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Maximal Characterization

of Locally Summable Functions

F. Andreano and R. Grande

Abstract. We prove a characterization of locally summable functions with bounded
Stepanoff norm through the maximal function

Mφf(x) = sup
t>0

|(f ∗ φt)(x)|,

where φ is a suitable function in the class of Schwartz.
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1. Introduction

Given φ in the Schwartz class S, the maximal function Mφ of a distribution f
is

Mφf(x) = sup
t>0
|(f ∗ φt)(x)|,

where φt(x) =
1
t
φ(x

t
). The following maximal characterization for Lp(R) is well

known (cfr. [5]).

Theorem 1.1. Let 1 < p ≤ +∞. If f is a distribution, then:

f ∈ Lp(R) ⇐⇒ ∃φ ∈ S, with

∫

φ dx 6= 0, so that Mφf ∈ L
p(R).

It is interesting to consider maximal characterizations of spaces of func-
tions which are only locally summable, that is, “big” at infinity. This problem
has been suggested by A. Pankov in a seminar given at the Department of
Metodi e Modelli Matematici per le Scienze Applicate at Università di Roma
“La Sapienza”.

First we need to introduce an appropriate Banach space structure on locally
Lp functions. Let us define the spaces BSp(R) of Stepanoff bounded functions.

F. Andreano, R. Grande: Università di Roma ”La Sapienza”, Dipartimento di Metodi
e Modelli Matematici per le Scienze Applicate, Via Scarpa 16, 00161 Rome, Italy;
andreano@dmmm.uniroma1.it, grande@dmmm.uniroma1.it



104 F. Andreano and R. Grande

Definition 1.2. Let 1 ≤ p < +∞. Then f ∈ BSp(R) if

1. f ∈ Lploc(R);

2. supx∈R

∫ x+1

x
|f(t)|p dt ≤ c, for c ∈ R.

Note 1.3.
1. ‖f‖Sp = supx∈R

( ∫ x+1

x
|f(t)|p dt

)
1

p is a norm; such norm is equivalent to
the norm

‖f‖Sp
l
= sup

x∈R

(

1

l

∫ x+l

x

|f(t)|p dt

)

1

p

where l ∈ R+ (cfr. [1]).
2. The space BSp(R) contains the space of Stepanoff almost-periodic func-

tions Sp(R), i.e., the space of functions that can be approximated by trigono-
metric polynomials in the Stepanoff norm ‖ · ‖Sp defined above (cfr. [1] and [4]).

We prove the following maximal characterization of BSp(R):

Theorem 1.4. Let 1 < p < +∞. If f is a distribution, then:

f ∈ BSp(R) ⇐⇒ ∃φ ∈ S, with

∫

φ dx 6= 0, so that Mφf ∈ BSp(R).

For this we need to prove an analogue, for BSp(R), of the Hardy-Littlewood
maximal theorem. As already observed, a similar result is known for Lp. The
proof on Lp, however, does not readly extend to this more general framework,
because, in the case of Lp(R), one uses the weak compactness of Lp(R) to prove
the sufficient part of the maximal characterization. The dual space of BSp(R)
is not known and therefore we do not have a weak convergence result in such
spaces.

2. The maximal characterization for BSp(R)

In this section we prove Theorem 1.4. The necessary part follows from the
Hardy-Littlewood maximal theorem for BSp(R), that we prove separately.

Let Mf be the maximal function of f , defined by

Mf(x) = sup
x∈I

1

m(I)

∫

I

|f(t)| dt,

where the supremum is taken over all intervals I containing x. Here m denotes
the Lebesgue measure.

Note 2.1. Mφf(x) ≤ cMf(x), where c is a constant (for the proof of this in-
equality see [5, Chapter 2, Section 2.1]).
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Let l > 0 and Mν,lf(x) be the maximal function of f restricted to [ν, ν + l],
ν ∈ R, i.e., let

Mν,lf(x) = sup
x∈I⊆[ν,ν+l]

1

m(I)

∫

I

|f(t)| dt,

if x ∈ [ν, ν + l], and Mν,lf(x) = 0, if x /∈ [ν, ν + l].
Furthermore let

mf (α, ν, l) = m
(

{x ∈ [ν, ν + l] : Mν,lf(x) > α}
)

,

with α, l ∈ R+, ν ∈ R.

Then we have the following

Lemma 2.2. For any ν ∈ R and l > 0, α > 0, and f ∈ BSp(R), p > 1,

mf (α, ν, l) ≤
4

α

∫

{x∈[ν,ν+l]:Mν,lf(x)>
α
2
}

|f(t)| dt

and

1

l

∫ ν+l

ν

|Mν,lf(t)|
p dt ≤

2p+1p

p− 1

1

l

∫ ν+l

ν

|f(t)|p dt.

The proof is analogous to the proof of Theorem 4.3 in [3, Chapter 1].

Theorem 2.3 (Hardy-Littlewood maximal theorem for BSp(R)). Let p > 1,
f ∈ BSp(R) , and let l > 0. There exists c > 0 such that

‖Mf‖Sp
l
≤ c‖f‖Sp

l
.

Proof. Let ν ∈ R and l > 0. Set

Π1 =
{

I : I ⊆ [ν − l, (ν − l) + 3l]
}

and

Π2 =
{

J : J ∩ (R \ [ν − l, (ν − l) + 3l]) 6= ∅
}

,

where I, J are intervals. Furthermore set

Nν−l,3lf(x) = sup
x∈J∈Π2

1

m(J)

∫

J

|f(t)| dt.

Then, for all x ∈ R, Mf(x) = max{Mν−l,3lf(x), Nν−l,3lf(x)}. By Lemma 2.2,
it suffices to prove that Nν−l,3lf(x) ≤ c‖f‖Sp

l
, for x ∈ [ν, ν + l].

Let J = [a, b] ∈ Π2. Since x ∈ [ν, ν + l],

a < ν − l and b > ν
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or else
ν − l < a < ν + l and b > (ν − l) + 3l

and hence, in both cases, we have that l′ = b− a > l. We can write

1

m(J)

∫

J

|f(t)| dt =
1

b− a

∫ b

a

|f(t)| dt

=
1

b− a

∫ a+(b−a)

a

|f(t)| dt

=
1

l′

∫ a+l′

a

|f(t)| dt.

Since l′ > l, we may write l′ = nl + ϑl, with n ∈ N and 0 < ϑ < 1. Hence

1

l′

∫ a+l′

a

|f(t)| dt =
1

nl + ϑl

∫ a+nl+ϑl

a

|f(t)| dt

<
1

nl

∫ a+(n+1)l

a

|f(t)| dt

≤
1

nl
{

∫ a+l

a

|f(t)| dt+ · · ·+

∫ a+(n+1)l

a+nl

|f(t)| dt}

≤
n+ 1

n
sup
a∈R

1

l

∫ a+l

a

|f(t)| dt

≤ 2 sup
a∈R

1

l

∫ a+l

a

|f(t)| dt ≤ 2‖f‖Sp
l

and therefore Nν−l,3lf(x) ≤ 2‖f‖Sp
l
, for x ∈ [ν, ν + l], and hence the thesis of

the theorem is proved. tu

In the proof of Theorem 1.4 we use a result due to R. Doss (cfr. [2]). For
completeness we state that theorem:

Theorem 2.4. Let {σm(x)} be a sequence of functions summable in every finite

interval and verifying the following condition: to every ε > 0 there corresponds

a δ > 0 such that, for every set E of diameter less than or equal to 1 and of

measure less than or equal to δ,
∫

E

|σm(x)| dx ≤ ε, ∀m.

Then there exists a summable function σ(x) and a subsequence {σmk
} such that,

for every bounded function f(x) and every finite interval (a, b),

lim
k→∞

∫ b

a

f(x)σmk
(x) dx =

∫ b

a

f(x)σ(x) dx.
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Proof of Theorem 1.4. We first prove that Mφf ∈ BSp, for all f ∈ BSp. Let
f ∈ BSp(R). By Theorem 2.3, we have that there exists c > 0 such that
‖Mf‖Sp ≤ c‖f‖Sp . Let φ ∈ S and Mφf(x) = supt>0 |(f ∗ φt)(x)|. Then there
exists c′ > 0 such that Mφf(x) ≤ c′Mf(x) (see Note 2.1). Hence

‖Mφf‖Sp ≤ c′‖Mf‖Sp ≤ c′c‖f‖Sp

and Mφf ∈ BSp(R).

Viceversa, suppose that Mφf ∈ BSp(R), with φ ∈ S such that
∫

φ = 1. We
want to show that f ∈ BSp. Let us consider the sequence

(

f ∗φ 1

n

)

(x). We have
that

‖f ∗ φ 1

n
‖Sp = sup

x∈R

(
∫ x+1

x

|(f ∗ φ 1

n
)|p dt

)

1

p

.

Since Mφf ∈ BSp(R),

sup
x∈R

∫ x+1

x

|(f ∗ φ 1

n
)|p dt ≤ sup

x∈R

∫ x+1

x

(

sup
s>0
|(f ∗ φs)(t)|

)p

dt ≤ Bp < +∞,

where B is a constant, and hence ‖f ∗ φ 1

n
‖Sp ≤ B < +∞, i.e., f ∗ φ 1

n
is a

bounded sequence in BSp(R).

Set hn = f ∗φ 1

n
. We want to show that there exists a subsequence {hnj}j∈N

and a function fo ∈ BSp(R) such that for any measurable and bounded func-
tion ϕ and for any bounded interval (a, b) ⊂ R, one has

lim
j→+∞

∫ b

a

ϕ(t)hnj(t) dt =

∫ b

a

ϕ(t)fo(t) dt. (1)

We apply Theorem 2.4 (cfr. [2]) in order to get that there exists a function
fo ∈ L1loc(R) verifying (1) for any measurable bounded function ϕ and for any
bounded interval (a, b) in R. In order to do this, we need to prove that, if E is
any measurable set such that m(E)→ 0, then

∫

E
|hn(t)| dt→ 0 uniformly with

respect to n ∈ N.

Let E be measurable such that m(E)→ 0. The diameter of E is therefore
less than 1 and hence E ⊂ (x, x+ 1), for x ∈ R suitably chosen. Therefore

∫

E

|hn(t)| dt =

∫ x+1

x

χE(t)|hn(t)| dt

≤

(
∫ x+1

x

|hn(t)|
p dt

)

1

p
(
∫ x+1

x

χE(t) dt

)

1

q

≤ sup
x∈R

(
∫ x+1

x

|hn(t)|
p dt

)

1

p

[m(E)]
1

q

≤ B[m(E)]
1

q ,
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where 1
p
+ 1

q
= 1. Hence

∫

E
|hn(t)| dt→ 0, if m(E)→ 0, uniformly with respect

to n ∈ N. The hypotheses of Theorem 2.4 are satisfied and therefore (1) holds
with fo ∈ L

1
loc(R).

We need to prove that fo ∈ BSp(R). To see this, let δ ∈ (0, 1) and set, for
n ∈ N,

f (δ)o (x) =
1

δ

∫ x+δ

x

fo(t) dt and h(δ)n (x) =
1

δ

∫ x+δ

x

hn(t) dt .

Since the integral function can be derivated a.e., using Lebesgue’s theorem we
get

lim
δ→0

f (δ)o (x) = fo(x), x ∈ R a.e.

lim
δ→0

h(δ)n (x) = hn(x), x ∈ R a.e..

Furthermore, by (1), we get that

lim
j→+∞

h(δ)nj (x) = f (δ)o (x), ∀x ∈ R, ∀δ ∈ (0, 1).

Hence, by Fatou’s lemma
∫ x+1

x

|f (δ)o (t)|p dt ≤ lim inf
j→+∞

∫ x+1

x

|h(δ)nj (t)|
p dt.

In order to prove that fo ∈ BSp(R), we need to show first that
∫ x+1

x
|f
(δ)
o (t)|p dt

is bounded independently of x. To see this, consider
∫ x+1

x

|h(δ)nj (t)|
p dt =

∫ x+1

x

(

1

δ
|

∫ t+δ

t

hnj(s) ds|

)p

dt

≤

∫ x+1

x

(

1

δ

∫ t+δ

t

|hnj(s)| ds

)p

dt.

Consider now

1

δ

∫ t+δ

t

|hnj(s)| ds ≤
1

δ

(
∫ t+δ

t

|hnj(s)|
p ds

)

1

p

δ
1

q =

(

1

δ

∫ t+δ

t

|hnj(s)|
p ds

)

1

p

.

Hence

lim inf
j→+∞

∫ x+1

x

|h(δ)nj (t)|
p dt ≤ lim inf

j→+∞

∫ x+1

x

1

δ

∫ t+δ

t

|hnj(s)|
p ds dt

≤ lim inf
j→+∞

(
∫ x+1+δ

x

|hnj(s)|
p ds

)(

1

δ

∫ s

s−δ

dt

)

= lim inf
j→+∞

∫ x+1+δ

x

|hnj(s)|
p ds

≤ lim inf
j→+∞

∫ x+2

x

|hnj(s)|
p ds

≤ 2Bp < +∞,
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and so
∫ x+1

x
|f
(δ)
o (t)|p dt ≤ 2Bp. Applying once more Fatou’s lemma, we get

∫ x+1

x

|fo(t)|
p dt ≤ lim inf

δ→0

∫ x+1

x

|f (δ)o (t)|p dt ≤ 2Bp.

Hence

sup
x∈R

(
∫ x+1

x

|fo(t)|
p dt

)

1

p

≤ 2
1

pB < +∞

and fo ∈ BSp(R).

We have shown that there exists fo ∈ BSp(R) such that

lim
j→+∞

∫ b

a

ϕ(x)hnj(x) dx = lim
j→+∞

∫ b

a

ϕ(x)(f ∗ φ 1

nj

)(x) dx =

∫ b

a

ϕ(x)fo(x) dx,

for any measurable bounded function ϕ and for any bounded interval (a, b) ⊂ R.

On the other hand f ∗ φ 1

nj

→ f as j → +∞ in the sense of distributions,

and so f = fo ∈ BSp(R). tu
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