
. Then, by Case I, we have y

′

= z
′

, i.e., y = z.
So, Case II can not occur if y 6= z.

Case III. k(y) = ∅ and k(z) = ∅. Put y
′

= x+y
2
and z

′

= x+z
2
. Clearly y

′

+

z
′

= 2x. Similarly as in Case II, we can prove that ‖y
′

‖0 = ‖z
′

‖0 = 1, k(y
′

) 6= ∅
and k(z

′

) 6= ∅. By Case I, we conclude that y
′

= z
′

. Consequently y = z, and
the result follows.

Theorem 2.2. A point x ∈ S(l0M) with k(x) = ∅ is an SU-point of S(l0M) if

and only if:

(1) card(suppx) = 1, say suppx = {j},

(2) for any i 6= j, we have Nj(B̃(j)) +Ni(B̃(i)) > 1,

(3) q−j (B̃(j)) =∞ if Nj(B̃(j)) < 1.

If x ∈ S(`0M) and k(x) 6= ∅, then x is an SU-point of S(l0M) if and only if:

(I) card(suppx) = 1 and b(i) = 0 for any i /∈ suppx, or

(II) card(suppx) > 1, and for any k ∈ k(x) we have

(i) kx(i) ∈ SCMi
for all i ∈ N ,

(ii)
{
i ∈ N : k|x(i)| ∈ SC+

Mi

}
= ∅ if θM(kx) = 1,

(iii)
∑

i6=jNi(pi(k |x(i)|)) + Nj(p
−
j (k |x(j)|)) < 1 if k |x(j)| ∈ SC+

Mj
for

some j ∈ N ,

(iv)
∑

i6=jNi(p
−
i (k |x(i)|)) + Nj(pj(k |x(j)|)) > 1 if k |x(j)| ∈ SC−Mj

for

some j ∈ N .

Proof. Without loss of generality, we may assume that x(i) ≥ 0 for all i ∈ N .

At first, we suppose that k(x) = ∅.

Necessity. Since any SU-point is an extreme point, by Theorem 2.1, con-
dition (1) holds and we assume, without loss of generality, that j = 1.

Let us suppose that (2) fails. Then there exists an i0 > 1 such that

N1(B̃(1)) +Ni0(B̃(i0)) ≤ 1. Put

y(i) =

{
1

B̃(i0)
, i = i0

0, i 6= i0 .
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Then, by Lemma 1.2, we have ‖y‖0 = 1

B̃(i0)
B̃(i0) = 1 and ‖x+ y‖0 = x(1)B̃(1)+

1

B̃(i0)
B̃(i0) = 2. But it is obvious that x 6= y, which means that x is not an SU-

point.

If (3) does not hold, then N1(B̃(1)) < 1 and q−1 (B̃(1)) < ∞. Since

N1(B̃(1)) +N2(B̃(2)) > 1, there exists β2 ∈ (̃b(2), B̃(2)) such that

N1(B̃(1)) +N2(β2) = 1. (∗)

We have 0 < q−1 (B̃(1)) < ∞ and 0 < q−2 (β2) < ∞. Consider the following
system of equations:

{
w1B̃(1) + w2β2 = 1

w1q
−
2 (β2)− w2q

−
1 (B̃(1)) = 0 ,

where we are looking for w1 and w2. Denoting the solution of this system of
equations by (x1, x2), we have x1 > 0 and x2 > 0. Let y = (x1, x2, 0, 0, . . .).

It was already proved in Theorem 9 in [7] that ‖y‖0 = x1B̃(1) + x2β2 = 1.
Therefore, by (∗), we have

1 =
x1B̃(1) + x2β2 + x(1)B̃(1)

2
=
x1 + x(1)

2
B̃(1) +

x2

2
β2 ≤

∥∥∥∥
x+ y

2

∥∥∥∥
0

≤ 1,

i.e., ‖x+ y‖0 = 2. But it is obvious that x 6= y, which means that x is not an
SU-point.

Sufficiency. For convenience, let x = (x(1), 0, 0. · · · ), y ∈ S(l0M) and
‖x+ y‖0 = 2. Choose f ∈ (l0M) such that ‖f‖ = 1 and f(x+y) = ‖x+ y‖0 = 2.
Hence we obtain f(x) = f(y) = 1. Notice that x ∈ h0

M , so we have by k(x) = ∅

that f ∈ S(lN) and f(1) =
1

x(1)
= B̃(1).

Now, we shall prove that |f(i)| < B̃(i) for any i > 1. Otherwise, there exists

i0 > 1 such that |f(i0)| = B̃(i0). Hence, by (2), we have

1 ≥ ρN(f) ≥ N1(f(1)) +Ni0(f(i0)) = N1(B̃(1)) +Ni0(B̃(i0)) > 1,

which is a contradiction, proving the claim.

Next, we are going to show that y(i) = 0 for any i > 1. Indeed, if we suppose
that y(i0) 6= 0 for some i0 > 1, then

∞∑

i=1

|y(i)| B̃(i) = |y(i0)| B̃(i0) +
∑

i6=i0

|y(i)| B̃(i)

> |y(i0)| |f(i0)|+
∑

i6=i0

|y(i)| |f(i)|

≥
∞∑

i=1

y(i)f(i) = f(y) = 1.
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By Lemma 1.1 and Lemma 1.2, we conclude that k(y) 6= ∅. Take k > 0 satisfying
1
k
(1 + ρM(ky)) = ‖y‖

0 = 1. Then, by the Young inequality, we get

k = k

∞∑

i=1

f(i)y(i) ≤ ρM(ky) + ρN(f) ≤ ρM(ky) + 1 = k.

Therefore, the above inequalities are equalities in fact, whence q−i (|f(i)|) ≤
k |y(i)| ≤ qi(|f(i)|), i = 1, 2, . . .. In particular, we have the inequality

q−1 (B̃(1)) ≤ k |y(1)| ≤ q1(B̃(1)). (∗∗)

By k(x) = ∅, if N1(B̃(1)) = 1, then by Lemma 1.1, we have q
−
1 (B̃(1)) = ∞; if

N1(B̃(1)) < 1, then by condition (3), we also have q
−
1 (B̃(1)) =∞. So we always

have q−1 (B̃(1)) = ∞, which contradicts the inequality (∗∗). This contradiction
shows that y(i) = 0 for any i > 1.

Therefore, from ‖y‖0 = ‖x‖0 =
∥∥x+y

2

∥∥0
= 1, it follows that x(1) = y(1).

Consequently, we have x = y, which means that x is an SU-point.

Now, we shall consider the case when k(x) 6= ∅.

Necessity. Clearly x is an extreme point. So, from Theorem 2.1, we get
that conditions (I) and (II)-(i) are necessary.

We are going to prove that (ii) in condition (II) holds. If not we may
assume, without loss of generality, that kx(1) = b1 ∈ SC+

M1
and θ(kx) = 1 for

some k ∈ k(x). Take c1 < b1 satisfying p
−
1 (c1) = p1(c1) = p−1 (b1) and let y = (

c1
k
,

x(2), x(3), . . .). Then we have ρN(p
−(ky)) = ρN(p

−(kx)) ≤ 1. Moreover, for
any η > 0, by θM(kx) = 1, we get

∑
i>1Mi((1+ η)kx(i)) =∞. From the Young

inequality, it follows that
∑

i>1Ni(pi((1 + η)kx(i))) = ∞. Thus, for any η > 0,
we have

ρN(p ◦ (1 + η)ky) ≥
∑

i>1

Ni

(
pi((1 + η)kx(i))

)
=∞.

So k ∈ k(y). Take h = k ‖y‖0 ∈ k
(

y

‖y‖0

)
. Then

ρN

(
p−◦

kh

k + h

(
x+

y

‖y‖0

))
=
∑

i>1

Ni

(
p−i (kx(i))

)
+N1

(
p−1

( h

k + h
b1 +

k

k + h
c1

))

=
∑

i>1

Ni

(
p−i (kx(i))

)
+N1(p

−
1 (b1))

= ρN(p
− ◦ kx) ≤ 1

and for any η > 0

ρN

(
p ◦ (1 + η)

kh

k + h

(
x+

y

‖y‖0

))
≥
∑

i>1

Ni

(
pi((1 + η)kx(i))

)
=∞,
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i.e., kh
k+h

∈ k
(
x+ y

‖y‖0

)
. Therefore

∥∥∥∥x+
y

‖y‖0

∥∥∥∥
0

=
k + h

kh

(
1 + ρM

( kh

k + h

(
x+

y

‖y‖0

)))

=
k + h

kh

(
1 +

∑

i6=1

Mi(kx(i)) +M1

( h

k + h
b1 +

k

k + h
c1

))

=
k + h

kh

(
1 +

∑

i6=1

Mi(kx(i)) +
h

k + h
M1(b1) +

k

k + h
M1(c1)

)

=
1

k
(1 + ρM(kx)) +

1

h
(1 + ρM(ky))

= 2.

But it obvious that x 6= y

‖y‖0
. This shows that x is not an SU-point if (ii) does

not hold.

If (iii) does not hold, we may assume, without loss of generality, that
kx(1) = b1 ∈ SC+

Mi
and

∑
i6=1Ni(pi(kx(i))) +N1(p

−
1 (b1)) ≥ 1 for some k ∈ k(x).

In view of
∑

i6=1Ni(p
−
i (kx(i)) + N1(p

−
1 (b1)) ≤ 1, there exists v ∈ lN such

that ρN(v) = 1 and v(1) = p−1 (b1), p
−
i (kx(i)) ≤ v(i) ≤ pi(kx(i)) for any

i > 1. From Lemma 1.3, it follows that v ∈ Grad(x). Pick c1 < b1 such that
p−1 (c1) = p1(c1) = p−1 (b1) and put y = (

c1
k
, x(2), x(3), . . .). Then ρN(p−(ky)) =

ρN(p−(kx)) ≤ 1 and ρN(p(ky)) =
∑

i6=1Ni(pikx(i)) + N1(p
−
1 (b1)) ≥ 1. So

k ∈ k(y). Thus, by Lemma 1.3, we get that v ∈ Grad(y). Therefore

2 ≥

∥∥∥∥x+
y

‖y‖0

∥∥∥∥
0

≥

〈
x+

y

‖y‖0 , v

〉
= 〈v, x〉+

1

‖y‖0 〈v, y〉 = 2,

i.e.,
∥∥x+ y

‖y‖0

∥∥0
= 2. This leads to the conclusion that x is not an SU-point.

Suppose (iv) fails. Then we may assume that kx(1) = a1 ∈ SC−Mi
and∑

i6=1Ni(p
−
i (kx(i))) +N1(p1(a1)) ≤ 1 for some k ∈ k(x). Take c1 > a1 satisfying

p−1 (c1) = p1(c1) = p1(a1) and put y = (
c1
k
, x(2), x(3), . . .). Then

ρN(p
−◦ ky) =

∑

i6=1

Ni(p
−
i kx(i))+N1(p

−
1 (c1)) =

∑

i6=1

Ni(p
−
i (kx(i)))+N1(p1(a1))≤ 1

and, for any η > 0, we have ρN(p ◦ (1 + η)ky) = ρN(p ◦ (1 + η)kx) ≥ 1, i.e.,
k ∈ k(y). Put h = k ‖y‖0 ∈ k

(
y

‖y‖0

)
. By the argumentation as above, we can

finish the proof of (iv), so we omit the remaining procedure of the proof.

Sufficiency. Let y ∈ S(l0M), ‖x+ y‖0 = 2 and k ∈ k(x). In the following
we will investigate two cases.
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Case 1: k(y) 6= ∅, h ∈ k(y). In order to show that x = y, we only need to
prove that kx = ky. From the inequalities

0 = ‖x‖0 + ‖x‖0 − ‖x+ y‖0

≥
1

k
(1 + ρM(kx)) +

1

h
(1 + ρM(hy))−

k + h

kh

(
1 + ρM

( kh

k + h
(x+ y)

))

=
k + h

kh

(
h

k + h
ρM(kx) +

k

k + h
ρM(hy)− ρM

( kh

k + h
(x+ y)

))

=
k + h

kh

∞∑

i=1

(
h

k + h
Mi(kx(i)) +

k

k + h
Mi(hy(i))

−Mi

( h

k + h
kx(i) +

k

k + h
hy(i)

))
≥ 0,

we obtain that kx(i) = hy(i) or kx(i) and hy(i) belong to the same affine
interval of Mi for all i ∈ N and kh

k+h
∈ k(x+ y).

If card(suppx) = 1, without loss of generality, we may assume that x(1) 6= 0.
Then by (I), we have b(i) = 0 for all i > 1, i.e., 0 ∈ SC0

Mi
for all i > 1.

Therefore, y(i) = 0 for any i > 1. Using ‖x‖0 = ‖y‖0 =
∥∥x+y

2

∥∥0
= 1, we get

that x(1) = y(1).

If card (suppx) > 1, we will consider again two cases.

(A). θ(kx) < 1. Since θ(kx) < 1, there exist τ > 0 and i0 ∈ N such that∑
i>i0

Mi((1 + τ)kx(i)) < ∞. Take ε > 0 small enough so that 1+ε
1− εk

h

< 1 + τ.

Then

∑

i>i0

Mi

(
(1 + ε)

kh

k + h
(x(i) + y(i))

)

=
∑

i>i0

Mi

(
(1 + ε)k

k + h
hy(i) +

(1− εk
h
)h

k + h

1 + ε

1− εk
h

kx(i)

)

≤
(1 + ε)k

k + h

∑

i>i0

Mi(hy(i)) +
(1− εk

h
)h

k + h

∑

i>i0

Mi

(
1 + ε

1− εk
h

kx(i)

)

≤
(1 + ε)k

k + h
ρM(hy) +

h− εk

k + h

∑

i>i0

Mi((1 + τ)kx(i)) <∞.

This means that θ
(
kh
k+h
(x+y)

)
≤ 1

1+ε
< 1. Then, by Lemma 1.5 and Lemma 1.3,

we have ρN
(
p ◦ kh

k+h
(x+ y)

)
≥ 1.

For any i ∈ N , if kx(i) ∈ SC0
Mi
, then it is obvious that hy(i) = kx(i).

Now we want to prove that if kx(i) = bi ∈ SC+
Mi
\ SC−Mi

(that is bi ∈ SC+
Mi

and bi /∈ SC−Mi
), then hy(i) = bi. Otherwise, there exists i0 ∈ N such that
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kx(i0) = bi0 ∈ SC+
Mi0

\ SC−Mi0
and hy(i0) < bi0 . Then

kh
k+h
(x(i0) + y(i0)) < bi0 .

Therefore, by (iii), we have

1 ≤ ρN

(
p ◦

kh

k + h
(x+ y)

)

=
∑

i6=i0

Ni

(
pi

( kh

k + h
(x(i) + y(i))

))
+Ni0

(
pi0

( kh

k + h
x(i0) + y(i0)

))

≤
∑

i6=i0

Ni

(
pi(kx(i))

)
+Ni0

(
p−i0(bi0)

)
< 1.

This is a contradiction, proving the claim.
By a similar argumentation, we can deduce that for any i ∈ N , if kx(i) =

ai ∈ SC−Mi
\ SC+

Mi
, then hy(i) = ai.

For each i ∈ N , if kx(i) = ai ∈ SC−Mi
\ SC+

Mi
, then by the same way as

above, we can obtain that hy(i) = ai.

(B). θ(kx) = 1. ¿From (ii), it follows that {i ∈ N : kx(i) ∈ SC+
Mi
} = ∅. So,

it is enough to prove that if kx(i) = ai ∈ SC−Mi
\SC+

Mi
, then hy(i) = ai. In fact,

if there exists i0 ∈ N satisfying kx(i0) = ai0 < hy(i0), then
kh
k+h
(x(i0)+ y(i0)) >

ai0 . Hence

1 ≥ ρN

(
p− ◦

kh

k + h
(x+ y)

)

=
∑

i6=i0

Ni

(
p−i

( kh

k + h
(x(i) + y(i))

))
+Ni0

(
p−i0

( kh

k + h
(x(i0) + y(i0))

))

≥
∑

i6=i0

Ni

(
p−i (kx(i))

)
+Ni0

(
pi0(ai0)

)
> 1,

a contradiction.

Case 2: k(y) = ∅. Using the same argumentation as in the proof of Case II

in Theorem 2.1, we can deduce that k(x+y
2
) 6= ∅ and

∥∥x+ x+y

2

2

∥∥0
= 1. Thus, by

case 1 above, we obtain x+y
2
= x. Consequently x = y. But x 6= y, so Case 2

can not take place. Thus, we finished the proof of Theorem 2.2.

Remark 2.3. By comparing the criterion for extreme points with the crite-
rion for SU-points in Musielak–Orlicz sequence spaces equipped with the Orlicz
norm, we conclude that strong U-points are essentially stronger than extreme
points in this class of spaces what is illustrated by the following example.

Let Mi(u) = 0 if |u| ≤ 1 and Mi(u) = ∞ if |u| > 1 for any i ∈ N
and M = (Mi)

∞
i=1. Then it is easy to see that l

0
M = l∞. Notice that ‖x‖

0 =
supi∈N |x(i)| = ‖x‖∞ for any x ∈ l0M . This follows by the fact that for x 6= 0 and
k0 = ‖x‖

−1
∞ we have IM(k0x) = 0, whence

1
k0

(
1 + IM(k0x)

)
= ‖x‖∞ . Moreover,
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for any k < ‖x‖−1
∞ , we have

1
k

(
1 + IM(kx)

)
≥ 1

k
> ‖x‖∞ . Finally, for any

k > ‖x‖−1
∞ , there exists i ∈ N such that k|x(i)| > 1, whence IM(kx) = ∞ and

so k−1
(
1+ IM(kx)

)
=∞. Since, for the function M , we can apply to the Orlicz

norm ‖x‖0 the Amemiya formula (cf. [9]), we get

‖x‖0 = inf
k>0

1

k

(
1 + IM(kx)

)
= ‖x‖∞ .

Define x = (1, 1, . . .). Then x ∈ l0M and ‖x‖0 = ‖x‖∞ = 1. Notice that
k(x) = {1}. This follows by the fact that IM(x) = 0, whence 1+ IM(x) = 1 and
for all k > 0 with k 6= 1 we have k−1(1+IM(kx)) > 1. Evidently card(suppx) =
∞, so applying Theorem 2.1 (ii-b) we see that x is an extreme point of the unit
ball of l0M .

Notice that x is not an SU-point of the unit ball of l0M because taking
y = (1, 0, 0, . . .) we get ‖x+ y‖0 = ‖x‖∞ = 2 and ‖y‖0 = ‖y‖∞ = 1 and
x 6= y. This fact follows also from our Theorem 2.2. Since k ∈ k(x) only if
k = 1 and card(suppx) =∞, we should apply Case II of Theorem 2.2. Since
the functions Mj are affine to the left of kxj = k|xj| = 1, we have kx(j) ∈
SCMj

∩SC+
Mj
for any j ∈ N . However condition (iii) of Case (II) does not hold,

since pi(k |x(i)|) = pi(1) =∞ for any i ∈ N and, for any j ∈ N ,
∑

i6=j

Ni(pi(k |x(i)|)) +Nj(p
−
j (k |x(j)|)) =∞.
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