© European Mathematical Society

Zeitschrift für Analysis und ihre Anwendungen Journal for Analysis and its Applications Volume 26 (2007), 103–109

Maximal Characterization of Locally Summable Functions

F. Andreano and R. Grande

Abstract. We prove a characterization of locally summable functions with bounded Stepanoff norm through the maximal function

$$M_{\phi}f(x) = \sup_{t>0} |(f * \phi_t)(x)|,$$

where ϕ is a suitable function in the class of Schwartz.

Keywords. Stepanoff bounded functions, maximal function Mathematics Subject Classification (2000). 42A75, 42A45

1. Introduction

Given ϕ in the Schwartz class \mathcal{S} , the maximal function M_{ϕ} of a distribution f is

$$M_{\phi}f(x) = \sup_{t>0} |(f * \phi_t)(x)|,$$

where $\phi_t(x) = \frac{1}{t}\phi(\frac{x}{t})$. The following maximal characterization for $L^p(\mathbb{R})$ is well known (cfr. [5]).

Theorem 1.1. Let 1 . If f is a distribution, then:

$$f \in L^p(\mathbb{R}) \iff \exists \phi \in \mathcal{S}, \text{ with } \int \phi \, dx \neq 0, \text{ so that } M_{\phi} f \in L^p(\mathbb{R}).$$

It is interesting to consider maximal characterizations of spaces of functions which are only locally summable, that is, "big" at infinity. This problem has been suggested by A. Pankov in a seminar given at the Department of Metodi e Modelli Matematici per le Scienze Applicate at Università di Roma "La Sapienza".

First we need to introduce an appropriate Banach space structure on locally L^p functions. Let us define the spaces $BS^p(\mathbb{R})$ of Stepanoff bounded functions.

F. Andreano, R. Grande: Università di Roma "La Sapienza", Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Via Scarpa 16, 00161 Rome, Italy; andreano@dmmm.uniroma1.it, grande@dmmm.uniroma1.it

Definition 1.2. Let $1 \le p < +\infty$. Then $f \in BS^p(\mathbb{R})$ if

1. $f \in L^p_{loc}(\mathbb{R});$ 2. $\sup_{x \in \mathbb{R}} \int_x^{x+1} |f(t)|^p dt \le c$, for $c \in \mathbb{R}$.

Note 1.3.

1. $||f||_{S^p} = \sup_{x \in \mathbb{R}} \left(\int_x^{x+1} |f(t)|^p dt \right)^{\frac{1}{p}}$ is a norm; such norm is equivalent to the norm

$$||f||_{S_l^p} = \sup_{x \in \mathbb{R}} \left(\frac{1}{l} \int_x^{x+l} |f(t)|^p \, dt\right)^{\frac{1}{p}}$$

where $l \in \mathbb{R}_+$ (cfr. [1]).

2. The space $BS^{p}(\mathbb{R})$ contains the space of Stepanoff almost-periodic functions $S^{p}(\mathbb{R})$, i.e., the space of functions that can be approximated by trigonometric polynomials in the Stepanoff norm $\|\cdot\|_{S^{p}}$ defined above (cfr. [1] and [4]).

We prove the following maximal characterization of $BS^{p}(\mathbb{R})$:

Theorem 1.4. Let 1 . If f is a distribution, then:

$$f \in \mathrm{BS}^p(\mathbb{R}) \iff \exists \phi \in \mathcal{S}, \ with \ \int \phi \, dx \neq 0, \ so \ that \ M_{\phi} f \in \mathrm{BS}^p(\mathbb{R}).$$

For this we need to prove an analogue, for $BS^{p}(\mathbb{R})$, of the Hardy-Littlewood maximal theorem. As already observed, a similar result is known for L^{p} . The proof on L^{p} , however, does not readly extend to this more general framework, because, in the case of $L^{p}(\mathbb{R})$, one uses the weak compactness of $L^{p}(\mathbb{R})$ to prove the sufficient part of the maximal characterization. The dual space of $BS^{p}(\mathbb{R})$ is not known and therefore we do not have a weak convergence result in such spaces.

2. The maximal characterization for $BS^p(\mathbb{R})$

In this section we prove Theorem 1.4. The necessary part follows from the Hardy-Littlewood maximal theorem for $BS^{p}(\mathbb{R})$, that we prove separately.

Let Mf be the maximal function of f, defined by

$$Mf(x) = \sup_{x \in I} \frac{1}{m(I)} \int_{I} |f(t)| dt,$$

where the supremum is taken over all intervals I containing x. Here m denotes the Lebesgue measure.

Note 2.1. $M_{\phi}f(x) \leq cMf(x)$, where c is a constant (for the proof of this inequality see [5, Chapter 2, Section 2.1]).

Let l > 0 and $M_{\nu,l}f(x)$ be the maximal function of f restricted to $[\nu, \nu + l]$, $\nu \in \mathbb{R}$, i.e., let

$$M_{\nu,l}f(x) = \sup_{x \in I \subseteq [\nu,\nu+l]} \frac{1}{m(I)} \int_{I} |f(t)| \, dt,$$

if $x \in [\nu, \nu + l]$, and $M_{\nu,l}f(x) = 0$, if $x \notin [\nu, \nu + l]$. Furthermore let

$$m_f(\alpha, \nu, l) = m(\{x \in [\nu, \nu + l] : M_{\nu, l}f(x) > \alpha\}),$$

with $\alpha, l \in \mathbb{R}_+, \nu \in \mathbb{R}$.

Then we have the following

Lemma 2.2. For any $\nu \in \mathbb{R}$ and l > 0, $\alpha > 0$, and $f \in BS^{p}(\mathbb{R})$, p > 1,

$$m_f(\alpha,\nu,l) \leq \frac{4}{\alpha} \int_{\{x \in [\nu,\nu+l]: M_{\nu,l}f(x) > \frac{\alpha}{2}\}} |f(t)| \, dt$$

and

$$\frac{1}{l} \int_{\nu}^{\nu+l} |M_{\nu,l}f(t)|^p dt \le \frac{2^{p+1}p}{p-1} \frac{1}{l} \int_{\nu}^{\nu+l} |f(t)|^p dt.$$

The proof is analogous to the proof of Theorem 4.3 in [3, Chapter 1].

Theorem 2.3 (Hardy-Littlewood maximal theorem for $BS^p(\mathbb{R})$). Let p > 1, $f \in BS^p(\mathbb{R})$, and let l > 0. There exists c > 0 such that

$$\|Mf\|_{S_l^p} \le c \|f\|_{S_l^p}.$$

Proof. Let $\nu \in \mathbb{R}$ and l > 0. Set

$$\Pi_1 = \{I : I \subseteq [\nu - l, (\nu - l) + 3l]\}$$

and

$$\Pi_2 = \left\{ J : J \cap \left(\mathbb{R} \setminus \left[\nu - l, (\nu - l) + 3l \right] \right) \neq \emptyset \right\},\$$

where I, J are intervals. Furthermore set

$$N_{\nu-l,3l}f(x) = \sup_{x \in J \in \Pi_2} \frac{1}{m(J)} \int_J |f(t)| \, dt.$$

Then, for all $x \in \mathbb{R}$, $Mf(x) = \max\{M_{\nu-l,3l}f(x), N_{\nu-l,3l}f(x)\}$. By Lemma 2.2, it suffices to prove that $N_{\nu-l,3l}f(x) \le c \|f\|_{S_l^p}$, for $x \in [\nu, \nu + l]$.

Let $J = [a, b] \in \Pi_2$. Since $x \in [\nu, \nu + l]$,

$$a < \nu - l$$
 and $b > \nu$

or else

$$\nu - l < a < \nu + l$$
 and $b > (\nu - l) + 3l$

and hence, in both cases, we have that l' = b - a > l. We can write

$$\frac{1}{m(J)} \int_{J} |f(t)| dt = \frac{1}{b-a} \int_{a}^{b} |f(t)| dt$$
$$= \frac{1}{b-a} \int_{a}^{a+(b-a)} |f(t)| dt$$
$$= \frac{1}{l'} \int_{a}^{a+l'} |f(t)| dt.$$

Since l' > l, we may write $l' = nl + \vartheta l$, with $n \in \mathbb{N}$ and $0 < \vartheta < 1$. Hence

$$\begin{split} \frac{1}{l'} \int_{a}^{a+l'} |f(t)| \, dt &= \frac{1}{nl + \vartheta l} \int_{a}^{a+nl + \vartheta l} |f(t)| \, dt \\ &< \frac{1}{nl} \int_{a}^{a+(n+1)l} |f(t)| \, dt \\ &\leq \frac{1}{nl} \{ \int_{a}^{a+l} |f(t)| \, dt + \dots + \int_{a+nl}^{a+(n+1)l} |f(t)| \, dt \} \\ &\leq \frac{n+1}{n} \sup_{a \in \mathbb{R}} \frac{1}{l} \int_{a}^{a+l} |f(t)| \, dt \\ &\leq 2 \sup_{a \in \mathbb{R}} \frac{1}{l} \int_{a}^{a+l} |f(t)| \, dt \leq 2 ||f||_{S_{l}^{p}} \end{split}$$

and therefore $N_{\nu-l,3l}f(x) \leq 2||f||_{S_l^p}$, for $x \in [\nu, \nu + l]$, and hence the thesis of the theorem is proved.

In the proof of Theorem 1.4 we use a result due to R. Doss (cfr. [2]). For completeness we state that theorem:

Theorem 2.4. Let $\{\sigma_m(x)\}$ be a sequence of functions summable in every finite interval and verifying the following condition: to every $\epsilon > 0$ there corresponds $a \delta > 0$ such that, for every set E of diameter less than or equal to 1 and of measure less than or equal to δ ,

$$\int_E |\sigma_m(x)| \, dx \le \epsilon, \quad \forall m$$

Then there exists a summable function $\sigma(x)$ and a subsequence $\{\sigma_{m_k}\}$ such that, for every bounded function f(x) and every finite interval (a, b),

$$\lim_{k \to \infty} \int_a^b f(x) \sigma_{m_k}(x) \, dx = \int_a^b f(x) \sigma(x) \, dx.$$

Proof of Theorem 1.4. We first prove that $M_{\phi}f \in BS^p$, for all $f \in BS^p$. Let $f \in BS^p(\mathbb{R})$. By Theorem 2.3, we have that there exists c > 0 such that $\|Mf\|_{S^p} \leq c \|f\|_{S^p}$. Let $\phi \in S$ and $M_{\phi}f(x) = \sup_{t>0} |(f * \phi_t)(x)|$. Then there exists c' > 0 such that $M_{\phi}f(x) \leq c'Mf(x)$ (see Note 2.1). Hence

$$||M_{\phi}f||_{S^{p}} \le c' ||Mf||_{S^{p}} \le c'c ||f||_{S^{p}}$$

and $M_{\phi}f \in \mathrm{BS}^p(\mathbb{R})$.

Viceversa, suppose that $M_{\phi}f \in BS^{p}(\mathbb{R})$, with $\phi \in \mathcal{S}$ such that $\int \phi = 1$. We want to show that $f \in BS^{p}$. Let us consider the sequence $(f * \phi_{\frac{1}{n}})(x)$. We have that

$$\|f * \phi_{\frac{1}{n}}\|_{S^p} = \sup_{x \in \mathbb{R}} \left(\int_x^{x+1} |(f * \phi_{\frac{1}{n}})|^p \, dt \right)^{\frac{1}{p}}$$

Since $M_{\phi}f \in \mathrm{BS}^p(\mathbb{R})$,

$$\sup_{x\in\mathbb{R}}\int_x^{x+1} |(f*\phi_{\frac{1}{n}})|^p dt \le \sup_{x\in\mathbb{R}}\int_x^{x+1} \left(\sup_{s>0} |(f*\phi_s)(t)|\right)^p dt \le B^p < +\infty,$$

where B is a constant, and hence $||f * \phi_{\frac{1}{n}}||_{S^p} \leq B < +\infty$, i.e., $f * \phi_{\frac{1}{n}}$ is a bounded sequence in BS^p(\mathbb{R}).

Set $h_n = f * \phi_{\frac{1}{n}}$. We want to show that there exists a subsequence $\{h_{n_j}\}_{j \in \mathbb{N}}$ and a function $f_o \in BS^p(\mathbb{R})$ such that for any measurable and bounded function φ and for any bounded interval $(a, b) \subset \mathbb{R}$, one has

$$\lim_{j \to +\infty} \int_{a}^{b} \varphi(t) h_{n_j}(t) dt = \int_{a}^{b} \varphi(t) f_o(t) dt.$$
(1)

We apply Theorem 2.4 (cfr. [2]) in order to get that there exists a function $f_o \in L^1_{loc}(\mathbb{R})$ verifying (1) for any measurable bounded function φ and for any bounded interval (a, b) in \mathbb{R} . In order to do this, we need to prove that, if E is any measurable set such that $m(E) \to 0$, then $\int_E |h_n(t)| dt \to 0$ uniformly with respect to $n \in \mathbb{N}$.

Let E be measurable such that $m(E) \to 0$. The diameter of E is therefore less than 1 and hence $E \subset (x, x + 1)$, for $x \in \mathbb{R}$ suitably chosen. Therefore

$$\int_{E} |h_{n}(t)| dt = \int_{x}^{x+1} \chi_{E}(t) |h_{n}(t)| dt$$

$$\leq \left(\int_{x}^{x+1} |h_{n}(t)|^{p} dt \right)^{\frac{1}{p}} \left(\int_{x}^{x+1} \chi_{E}(t) dt \right)^{\frac{1}{q}}$$

$$\leq \sup_{x \in \mathbb{R}} \left(\int_{x}^{x+1} |h_{n}(t)|^{p} dt \right)^{\frac{1}{p}} [m(E)]^{\frac{1}{q}}$$

$$\leq B[m(E)]^{\frac{1}{q}},$$

where $\frac{1}{p} + \frac{1}{q} = 1$. Hence $\int_{E} |h_n(t)| dt \to 0$, if $m(E) \to 0$, uniformly with respect to $n \in \mathbb{N}$. The hypotheses of Theorem 2.4 are satisfied and therefore (1) holds with $f_o \in L^1_{loc}(\mathbb{R})$.

We need to prove that $f_o \in BS^p(\mathbb{R})$. To see this, let $\delta \in (0,1)$ and set, for $n \in \mathbb{N}$,

$$f_o^{(\delta)}(x) = \frac{1}{\delta} \int_x^{x+\delta} f_o(t) dt \quad \text{and} \quad h_n^{(\delta)}(x) = \frac{1}{\delta} \int_x^{x+\delta} h_n(t) dt.$$

Since the integral function can be derivated a.e., using Lebesgue's theorem we get

$$\lim_{\delta \to 0} f_o^{(\delta)}(x) = f_o(x), \quad x \in \mathbb{R} \quad \text{a.e.}$$
$$\lim_{\delta \to 0} h_n^{(\delta)}(x) = h_n(x), \quad x \in \mathbb{R} \quad \text{a.e.}$$

Furthermore, by (1), we get that

$$\lim_{j \to +\infty} h_{n_j}^{(\delta)}(x) = f_o^{(\delta)}(x), \quad \forall x \in \mathbb{R}, \ \forall \delta \in (0, 1).$$

Hence, by Fatou's lemma

$$\int_{x}^{x+1} |f_{o}^{(\delta)}(t)|^{p} dt \leq \liminf_{j \to +\infty} \int_{x}^{x+1} |h_{n_{j}}^{(\delta)}(t)|^{p} dt.$$

In order to prove that $f_o \in BS^p(\mathbb{R})$, we need to show first that $\int_x^{x+1} |f_o^{(\delta)}(t)|^p dt$ is bounded independently of x. To see this, consider

$$\int_{x}^{x+1} |h_{n_{j}}^{(\delta)}(t)|^{p} dt = \int_{x}^{x+1} \left(\frac{1}{\delta} \int_{t}^{t+\delta} h_{n_{j}}(s) ds\right)^{p} dt$$
$$\leq \int_{x}^{x+1} \left(\frac{1}{\delta} \int_{t}^{t+\delta} |h_{n_{j}}(s)| ds\right)^{p} dt.$$

Consider now

$$\frac{1}{\delta} \int_{t}^{t+\delta} |h_{n_{j}}(s)| \, ds \leq \frac{1}{\delta} \left(\int_{t}^{t+\delta} |h_{n_{j}}(s)|^{p} \, ds \right)^{\frac{1}{p}} \delta^{\frac{1}{q}} = \left(\frac{1}{\delta} \int_{t}^{t+\delta} |h_{n_{j}}(s)|^{p} \, ds \right)^{\frac{1}{p}}.$$

Hence

$$\liminf_{j \to +\infty} \int_{x}^{x+1} |h_{n_{j}}^{(\delta)}(t)|^{p} dt \leq \liminf_{j \to +\infty} \int_{x}^{x+1} \frac{1}{\delta} \int_{t}^{t+\delta} |h_{n_{j}}(s)|^{p} ds dt$$
$$\leq \liminf_{j \to +\infty} \left(\int_{x}^{x+1+\delta} |h_{n_{j}}(s)|^{p} ds \right) \left(\frac{1}{\delta} \int_{s-\delta}^{s} dt \right)$$
$$= \liminf_{j \to +\infty} \int_{x}^{x+1+\delta} |h_{n_{j}}(s)|^{p} ds$$
$$\leq \liminf_{j \to +\infty} \int_{x}^{x+2} |h_{n_{j}}(s)|^{p} ds$$
$$\leq 2B^{p} < +\infty,$$

and so $\int_x^{x+1} |f_o^{(\delta)}(t)|^p dt \leq 2B^p$. Applying once more Fatou's lemma, we get

$$\int_{x}^{x+1} |f_o(t)|^p \, dt \le \liminf_{\delta \to 0} \int_{x}^{x+1} |f_o^{(\delta)}(t)|^p \, dt \le 2B^p.$$

Hence

$$\sup_{x \in \mathbb{R}} \left(\int_x^{x+1} |f_o(t)|^p \, dt \right)^{\frac{1}{p}} \le 2^{\frac{1}{p}} B < +\infty$$

and $f_o \in BS^p(\mathbb{R})$.

We have shown that there exists $f_o \in BS^p(\mathbb{R})$ such that

$$\lim_{j \to +\infty} \int_a^b \varphi(x) h_{n_j}(x) \, dx = \lim_{j \to +\infty} \int_a^b \varphi(x) (f * \phi_{\frac{1}{n_j}})(x) \, dx = \int_a^b \varphi(x) f_o(x) \, dx,$$

for any measurable bounded function φ and for any bounded interval $(a, b) \subset \mathbb{R}$.

On the other hand $f * \phi_{\frac{1}{n_j}} \to f$ as $j \to +\infty$ in the sense of distributions, and so $f = f_o \in BS^p(\mathbb{R})$.

References

- Besicovitch, A. S., Almost Periodic Functions. Cambridge: Cambridge University Press 1932.
- [2] Doss, R., Some Theorems on Almost-Periodic Functions. Amer. J. Math. 72 (1950), 81 – 92.
- [3] Garnett, J. B., Bounded Analytic Functions. New York: Academic Press 1981.
- [4] Pankov, A. A., Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations. Dordrecht: Kluwer 1990.
- [5] Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton (NJ): Princeton University Press 1993.

Received June 1, 2005