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Two-Scale Convergence

of First-Order Operators

Augusto Visintin

Abstract. Nguetseng’s notion of two-scale convergence and some of its main proper-
ties are first shortly reviewed. The (weak) two-scale limit of the gradient of bounded
sequences of W 1,p(RN ) is then studied: if uε → u weakly in W 1,p(RN ), a sequence
{u1ε} is constructed such that u1ε(x)→ u1(x, y) and ∇uε(x) → ∇u(x) +∇yu1(x, y)
weakly two-scale. Analogous constructions are introduced for the weak two-scale limit
of derivatives in the spaces W 1,p(RN )N , L2rot(R

3)3, L2div(R
N )N , L2div(R

N )N
2

. The ap-
plication to the two-scale limit of some classical equations of electromagnetism and
continuum mechanics is outlined. These results are then applied to the homogeniza-
tion of quasilinear elliptic equations like ∇×

[

A(uε(x), x, x
ε
)·∇×uε

]

= f .

Keywords. Two-scale convergence, homogenization, elliptic equations, electromag-
netism, continuum mechanics
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Introduction

The following notion was introduced by Nguetseng [27], and then developed
by Allaire [1] and others: a bounded sequence {uε} of L2(RN) is said (weakly)
two-scale convergent to u ∈ L2(RN×Y ) (with Y := [0, 1[N ) if and only if

lim
ε→0

∫

RN

uε(x) ψ(x,
x
ε
) dx =

∫∫

RN×Y

u(x, y) ψ(x, y) dx dy, (1)

for any smooth function ψ : R
N×R

N → R that is Y-periodic w.r.t. the second
argument and such that ψ ∈ L2(RN×Y ). (This is easily extended to Lp for
any p ∈ [1,+∞[.) It should be noticed that the converging functions uε only
depend on x, whereas the limit function u may also depend on the variable y;
x and y may respectively be regarded as coarse-scale and fine-scale variables.
Two-scale convergence can thus account for occurrence of a fine-scale periodic
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structure, and indeed has been applied to a number of homogenization problems,
see e.g. [1, 4, 8, 12, 15, 18, 28, 42]. For periodic homogenization, this method is
indeed alternative to the classical energy method (or method of oscillating test
functions) due to Tartar, see e.g. [2, 6, 14, 19, 23, 26], [29]–[33].

In this paper we deal with the two-scale convergence of some first-order
linear differential operators (with constant coefficients). First we briefly review
some basic definitions and results, along the lines of [13, 34, 35] and of other
works. We then revisit a known result: if {uε} is a sequence of W 1,p(RN)
(1 < p < +∞) and uε → u weakly in this space, then there exists a (possibly
nonunique) function u1 ∈ Lp

(

R
N ;W 1,p(Y)

)

(Y being the N -dimensional unit
torus) such that, up to a subsequence,

∇uε → ∇u+∇yu1 weakly two-scale in Lp(RN×Y)N . (2)

This result was already proved in [27] and [1]. Here we investigate how u1 may
be related to the sequence {uε}: in Theorem 2.2 we construct a sequence {u1ε}
such that, up to a subsequence,

u1ε → u1 weakly two-scale in Lp(RN×Y)

ε∇u1ε → ∇yu1 weakly two-scale in Lp(RN×Y)N .
(3)

For any ε, the function u1ε solves an elliptic periodic problem on each cell
ε(m+ Y ), with m ∈ Z

N . This result may be compared with Theorem 1 of [13],
which outlines a different approximation of the function u1. In addition we
show that conversely for any pair (u, u1) as above there exists a sequence {uε}
for which (2) is fulfilled, here with strong two-scale convergence. The stated
regularity of u and u1 may thus be regarded as optimal.

There are analogies between our construction of u1ε and the so-called cell
problem, that is at the basis of the homogenization of the elliptic equation
−
∑N

i,j=1 aij(
x
ε
)DiDjuε = f in R

N (Dj :=
∂

∂xj
), the matrix function {aij} being

Y -periodic and positive-definite. Elliptic equations like this have extensively
been studied in a large literature, via asymptotic expansions and Tartar’s en-
ergy method; see e.g. the abovementioned monographs. There is however a
major difference between the two settings: the classical cell problem involves
the elliptic operator, whereas here it only depends on the sequence {uε}, and is
not related to any specific problem.

The main aim of this paper is to derive analogous results for other first-
order linear differential operators (with constant coefficients), by extending the
construction of Section 2. Arguments relative to different operators exhibit
similarities but also several differences; we then develop them in detail. In
Section 3 for any fixed p ∈ ]1,+∞[ we deal with sequences of the space

{

v ∈ Lp(RN)N : (∇su)ij :=
1
2
(Djvi +Divj) ∈ L

p(RN), i, j = 1, . . . , N
}

,
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that we equip with the graph norm. By the classical Korn inequality this space
coincides with W 1,p(RN)N . Given a weakly convergent sequence in this space,
we construct a function u1 ∈ Lp

(

R
N ;W 1,p(Y)N

)

, a two-scale approximating
sequence {u1ε}, and derive statements like (2) and (3), with the symmetrized
gradient, ∇s, in place of the gradient, ∇. A converse statement for strong
two-scale convergence holds for this as well as for the other extensions that
follow. This theorem looks prone to applications to continuum mechanics, for
the linearized strain is the symmetrized gradient of the displacement.

In the remainder of this paper we assume that p = 2. In view of applications
to electromagnetism, in Sections 4 and 5 we deal with sequences of L2rot(R

3)3

and of L2div(R
N)N (respectively the domain of the operators curl and divergence

in L2), and derive formulas analogous to (2) and (3). Dealing with L2div we
assume that N is any positive integer. On the other hand we study convergence
in L2rot just for N = 3, which is the case of main applicative interest, for the
extension to N > 3 would be slightly cumbersome. In Section 6 we prove similar
results for sequences of the space

L2div(R
3)9 :=

{

v ∈ L2(R3)9s :
∑3

j=1Djvij ∈ L
2(R3) (i = 1, 2, 3)

}

,

that we equip with the graph norm (the index s restricts the space to symmetric
tensors). The latter setting is of potential interest for applications to continuum
mechanics, for the stress tensor is a typical element of that space, cf. [37],[38].

Despite of several analogies, Sections 4, 5, 6 differ from Sections 2, 3 in the
following respect. Weak convergence in W 1,p(RN) entails strong convergence
in L

p
loc(R

N); hence the weak two-scale limit does not depend on y and coin-
cides with the strong one-scale limit. On the other hand, weak convergence in
L2rot(R

3)3 does not entail strong convergence in L2loc(R
3)3; hence the weak two-

scale limit u may also depend on the fine-scale variable y, and thus differ from
the weak one-scale limit ū :=

∫

Y
u(·, y)dy. This raises the question whether,

assuming that uε → u weakly two-scale in L2(R3×Y)3, the weak two-scale limit
of ∇×uε (∇× := curl) should read

∇×ū(x) +∇y×u1(x, y) or ∇x×u(x, y) +∇y×ũ1(x, y), (4)

We derive the former expression; this looks fairly natural, for it confines any
dependence on the fine-scale variable y to the correcting term ∇y×u1. Anyway
this is compatible with the second expression, which indeed has recently been
studied by Wellander and Kristensson [41] and used in [7] (analogous results
might be proved for the other first-order differential operators we deal with in
this paper). A similar remark applies to the results of Sections 5 and 6, dealing
with the divergence operator; also in this case the formula that we prove includes
the derivatives of ū, and the two-scale limit reads ∇· ū+∇y · u1 (∇· := div). It
may also be noticed that in all of these cases (for p = 2) we represent the weak
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two-scale limit of the differential operator as the sum of two orthogonal terms
of L2(RN×Y)M (M depending on the specific setting).

In Section 7 we illustrate how these results may be applied to the study of
the two-scale limit of the classical equations of Ampère and Gauss of electro-
magnetism, and of the balance of momentum of continuum mechanics.

The above developments may be used in the homogenization of several
second-order elliptic equations, for the corresponding a priori estimates are typi-
cally expressed in terms of first-order operators like gradient, curl or divergence.
In Section 8 we deal with the asymptotic behaviour of the system

∇×
[

A
(

uε(x), x,
x
ε

)

·
(

∇×uε + f
)]

= 0, ∇·uε = 0 in Ω, (5)

coupled with homogeneous Dirichlet conditions. This may represent equilibrium
in a heterogeneous and anisotropic electric conductor with a magnetic-field-
dependent resistance A. Here we prove convergence to a two-scale solution.
Analogous conclusions might be reached for instance for the equation −∇·
[

A(uε(x), x,
x
ε
)·∇uε

]

= f . The homogenization of quasilinear elliptic equations
in divergence form has been studied in a large number of papers, see e.g. [9, 16]
and references therein; two-scale convergence has been applied e.g. in [1, 10,
13, 27]. But apparently so far less attention has been paid to equations in curl
form, and to corresponding variational problems.

This work is part of a research on two-scale convergence. Some of these
results have been announced in [34]; see also [35]. This author intends to apply
them to the homogenization of nonlinear partial differential equations issued
from electromagnetism, phase transitions and continuum mechanics [36]–[39].
Further research will deal with the two-scale homogenization of elliptic opera-
tors.

1. Two-scale convergence of the gradient of a scalar field

Two-scale decomposition. In this section we briefly review some properties
of two-scale convergence, along the lines of Nguetseng [27] and Allaire [1]. Here
we use the formulation of [34, 35], that is based on a technique that has already
been investigated in several papers, cf. e.g. [3, 4, 8, 12, 13, 21, 22].

We set Y = [0, 1[N , denote by Y the same set equipped with the topological
and differential structure of the N -dimensional unit torus. (The case of a cell of
the form [0, a[×[0, b[×[0, c[ might be dealt similarly.) We identify any function
on Y with its Y -periodic extension to R

N . For any ε > 0 we set

n̂(x) := max{n ∈ Z : n ≤ x}, r̂(x) := x− n̂(x) (∈ [0, 1[) ∀x ∈ R

N (x) :=(n̂(x1), . . . , n̂(xN))∈ Z
N , R(x) := x−N (x) ∈ Y ∀x ∈ R

N;
(1.1)
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this yields the two-scale decomposition (also named periodic unfolding in [13]):
x = ε[N (x

ε
) + R(x

ε
)] for any x ∈ R

N ; εN (x
ε
) and R(x

ε
) may respectively be

regarded as coarse-scale and fine-scale variables w.r.t. the scale ε. We also set

Sε(x, y) := εN (x
ε
) + εy ∀(x, y) ∈ R

N×Y , ∀ε > 0. (1.2)

The next statement can easily be proved via a variable transformation. Let
us first denote by L(RN) (B(RN), resp.) the σ-algebra of Lebesgue- (Borel-,
resp.) measurable subsets of R

N , and define L(Y) and B(Y) similarly.

Lemma 1.1 ([35]). Let f : R
N×Y → R be such that

f is measurable either w.r.t. the σ-algebra generated by B(RN)×L(Y),

or w.r.t. that generated by L(RN)×B(Y),
(1.3)

either ‖f‖L∞(RN ) ∈ L
1(Y) and has compact support,

or ‖f‖L∞(Y) ∈ L
1(RN).

(1.4)

Let us extend f(x, ·) by Y-periodicity to R
N for a.a. x ∈ R

N. Then, for any ε > 0,
the functions R

N → R : x 7→ f(x, x
ε
) and R

N×Y → R : (x, y) 7→ f(Sε(x, y), y)
are integrable, and

∫

RN

f(x, x
ε
) dx = εN

∑

m∈ZN

∫

Y

f(ε[m+ y], y) dy

=

∫∫

RN×Y

f(Sε(x, y), y) dx dy ∀ε > 0.

(1.5)

For any p ∈ [1,+∞] and ε > 0, the operator g 7→ g ◦ Sε is then a (nonsur-
jective) linear isometry Lp(RN)→ Lp(RN×Y).

Two-Scale Convergence in Lp(RN ×Y). In this paper, by ε we shall de-
note the generic element of an arbitrary but prescribed, vanishing sequence of
positive real numbers; e.g. ε = {1, 1

2
, 1
3
, . . . , 1

n
, . . .}. Let p ∈ [1,+∞]; for any

sequence {uε} of Lp(RN) and any u ∈ Lp(RN×Y), we say that uε strongly two-
scale converges to u in Lp(RN×Y), whenever uε ◦ Sε → u strongly in the latter
space. We similarly define weak (weak star for p = ∞) two-scale convergence.
We denote these convergences by uε →

2
u, uε ⇀

2
u, uε ⇀

2

∗ u, resp., and reserve
the symbols →, ⇀, ⇀∗ for the ordinary strong, weak, weak star convergence
(that we refer to as one-scale convergence). Thus for any p ∈ [1,+∞]

uε →
2
u in Lp(RN×Y) ⇔ uε ◦ Sε → u in Lp(RN×Y)

uε ⇀
2
u in Lp(RN×Y) ⇔ uε ◦ Sε ⇀ u in Lp(RN×Y)

uε ⇀
2

∗ u in L∞(RN×Y) ⇔ uε ◦ Sε ⇀
∗ u in L∞(RN×Y).
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For any domain Ω ⊂ R
N , we then define two-scale convergence in Lp(Ω×Y) by

extending functions to R
N \Ω with vanishing value. These definitions slightly

extend the original ones of Nguetseng [27] and Allaire [1]; see [35]. The next
result is a simple consequence of the above construction.

Proposition 1.2 ([1, 27]). Let p ∈ ]1,+∞]. For any bounded sequence {uε} of
Lp(RN) there exists u ∈ Lp(RN×Y) such that, up to a subsequence, uε ⇀

2
u in

Lp(RN) (uε ⇀
2

∗ u if p =∞).

In view of the next statement let us fix a radial function ρ such that ρ ∈
C1(RN), ρ ≥ 0, ρ(x) = 0 if |x| ≥ 1,

∫

RN ρ(x) dx = 1, and set

ρε(x) := ε−
N
2 ρ
(

ε−
1

2x
)

∀x ∈ R
N . (1.6)

Hence∇ρε(x) = ε−
N+1

2 (∇ρ)(ε−
1

2x) and ρε ⇀
∗ δ0 (the Dirac measure) in C0(RN)′.

For any function u = u(x, y) henceforth we set

ū :=

∫

Y

u(·, y) dy, ũ := u− ū a.e. in R
N×Y . (1.7)

Proposition 1.3. Let p ∈ [1,+∞[ and {uε} be a sequence in L
p(RN) such that

uε →
2
u in Lp(RN×Y). Then

uε −

∫

RN

ũ(ξ, x
ε
)ρε(x− ξ) dξ → ū in Lp(RN). (1.8)

Proof. By Proposition 2.13 of [35]
∫

RN ũ(ξ,
x
ε
)ρε(x−ξ) dξ →

2
ũ in Lp(RN×Y). By

the hypotheses the same then applies to the sequence of (1.8). It then suffices
to notice that, for any sequence {wε} in Lp(RN) and any w ∈ Lp(RN), wε → w

in Lp(RN) if and only if wε →
2
w in Lp(RN×Y). tu

Further Notation. By appending the index ∗ to a space of functions over Y , we
shall denote the subspace of functions having vanishing mean. For any function
of (x, y) ∈ R

N ×Y , we shall denote by ∇x (∇y, resp.) the gradient w.r.t. to the
first (second, resp.) vector argument. Finally expressions like ∇u v should be
interpreted as (∇u) v (this will make formulas look a bit lighter).

2. Two-scale convergence of the gradient of a scalar field

In this section we deal with the two-scale limit of the gradient of weakly conver-
gent sequences of W 1,p(RN), for any p ∈ ]1,+∞[ and N ∈ N. Trivial examples
show that uε ⇀ u in W 1,p(RN) does not entail ∇uε ⇀

2
∇xu in Lp(RN×Y)N :

in general the weak two-scale limit of the gradient need not coincide either
with the weak one-scale limit of the gradient or with the gradient of the weak
one-scale limit.
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In view of the next statement, for any Banach space B let us denote by
`p(B) the Banach space of p-summable functions Z

N → B.

Lemma 2.1 (Cell Projection). Let p ∈ ]1,+∞[ and ε > 0. For any w ∈
W 1,p(RN) there exists a unique w∗ = w∗(m, y) ∈ `p(W 1,p

∗ (Y)) such that

∫

Y

[∇w∗(m, y)− (∇w)(ε(m+ y))]·∇ζ dy = 0

∀ζ ∈W 1,p′(Y) (p′ := p

p−1
), ∀m ∈ Z

N .

(2.1)

Moreover there exists a constant C1 > 0 (independent of w and ε) such that

ε
N
p ‖∇w∗‖`p(Lp(Y)N )

(

=

(

εN
∑

m∈ZN

‖∇w∗(m, ·)‖p

Lp(Y)N

)
1

p
)

≤ ‖∇w‖Lp(RN )N

(2.2)

ε
N
p ‖w∗‖`p(Lp(Y)) ≤ C1‖∇w‖Lp(RN )N . (2.3)

Notice that (∇w)(ε(m+y)) := ∇w(x)
∣

∣

x=ε(m+y)
= ε−1∇y[w(ε(m+y))]. Here

∇w∗(m, ·) (∇w, resp.) is the gradient in the sense of D′(Y)N (of D′(RN)N ,
resp.). Having identified Y to Y , Lp(Y )N = Lp(Y)N , but W 1,p(Y ) 6= W 1,p

∗ (Y).

Leaving aside translations and rescalings, the equation
∫

Y
(∇z−∇v)·∇ζ dy =

0 (for any ζ ∈W 1,p′(Y)) defines a continuous projection (namely a continuous,
linear and idempotent operator) L : W 1,p(Y ) 7→ W 1,p

∗ (Y) : v 7→ z.

Proof. Let us fix any m ∈ Z
N and set g := (∇w)(ε(m + ·)) ∈ Lp(Y )N . For

p = 2 the equation (2.1) is equivalent to minimizing the functional

H1
∗ (Y)→ R : v 7→

∫

Y

(1

2
|∇v|2 − g ·∇v

)

dy;

existence and uniqueness of w∗
m := w∗(m, ·) are then straightforward. For p 6= 2

this setting does not fit the standard framework because of periodicity; we then
provide a direct argument for existence and derive a uniform estimate.

If g ∈ D(Y), then there exists a unique w∗
m ∈ H

1
∗ (Y) such that

∫

Y

(

∇w∗
m − g

)

·∇v dy = 0 ∀v ∈ H1(Y); (2.4)

actually w∗
m ∈ D∗(Y) by a known result of local regularity and by the compact-

ness of Y . Similarly there exists a unique ψ ∈ D∗(Y) such that

∫

Y

(

∇ψ − |∇w∗
m|

p−2∇w∗
m

)

·∇v dy = 0 ∀v ∈ H1(Y).
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By taking first v = w∗
m, then v = ∇w(ε(m+ ·)) in the latter formula, and then

v = ψ in (2.4), we get
∫

Y

∇ψ ·∇w∗
m dy =

∫

Y

|∇w∗
m|

p dy

∫

Y

∇ψ ·g dy =

∫

Y

|∇w∗
m|

p−2∇w∗
m ·g dy

∫

Y

∇w∗
m ·∇ψ dy =

∫

Y

g ·∇ψ dy.

The three latter formulas yield
∫

Y

|∇w∗
m|

p dy =

∫

Y

|∇w∗
m|

p−2∇w∗
m ·g dy ≤ ‖∇w

∗
m‖

p−1
Lp(Y)N

‖g‖Lp(Y)N ,

whence

‖∇w∗
m‖Lp(Y)N ≤ ‖g‖Lp(Y)N = ‖(∇w)(ε(m+ ·))‖Lp(Y)N ∀m ∈ Z

N . (2.5)

The restriction to D(Y) of the linear mapping w(ε(m + ·)) 7→ w∗
m is thus non-

expansive w.r.t. the W 1,p
∗ -seminorm. It can then be extended by density to a

unique mapping W 1,p(Y )→ W 1,p
∗ (Y). By (2.5) Lemma 1.1 yields

ε
N
p ‖∇w∗‖`p(Lp(Y)N ) =

(

εN
∑

m∈ZN

‖∇w∗(m, ·)‖p

Lp(Y)N

)
1

p

≤

(

εN
∑

m∈ZN

‖(∇w)(ε(m+ ·))‖p

Lp(Y)N

)
1

p

= ‖∇w‖Lp(RN )N ,

(2.6)

namely (2.2). By the classical Poincaré inequality, there exists a constant C1 > 0
independent of w and ε such that

∫

Y
|w∗

m|
p dy ≤ C1

∫

Y
|∇w∗

m|
p dy. (2.5) then

yields (2.3). The uniqueness of the solution of (2.1) follows from (2.3). tu

The first part of the next result may be compared with analogous theorems
of [1, 27] for p = 2; more recently a different argument based on the approxima-
tion of the function u1 (cf. (2.10)) was outlined in [13]. Here the main novelty
is that we construct an approximation of that function; an analogous procedure
will be applied to other first-order differential operators in the next sections.
We also show that conversely any expression of the form ∇u(x) +∇yu1(x, y) is
the two-scale limit of ∇uε for some bounded sequence {uε} of W 1,p(RN).

Theorem 2.2. (i) Let p ∈ ]1,+∞[ and {uε} be a sequence such that uε ⇀ u in
W 1,p(RN). For any ε there exists a unique u∗1ε ∈ `

p(W 1,p
∗ (Y)) such that

∫

Y

[∇u∗1ε(m, y)− (∇uε)(ε(m+ y))]·∇ζ dy = 0

∀ζ ∈ W 1,p′(Y), ∀m ∈ Z
N .

(2.7)
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Moreover there exists u1 ∈ L
p
(

R
N ;W 1,p

∗ (Y)
)

such that setting

u1ε(ε(m+ y)) := u∗1ε(m, y)

zε(ε(m+ y)) := ∇u∗1ε(m, y)
for a.a. y ∈ Y, ∀m ∈ Z

N , (2.8)

as ε→ 0 along a suitable subsequence,

u1ε ⇀
2
u1 in Lp(RN×Y), zε ⇀

2
∇yu1 in Lp(RN×Y)N . (2.9)

This entails that, as ε→ 0 along the extracted subsequence,

∇uε ⇀
2
∇u+∇yu1 in Lp(RN×Y)N . (2.10)

(ii) Conversely, for any u ∈ W 1,p(RN) and any u1 ∈ L
p
(

R
N ;W 1,p

∗ (Y)
)

there
exists a sequence {uε} of W

1,p(RN) such that

uε → u in Lp(RN), ∇uε →
2
∇u+∇yu1 in Lp(RN×Y)N . (2.11)

(Notice that zε need not coincide with ∇u1ε a.e. in R
N .)

Proof. (i) By Lemma 2.1, u∗1ε exists and

‖zε‖Lp(RN )N , ‖u1ε‖Lp(RN ) ≤ Constant (independent of ε).

By Proposition 1.2 then there exists u1 ∈ L
p(RN×Y) such that, as ε→ 0 along

a suitable subsequence, u1ε ⇀ u1 in Lp(RN×Y); hence u1ε ⇀
2
u1 in Lp(RN×Y).

For any ϕ ∈ D(RN) and ψ ∈ D(Y)N we have
∫

RN

zε(x)·ψ(
x
ε
)ϕ(εN (x

ε
)) dx = εN

∑

m∈ZN

∫

Y

∇u∗1ε(m, y)·ψ(y)ϕ(εm) dy

= −εN
∑

m∈ZN

∫

Y

u∗1ε(m, y)∇·ψ(y)ϕ(εm) dy

= −εN
∑

m∈ZN

∫

Y

u1ε(ε(m+ y))∇·ψ(y)ϕ(εm) dy

→ −

∫∫

RN×Y

u1(x, y)∇·ψ(y)ϕ(x) dx dy.

As zε is uniformly bounded in Lp(RN) and ϕ(εN (x
ε
)) → ϕ(x) uniformly for

x ∈ R
N , the latter convergence also holds if in the first integral ϕ(εN ( x

ε
)) is

replaced by ϕ(x). Thus u1 ∈ L
p
(

R
N ;W 1,p

∗ (Y)
)

and (2.9) is fulfilled.

(ii) In view of the derivation of (2.10), let us still fix any ϕ ∈ D(RN) and
any ψ ∈ D(Y)N , and notice that there exists a (unique) ζ ∈ H1

∗ (Y) such that
∫

Y

∇ζ ·∇v dy =

∫

Y

ψ ·∇v dy ∀v ∈ H1
∗ (Y).
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Hence (setting ∇· := div) ∆ζ = ∇·ψ + C in Y for some constant C ∈ R;
integrating over Y , by the Y -periodicity of ζ and ψ we get C = 0. By the
regularity of ψ we infer that ζ ∈ D(Y). By setting ψ̃ := ∇ζ and ψ̂ := ψ − ψ̃

in Y , we thus have

ψ̃, ψ̂ ∈ D(Y)N , ∇·ψ̃ = ∇·ψ, ∇·ψ̂ = 0 in Y .

By Lemma 1.1, (2.7) and (2.9) we have

∫

RN

∇uε(x)·ψ̃(
x
ε
)ϕ
(

εN (x
ε
)
)

dx

=

∫

RN

dx ϕ
(

εN (x
ε
)
)

∫

Y

(∇uε)
(

εN (x
ε
) + εy

)

·∇ζ(y) dy

=

∫

RN

dx ϕ
(

εN (x
ε
)
)

∫

Y

∇u∗1ε
(

N (x
ε
), y
)

·∇ζ(y) dy

→

∫∫

RN×Y

∇yu1(x, y)·ψ̃(y)ϕ(x) dx dy.

(2.12)

Moreover, as ∇·ψ̂ = 0 a.e. in Y and
∫

Y
ψ̃(y) dy =

∫

Y
∇ζ(y) dy = 0,

∫

RN

∇uε(x)·ψ̂(
x
ε
)ϕ(x) dx = −

∫

RN

uε(x)ψ̂(
x
ε
)·∇ϕ(x) dx →

−

∫∫

RN×Y

u(x)ψ̂(y)·∇ϕ(x) dx dy =

∫∫

RN×Y

∇u(x)·ψ̂(y)ϕ(x) dx dy

∫∫

RN×Y

∇yu1(x, y)·ψ̂(y)ϕ(x) dx dy = −

∫∫

RN×Y

u1(x, y)∇·ψ̂(y)ϕ(x) dx dy = 0,

∫∫

RN×Y

∇u(x)·ψ̃(y)ϕ(x) dx dy =

∫

RN

∇u(x)ϕ(x) dx·

∫

Y

ψ̃(y) dy = 0.

As ‖∇uε‖Lp(RN )N is uniformly bounded and ϕ(εN (x
ε
))→ ϕ(x) uniformly in R

N ,
cf. (1.1),

∫

RN

∇uε(x)·ψ(
x
ε
)ϕ(x) dx−

∫

RN

∇uε(x)·ψ(
x
ε
)ϕ
(

εN (x
ε
)
)

dx→ 0;

a similar statement holds for the first member of (2.12). Assembling the five
latter formulas, we get

∫

RN

∇uε(x)·ψ(
x
ε
)ϕ(x) dx→

∫∫

RN×Y

[∇u(x) +∇yu1(x, y)]·ψ(y)ϕ(x) dx dy,

that is (2.10).
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(iii) Let us now come to part (ii) of the thesis. Let us fix any u ∈W 1,p(RN)
and any u1 ∈ L

p
(

R
N ;W 1,p

∗ (Y)
)

, define ρ as in (1.6), and set

uε(x) := u(x) + ε

∫

RN

u1(ξ,
x
ε
)ρε(x− ξ) dξ for a.a. x ∈ R

N ; (2.13)

hence uε → u in Lp(RN) and

∇uε(x) =∇u(x) + ε

∫

RN

u1(ξ,
x
ε
)∇ρε(x− ξ) dξ +

∫

RN

∇yu1(ξ,
x
ε
)ρε(x− ξ) dξ.

We claim that

ε

∫

RN

u1(ξ,
x
ε
)∇ρε(x− ξ) dξ → 0 (2.14)

gε(x) :=

∫

RN

∇yu1(ξ,
x
ε
)ρε(x− ξ) dξ →

2
∇yu1 in Lp(RN×Y)N , (2.15)

which suffices to infer (2.11). As ε
1

2

∫

RN ∇ρε(x) dx is independent of ε, (2.14) is
easily checked. In view of proving (2.15), notice that by Lemma 1.1

|gε(Sε(x, y))−∇yu1(Sε(x, y), y)|
p

=
∣

∣

∣

∫

RN

∇yu1(ξ, y)ρε(Sε(x, y)− ξ) dξ −∇yu1(Sε(x, y), y)
∣

∣

∣

p

∀ε,

and as ε → 0 the latter function vanishes a.e. in R
N ×Y , for Sε(x, y) → x

uniformly in R
N×Y by (1.2). Thus gε →

2
∇yu1 a.e. in R

N×Y . By the equi-Lp-

integrability of gε, and by Lemma 2.3 below, we then infer (2.15). tu

Lemma 2.3 (Two-Scale Vitali’s Theorem [35]). Let p ∈ [1,+∞[, {uε} be a
sequence in Lp(RN) such that supε

∫

RN\B(0,R)
|uε(x)|

p dx→ 0 as R→ +∞, and

uε →
2
u a.e. in R

N × Y . Then

u ∈ Lp(RN × Y), uε →
2
u in Lp(RN×Y) (2.16)

iff {|uε|
p} is equi-integrable, in the sense that limn→∞ supε

∫

An
|uε(x)|

p dx = 0

for any sequence {An} of measurable subsets of R
N such that An ↘ ∅.

Remarks. (i) Trivial counterexamples show that the function u1 need not be
uniquely determined by the sequence {uε}.

(ii) Denoting the weak one-scale (two-scale, resp.) limit by limε→0
(1) (by

limε→0
(2), resp.), (2.10) also reads

lim
ε→0

(2)∇uε = lim
ε→0

(1)∇uε +∇yu1
(

= ∇ lim
ε→0

(1)uε +∇yu1
)

a.e. in R
N×Y . (2.17)

This illustrates the relation between the one-scale and two-scale limit of the
gradient. For p = 2 the decomposition (2.17) is orthogonal in L2(RN×Y)N .
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For N = 1 the proof of Theorem 2.2 might be simplified, by decomposing
uε ⇀ u into its piecewise linear interpolate {uε(mε) : m ∈ Z} plus a remainder.

By the argument of Theorem 2.2 one can also study the limit of sequences
{uε} that are bounded in Lp(RN) jointly with a fixed directional derivative,
{Djuε} say. In this case the variables xi with i 6= j are reduced to parameters.

3. Two-scale convergence of the symmetrized gradient of
a vector field

In this section we assume that N ∈ N, p ∈ ]1,+∞[, and define the symmetrized
gradient

(∇sv)ij :=
1
2
(Djvi +Divj) for i, j = 1, . . . , N, ∀v ∈W 1,p(RN)N . (3.1)

Throughout this paper we shall label spaces of symmetric tensors by the index
“s”. We also denote by “:” the scalar product in R

N2

(i.e. the contraction w.r.t.
two indices); thus A :B :=

∑N

i,j=1 aijbij for any A := {aij}, B := {bij} ∈ R
N2

.

The classical Korn inequality (cf. e.g. [17, Sect. VII.2]) can be extended to
any N . Thus

{

v ∈ Lp(Y)N : ∇sv ∈ Lp(Y)N
2
}

equipped with the graph norm
coincides with W 1,p(Y)N . In the Poincaré inequality ∇v may be replaced by
∇sv, and W 1,p

∗ (Y)N may be equipped with the equivalent norm ‖∇sv‖
Lp(Y)N

2 .

Lemma 3.1 (Cell Projection). Let p ∈ ]1,+∞[ and ε > 0. For any w ∈
W 1,p(RN)N there exists a unique w∗ = w∗(m, y) ∈ `p(W 1,p

∗ (Y)N) such that

∫

Y

[∇sw∗(m, y)− (∇sw)(ε(m+ y))] :∇sζ dy = 0

∀ζ ∈ W 1,p′(Y)N (p′ := p

p−1
), ∀m ∈ Z

N .

(3.2)

Moreover there exists a constant C2 > 0 (independent of w and ε) such that

ε
N
p ‖∇sw∗‖

`p(Lp(Y)N
2
)

(

=

(

εN
∑

m∈ZN

‖∇sw∗(m, ·)‖p

Lp(Y)N
2

)
1

p
)

≤ ‖∇sw‖
Lp(RN )N

2

(3.3)

ε
N
p ‖w∗‖`p(Lp(Y)N ) ≤ C2‖∇

sw‖
Lp(RN )N

2 . (3.4)

The argument mimics that of Lemma 2.1, and is omitted. Here the Poincaré
inequality is replaced by the Korn inequality.
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Theorem 3.2. (i) Let {uε} be a sequence such that uε ⇀ u in W 1,p(RN)N . For
any ε there exists a unique u∗1ε ∈ `

p(W 1,p
∗ (Y)N) such that

∫

Y

[∇su∗1ε(m, y)− (∇suε)(ε(m+ y))]·∇sζ dy = 0

∀ζ ∈ W 1,p′(Y)N ,∀m ∈ Z
N .

(3.5)

Moreover there exists u1 ∈ L
p
(

R
N ;W 1,p

∗ (Y)N
)

such that, setting

u1ε(ε(m+ y)) := u∗1ε(m, y)

zε(ε(m+ y)) := ∇su∗1ε(m, y)
for a.a. y ∈ Y, ∀m ∈ Z

N , (3.6)

as ε→ 0 along a suitable subsequence

u1ε ⇀
2
u1 in Lp(RN×Y)N , zε ⇀

2
∇s

yu1 in Lp(RN×Y)N
2

. (3.7)

This entails that, as ε→ 0 along the extracted subsequence,

∇suε ⇀
2
∇su+∇s

yu1 in Lp(RN×Y)N
2

. (3.8)

(ii) Conversely, for any u ∈ W 1,p(RN)N and any u1 ∈ Lp
(

R
N ;W 1,p

∗ (Y)N
)

there exists a sequence {uε} of W
1,p(RN)N such that

uε → u in Lp(RN)N , ∇suε ⇀
2
∇su+∇s

yu1 in Lp(RN×Y)N
2

. (3.9)

Proof. (i) By Lemma 3.1, u1ε exists and

‖zε‖Lp(RN )N
2 , ‖u1ε‖Lp(RN )N ≤ Constant (independent of ε).

By Proposition 1.2 then there exists u1 ∈ L
p(RN×Y)N such that, as ε vanishes

along a suitable subsequence, u1ε ⇀
2
u1 in Lp(RN×Y)N . Let us now fix any

ϕ ∈ D(RN) and any ψ ∈ D(Y)N
2

s . Setting (∇·ψ)i :=
∑N

j=1Dyj
ψij for i =

1, . . . , N , we have

∫

RN

zε(x)·ψ(
x
ε
)ϕ
(

εN (x
ε
)
)

dx = εN
∑

m∈ZN

∫

Y

∇u∗1ε(m, y) :ψ(y)ϕ(εm) dy

= −εN
∑

m∈ZN

∫

Y

u∗1ε(m, y)·∇·ψ(y)ϕ(εm) dy

= −εN
∑

m∈ZN

∫

Y

u1ε(ε(m+ y))·∇·ψ(y)ϕ(εm) dy

→ −

∫∫

RN×Y

u1(x, y)·∇·ψ(y)ϕ(x) dx dy.
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As zε is uniformly bounded in Lp(RN)N
2

and ϕ(εN (x
ε
)) → ϕ(x) uniformly for

x ∈ R
N , the latter convergence also holds if in the first integral ϕ(εN ( x

ε
)) is

replaced by ϕ(x). Thus u1 ∈ L
p
(

R
N ;W 1,p

∗ (Y)N
)

and (3.7) is fulfilled.

(ii) In view of the derivation of (3.8), let us fix any ϕ ∈ D(RN) and any
ψ ∈ D(Y)N

2

s , and notice that there exists a (unique) ζ ∈ W 1,p
∗ (Y)N such that

∫

Y

∇sζ :∇sv dy =

∫

Y

ψ :∇sv dy ∀v ∈ W 1,p′(Y)N .

Setting (∇s·ψ)i :=
1
2

∑N

j=1(Djψij +Djψji), we then have ∇s· ∇sζ = ∇s· ψ +C

in Y for some constant C ∈ R
N ; integrating over Y , by the Y -periodicity of ζ

and ψ we get C = 0. By setting ψ̃ := ∇sζ and ψ̂ := ψ− ψ̃ in Y , we then have

ψ̃, ψ̂ ∈W 1,p(Y)N
2

, ∇s ·ψ̃ = ∇s ·ψ, ∇s ·ψ̂ = 0 a.e. in Y .

By Lemma 1.1, (3.5) and (3.7), we have

∫

RN

∇suε(x) : ψ̃(
x
ε
)ϕ
(

εN (x
ε
)
)

dx

=

∫

RN

dx ϕ
(

εN (x
ε
)
)

∫

Y

∇s
yuε

(

ε[N (x
ε
) + y]

)

:∇sζ(y) dy

=

∫

RN

dx ϕ
(

εN (x
ε
)
)

∫

Y

∇su∗1ε
(

N (x
ε
), y
)

:∇sζ(y) dy

→

∫∫

RN×Y

∇s
yu1(x, y) : ψ̃(y)ϕ(x) dx dy.

Moreover, as ∇s ·ψ̂ = 0 a.e. in Y and
∫

Y
ψ̃(y) dy =

∫

Y
∇sζ(y) dy = 0,

∫

RN

∇suε(x) : ψ̂(
x
ε
)ϕ(x) dx = −

∫

RN

uε(x)·ψ̂(
x
ε
)·∇ϕ(x) dx →

−

∫∫

RN×Y

u(x)·ψ̂(y)·∇ϕ(x) dx dy =

∫∫

RN×Y

∇su(x) : ψ̂(y)ϕ(x) dx dy,
(3.10)

∫∫

RN×Y

∇s
yu1(x, y) : ψ̂(y)ϕ(x) dx dy = −

∫∫

RN×Y

u1(x, y)·∇
s ·ψ̂(y)ϕ(x) dx dy =0,

∫∫

RN×Y

∇su(x) : ψ̃(y)ϕ(x) dx dy =

∫

RN

∇su(x)ϕ(x) dx :

∫

Y

ψ̃(y) dy = 0.

As ‖∇suε‖Lp(RN )N
2 is uniformly bounded and ϕ(εN (x

ε
)) → ϕ(x) uniformly in

R
N , cf. (1.1),

∫

RN

∇suε(x) :ψ(
x
ε
)ϕ(x) dx−

∫

RN

∇suε(x) :ψ(
x
ε
)ϕ(εN (x

ε
)) dx→ 0;
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a similar statement holds for the first member of (3.10). By assembling the five
latter formulas we end up with

∫

RN

∇suε(x) :ψ(
x
ε
)ϕ(x) dx→

∫∫

RN×Y

[∇su(x) +∇s
yu1(x, y)] :ψ(y)ϕ(x) dx dy,

that is (3.8). The proof of part (iii) of the thesis mimics that of Theorem 3.2,
and is then omitted. tu

Remarks. (i) The function u1 need not be uniquely determined by the sequence
{uε}.

(ii) Defining limε→0
(1) and limε→0

(2) as in Section 2, (3.8) also reads

lim
ε→0

(2)∇suε = ∇
s lim

ε→0

(1)uε +∇
s
yu1 = lim

ε→0

(1)∇suε +∇
s
yu1 (3.11)

a.e. in R
N×Y . If p = 2 this decomposition is orthogonal in L2(RN×Y)N

2

.

4. Two-scale convergence of the curl of a vector field

In this section we assume that N = 3 and p = 2. We remind the reader that
L2rot(Y )3 :=

{

v ∈ L2(Y )3 : ∇×v ∈ L2(Y )3
}

(∇× := curl) is a Hilbert space
equipped with the graph norm.

The same applies to L2rot(R
3)3 and L2rot(Y)

3; notice that the tangential com-
ponents of the functions of the latter space coincide on opposite faces of Y .

Lemma 4.1 (Cell Projection). Let ε > 0. For any w ∈ L2rot(R
3)3 there exists a

unique w∗ = w∗(m, y) ∈ `2(H1
∗ (Y)

3) such that for any m ∈ Z
3

∇·w∗(m, y) = 0 for a.a. y ∈ Y (∇· := div)
∫

Y

[∇×w∗(m, y)− (∇×w)(ε(m+ y))]·∇×ζ dy = 0 ∀ζ ∈ H1(Y)3.
(4.1)

This entails that there exists a constant C3 > 0 (independent of w and ε) such
that

ε
3

2‖∇×w∗‖`2(L2(Y)3)

(

=

(

ε3
∑

m∈Z3

‖∇×w∗(m, ·)‖2L2(Y)3

)
1

2
)

≤ ‖∇×w‖L2(R3)3

(4.2)

ε
3

2‖w∗‖`2(L2(Y)3) ≤ C3‖∇×w‖L2(R3)3 . (4.3)
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Proof. Let us fix any m ∈ Z
3, define the Hilbert space Vm := {v ∈ H1

∗ (Y)
3 :

∇·v = 0}, and consider the quadratic functional

Vm → R : v 7→

∫

Y

(1

2
|∇×v|2 − (∇×w)(ε(m+ y))·∇×v

)

dy.

By the Poincaré inequality this functional is coercive on Vm; hence it has a
(unique) minimizer, and this is the unique solution of (4.1). This yields (4.2).
It is not restrictive to assume that w is divergence-free, for w∗ only depends on
∇×w; (2.7) then yields (4.3). The uniqueness of the solution of (4.1) is a simple
consequence of (4.3). tu

Theorem 4.2. (i) Let {uε} be a bounded sequence in the space L2rot(R
3)3 such

that uε ⇀
2
u in L2(R3×Y)3. For any ε there exists a unique u∗1ε ∈ `

2(H1
∗ (Y)

3)

such that, for any m ∈ Z
3,

∇·u∗1ε = 0 for a.a. y ∈ Y
∫

Y

[∇×u∗1ε(m, y)− (∇×uε)(ε(m+ y))]·∇×ζ dy = 0 ∀ζ ∈ H1(Y)3.
(4.4)

Moreover there exists u1 ∈ L
2
(

R
3;H1

∗ (Y)
3
)

such that ∇y ·u1 = 0 a.e. in R
3×Y

and, setting

u1ε(ε(m+ y)) := u∗1ε(m, y)

zε(ε(m+ y)) := ∇×u∗1ε(m, y)
for a.a. y ∈ Y, ∀m ∈ Z

3, (4.5)

as ε→ 0 along a suitable subsequence

u1ε ⇀
2
u1, zε ⇀

2
∇y×u1 in L2(R3×Y)3. (4.6)

This entails that, as ε → 0 along the extracted subsequence, defining ū as
in (1.7),

∇×uε ⇀
2
∇×ū+∇y×u1 in L2(R3×Y)3. (4.7)

Furthermore u ∈ L2
(

R
3;L2rot(Y)

3
)

and for the whole given sequence

ε∇×uε ⇀
2
∇y×u = 0 in L2(R3×Y)3. (4.8)

(ii) Conversely, for any u∈L2(R3×Y)3 such that ū∈L2rot(R
3)3 and ∇y×u = 0

in D′(R3×Y)3 and for any u1 ∈ L2
(

R
3;H1

∗ (Y)
3
)

, there exists a sequence {uε}
of H1(R3)3 such that

uε → u in L2(R3)3, ∇×uε →
2
∇×ū+∇y×u1 in L2(R3×Y)3. (4.9)
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Proof. (i) By Lemma 4.1, u1ε exists and

‖zε‖L2(R3)3 , ‖u1ε‖L2(R3)3 ≤ Constant (independent of ε).

By Proposition 1.2 then there exists u1 ∈ L
2(R3×Y)3 such that, as ε→ 0 along

a suitable subsequence, u1ε ⇀
2
u1 in L2(R3×Y)3. For any ϕ ∈ D(R3) and any

ψ ∈ D(Y)3 we then have

∫

R3

zε(x)·ψ(
x
ε
)ϕ
(

εN (x
ε
)
)

dx = ε3
∑

m∈Z3

∫

Y

∇×u∗1ε(m, y)·ψ(y)ϕ(εm) dy

= −ε3
∑

m∈Z3

∫

Y

u∗1ε(m, y)·∇×ψ(y)ϕ(εm) dy

= −ε3
∑

m∈Z3

∫

Y

u1ε(ε(m+ y))·∇×ψ(y)ϕ(εm) dy

→ −

∫∫

R3×Y

u1(x, y)·∇×ψ(y)ϕ(x) dx dy.

As zε is uniformly bounded in L2(R3)3 and ϕ(εN (x
ε
)) → ϕ(x) uniformly for

x ∈ R
3, the latter convergence also holds if in the first integral ϕ(εN ( x

ε
)) is

replaced by ϕ(x). Hence ∇y× u1 ∈ L
2(R3×Y)3 and (4.6) is fulfilled. By (4.4)1,

we also have u1 ∈ L
2
(

R
3;H1

∗ (Y)
3
)

and ∇y ·u1 = 0 a.e. in R
3×Y .

(ii) Let us fix any ϕ ∈ D(R3) and any ψ ∈ D(Y)3. Arguing as for
Lemma 4.1, it is easy to see that there exists ζ ∈ L2rot∗(Y)

3 such that

∫

Y

(∇×ζ − ψ)·∇×v dy = 0 ∀v ∈ H1(Y)3. (4.10)

By setting ψ̃ := ∇×ζ and ψ̂ := ψ − ψ̃ in Y , we then have ψ̃, ψ̂ ∈ L2(Y)3,
∇×ψ̂ = 0 in

(

L2rot(Y)
3
)′
. By Lemma 1.1, (4.4) and (4.5), we have

∫

R3

∇×uε(x)·ψ̃(
x
ε
)ϕ
(

εN (x
ε
)
)

dx

=

∫

R3

dx ϕ
(

εN (x
ε
)
)

∫

Y

(∇×uε)
(

ε[N (x
ε
) + y]

)

·∇×ζ(y) dy

=

∫

R3

dx ϕ
(

εN (x
ε
)
)

∫

Y

∇×u∗1ε
(

N (x
ε
), y
)

·∇×ζ(y) dy

→

∫∫

R3×Y

∇y×u1(x, y)·ψ̃(y)ϕ(x) dx dy.

(4.11)

(iii) In general uε will not converge strongly in L2(R3)3; we then construct
another sequence {wε} as follows. Having fixed a test function ϕ ∈ D(R3), it is
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clear that the limit of ∇×uε(x)·ψ̂(
x
ε
)ϕ(x) does not depend on the behaviour of

uε outside the support S of ϕ, so that we may assume S to be equal to a ball
without loss of generality. Let us then set

VS :=
{

v ∈ H1(R3)3 : v = 0 a.e. in R
3 \ S,∇·v = 0

}

.

For any ε > 0, by the Poincaré inequality there exists a (unique) minimizer
wε ∈ VS of the functional

Ψε(v) :=

∫

R3

(1

2
|∇×v|2 −∇×uε ·∇×v

)

dx ∀v ∈ VS.

We then have

∇·wε = 0,

∫

R3

(∇×wε −∇×uε)·∇×v dx = 0 ∀v ∈ VS.

As ∇×VS = ∇×{v ∈ H1(R3)3 : v = 0 a.e. in R
3 \ S}, we conclude that

∇×wε = ∇×uε a.e. in S, ∀ε. (4.12)

The sequences {wε} is bounded in H1(R3)3 (at variance with {uε}); hence
there exists w ∈ H1(R3)3 such that, up to a subsequence,

wε ⇀ w in H1(R3)3.

As uε ⇀ ū in L2rot(R
3)3, passing to the weak (one-scale) limit in (4.12) we get

∇×w = ∇×ū a.e. in S.

(iv) Recalling that ψ̂ is curl-free, by the three latter displayed formulas we
have
∫

R3

[∇×uε(x)−∇×wε(x)]·ψ̂(
x
ε
)ϕ(x) dx = 0

∫

R3

∇×uε(x)·ψ̂(
x
ε
)ϕ(x) dx =

∫

R3

∇×wε(x)·ψ̂(
x
ε
)ϕ(x) dx

= −

∫

R3

wε(x)·ψ̂(
x
ε
)×∇ϕ(x) dx →

−

∫∫

R3×Y

w(x)·ψ̂(y)×∇ϕ(x) dx dy =

∫∫

R3×Y

∇×w(x)·ψ̂(y)ϕ(x) dx dy

=

∫∫

R3×Y

∇×ū(x)·ψ̂(y)ϕ(x) dx dy

∫∫

R3×Y

∇y×u1(x, y)·ψ̂(y)ϕ(x) dx dy =

∫∫

R3×Y

u1(x, y)·∇×ψ̂(y)ϕ(x) dx dy= 0

∫∫

R3×Y

∇×ū(x)·ψ̃(y)ϕ(x) dx dy =

∫

R3

∇×ū(x)ϕ(x) dx·

∫

Y

ψ̃(y) dy = 0.
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In (4.11) we may replace ϕ(εN (x
ε
)) by ϕ(x), since their difference vanishes

uniformly. By this and the three latter displayed formulas above we get
∫

R3

∇×uε(x)·ψ(
x
ε
)ϕ(x) dx→

∫∫

R3×Y

[∇×ū(x) +∇y×u1(x, y)]·ψ(y)ϕ(x) dx dy,

i.e., (4.7). (4.8) follows by the argument of part (i).

(v) Part (ii) of the thesis can be proved via an argument analogous to that
of part (ii) of Theorem 2.2. However here instead of (2.13) we set

uε(x) := ū(x) + ε

∫

R3

u1(ξ,
x
ε
)ρε(x− ξ) dξ for a.a. x ∈ R

3 (4.13)

(here with ū(x) instead of u(x)). The argument of part (iii) is also analogous
to that of Theorem 2.2; however here the strong convergence of the curl does
not entail that of the function. tu

Remarks. (i) The function u1 need not be uniquely determined by the sequence
{uε}.

(ii) Defining limε→0
(1) and limε→0

(2) as in Sect. 2, (4.7) also reads

lim
ε→0

(2)∇×uε = ∇×lim
ε→0

(1)uε +∇y×u1 = lim
ε→0

(1)∇×uε +∇y×u1 (4.14)

a.e. in R
3×Y . This decomposition is orthogonal in L2(R3×Y)3. Thus

lim
ε→0

(2)∇×uε ≡ 0 ⇒ ∇×lim
ε→0

(1)uε = ∇y×u1 ≡ 0.

5. Two-scale convergence of the divergence of
a vector field

In this section we assume that N ∈ N and p = 2. It is known that L2div(Y )N :=
{

v ∈ L2(Y )N : ∇·v ∈ L2(Y )
}

(∇· := div) is a Hilbert space equipped with
the graph norm. We similarly define L2div(R

N)N and L2div(Y)
N ; notice that the

normal traces of the functions of the latter space coincide on opposite faces
of Y . Dealing with N 6= 3, we define the curl as the antisymmetric part of the
Hessian matrix:

(∇×v)ij := Djvi −Divj ∀i, j ∈ {1, . . . , N}, ∀v ∈ D′(RN)N . (5.1)

Lemma 5.1 (Cell Projection). Let ε > 0. For any w ∈ L2div(R
N)N there exists

a unique w∗ = w∗(m, y) ∈ `2(H1
∗ (Y)

N) such that for any m ∈ Z
N

∇×w∗(m, y) = 0 for a.a. y ∈ Y
∫

Y

[∇·w∗(m, y)− (∇·w)(ε(m+ y))]η dy = 0 ∀η ∈ L2∗(Y).
(5.2)
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This entails that there exists a constant C4 > 0 (independent of w and ε) such
that

ε
N
2 ‖∇·w∗‖`2(L2(Y))

(

=

(

εN
∑

m∈ZN

‖∇·w∗(m, ·)‖2L2(Y)

)
1

2
)

≤ ‖∇·w‖L2(RN )

(5.3)

ε
N
2 ‖w∗‖`2(L2(Y)N ) ≤ C4‖∇·w‖L2(RN ). (5.4)

Proof. An argument analogous to that of Lemma 4.1, with the divergence in
place of the curl operator, yields the existence and uniqueness of w∗.

It is not restrictive to assume that w is curl-free, for wε only depends on
∇·w; hence

∫

Y
|∇w|2 dx =

∫

Y
|∇·w|2 dx, and (5.4) follows from (2.3). tu

Theorem 5.2. (i) Let {uε} be a bounded sequence in L2div(R
N)N such that

uε ⇀
2
u in L2(RN×Y)N . For any ε there exists a unique u∗1ε ∈ `2(H1

∗ (Y)
N)N

such that, for any m ∈ Z
N ,

∇×u∗1ε(m, y) = 0 for a.a. y ∈ Y
∫

Y

[∇·u∗1ε(m, y)− (∇·w)(ε(m+ y))]η dy = 0 ∀η ∈ L2∗(Y).
(5.5)

Moreover there exists u1 ∈ L
2
(

R
N ;H1

∗ (Y)
N
)

such that ∇y×u1 = 0 a.e. in R
N ,

and, setting

u1ε(ε(m+ y)) := u∗1ε(m, y)

zε(ε(m+ y)) := ∇·u∗1ε(m, y)
for a.a. y ∈ Y, ∀m ∈ Z

N , (5.6)

as ε→ 0 along a suitable subsequence

u1ε ⇀
2
u1 in L2(RN×Y)N , zε ⇀

2
∇y ·u1 in L2(RN×Y). (5.7)

This entails that, as ε → 0 along the extracted subsequence, defining ū as
in (1.7),

∇·uε ⇀
2
∇·ū+∇y ·u1 in L2(RN×Y). (5.8)

Furthermore u ∈ L2
(

R
N ;L2div(Y)

N
)

and for the whole given sequence

ε∇·uε ⇀
2
∇y ·u = 0 in L2(RN×Y). (5.9)

(ii) Conversely, for any u ∈ L2(RN ×Y)N such that ū ∈ L2div(R
N)N and

∇y ·u = 0 in D′(RN ×Y) and for any u1 ∈ L2
(

R
N ;H1

∗ (Y)
N
)

, there exists a
sequence {uε} of H

1(RN)N such that

uε → u in L2(RN)N , ∇·uε →
2
∇·ū+∇y ·u1 in L2(RN×Y). (5.10)
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Proof. (i) By Lemma 5.1, u1ε exists and

‖zε‖L2(RN ), ‖u1ε‖L2(RN )N ≤ Constant (independent of ε).

By Proposition 1.2 then there exists u1 ∈ L2(RN×Y)N such that, as ε → 0
along a suitable subsequence, u1ε ⇀

2
u1 in L2(RN×Y)N . For any ϕ ∈ D(RN)

and any ψ ∈ D(Y), we have
∫

RN

zε(x)ψ(
x
ε
)ϕ
(

εN (x
ε
)
)

dx = εN
∑

m∈ZN

∫

Y

∇·u∗1ε(m, y)ψ(y)ϕ(εm) dy

= −εN
∑

m∈ZN

∫

Y

u∗1ε(m, y)·∇ψ(y)ϕ(εm) dy

= −εN
∑

m∈ZN

∫

Y

u1ε(ε(m+ y))·∇ψ(y)ϕ(εm) dy

→ −

∫∫

RN×Y

u1(x, y)·∇ψ(y)ϕ(x) dx dy.

As zε is uniformly bounded in L2(RN)N and ϕ(εN (x
ε
)) → ϕ(x) uniformly for

x ∈ R
N , the latter convergence also holds if in the first integral ϕ(εN ( x

ε
))

is replaced by ϕ(x). Moreover ∇y×u1 = 0 a.e. in R
N ×Y , by (5.5)1. Thus

u1 ∈ L
2
(

R
N ;H1

∗ (Y)
N
)

and (5.7) is fulfilled.

(ii) Let us fix any ϕ ∈ D(RN), any ψ ∈ D(Y), and define ψ̄ and ψ̃ as
in (1.7). By (5.5) and (5.7),
∫

RN

∇·uεψ̃(
x
ε
)ϕ
(

εN (x
ε
)
)

dx =

∫

RN

ϕ
(

εN (x
ε
)
)

dx

∫

Y

∇·uε

(

εN (x
ε
) + εy

)

ψ̃(x
ε
) dy

=

∫

RN

ϕ
(

εN (x
ε
)
)

dx

∫

Y

∇·u∗1ε
(

N (x
ε
), y
)

ψ̃(x
ε
) dy

→

∫∫

RN×Y

∇y ·u1(x, y)ψ̃(y)ϕ(x) dx dy.

As uε ⇀ ū weakly in L2(RN)N ,
∫

RN

∇·uε(x)ψ̄ϕ(x) dx = −

∫

RN

uε(x)ψ̄ ·∇ϕ(x) dx →

−

∫

RN

ū(x)ψ̄ ·∇ϕ(x) dx dy =

∫∫

RN×Y

∇·ū(x)ψ̄ϕ(x) dx dy.

Moreover, as
∫

Y
∇y ·u1(x, y) dy = 0 for a.a. x and

∫

Y
ψ̃(y) dy = 0,

∫∫

RN×Y

∇y ·u1(x, y)ψ̄ϕ(x) dx dy =

∫

Y

∇y ·u1(x, y) dy

∫

RN

ψ̄ϕ(x) dx = 0

∫∫

RN×Y

∇·ū(x)ψ̃(y)ϕ(x) dx dy =

∫

RN

∇·ū(x)ϕ(x) dx

∫

Y

ψ̃(y) dy = 0.
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As ϕ(εN (x
ε
))→ ϕ(x) uniformly in R

N , the four latter formulas yield

∫

RN

∇·uε(x)ψ(
x
ε
)ϕ(x) dx→

∫∫

RN×Y

[∇·ū(x) +∇y ·u1(x, y)]ψ(y)ϕ(x) dx dy,

i.e., (5.8). (5.9) follows by the argument of part (i). Parts (ii) can be proved as
in Theorems 2.2 and 4.2, defining uε as in (4.13). tu

Remarks. (i) The function u1 need not be uniquely determined by the sequence
{uε}.

(ii) Defining limε→0
(1) and limε→0

(2) as in Sect. 2, (5.8) also reads

lim
ε→0

(2)∇·uε = ∇·lim
ε→0

(1)uε +∇y ·u1 = lim
ε→0

(1)∇·uε +∇y ·u1 (5.11)

a.e. in R
N×Y . This decomposition is orthogonal in L2(RN×Y). In particular

if ∇·uε ⇀
2

0 in L2(RN×Y) then ∇·ū = ∇y ·u1 ≡ 0, consistently with part (iii)

of Proposition 1.14 of [1].

6. Two-scale convergence of the divergence of
a tensor field

In this section we assume that N = 3, p = 2, and define the divergence and the
curl of a 3×3-tensor field v∈L2(Y )9 as follows, setting vi :=(vi1,vi2,vi3):

(∇·v)i := ∇·(vi), (∇×v)i := ∇×(vi) in D′(Y )3, for i = 1, 2, 3. (6.1)

Notice that ‖∇×v‖2
L2(Y )9 + ‖∇·v‖

2
L2(Y )3 = ‖∇v‖2

L2(Y )27 for any v ∈ H1(Y )9.

We also set L2div(Y )9 := {v ∈ L2(Y )9 : ∇·v ∈ L2(Y )3}; this is a Hilbert sub-
space of H1(Y )9 equipped with the graph norm. We similarly define L2div(R

3)9,
L2div(Y)

9, and so on.

Theorem 6.1. (i) Let {uε} be a bounded sequence of L
2
div(R

3)9 such that uε⇀
2
u

in L2(R3×Y)9. For any ε there exists a unique u∗1ε ∈ `
2(H1

∗ (Y)
9) such that, for

any m ∈ Z
3,

∇×u∗1ε(m, y) = 0 for a.a. y ∈ Y
∫

Y

[∇·u∗1ε(m, y)− (∇·uε)(ε(m+ y))]η dy = 0 ∀η ∈ L2∗(Y).
(6.2)

Moreover there exists u1 ∈ L
2
(

R
3;H1

∗ (Y)
9
)

such that ∇y×u1 = 0 a.e. in Y for
a.a. x ∈ R

3, and, setting

u1ε(ε(m+ y)) := u∗1ε(m, y)

zε(ε(m+ y)) := ∇·u∗1ε(m, y)
for a.a. y ∈ Y, ∀m ∈ Z

3, (6.3)
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as ε→ 0 along a suitable subsequence

u1ε ⇀
2
u1 in L2(R3×Y)9, zε ⇀

2
∇y ·u1 in L2(R3×Y)3. (6.4)

This entails that, as ε → 0 along the extracted subsequence, defining ū as
in (1.7),

∇·uε ⇀
2
∇·ū+∇y ·u1 in L2(R3×Y)3. (6.5)

Furthermore u ∈ L2
(

R
3;L2div(Y)

9
)

and for the whole given sequence

ε∇·uε ⇀
2
∇y ·u = 0 in L2(R3×Y)3. (6.6)

If the tensors uε are symmetric, then u1 is also symmetric.

(ii) Conversely, for any u ∈L2(R3×Y)9 such that ū ∈L2div(R
3)9 and ∇y·u = 0

in D′(R3×Y)3 and for any u1 ∈ L2
(

R
3;H1

∗ (Y)
9
)

, there exists a sequence {uε}
of H1(R3)9 such that

uε → u in L2(R3)9, ∇·uε ⇀
2
∇·ū+∇y ·u1 in L2(R3×Y)3. (6.7)

Proof. It suffices to apply Theorem 5.2 to the sequences of vectors uεi :=
(uεi1, uεi2, uεi3), for i = 1, 2, 3. Part (ii) can also be proved via the procedure of
Theorems 2.2 and 4.2, defining uε as in (4.13). tu

Remarks. (i) The function u1 need not be uniquely determined by the sequence
{uε}.

(ii) Defining limε→0
(1) and limε→0

(2) as in Sect. 2, (6.5) also reads

lim
ε→0

(2)∇·uε = ∇·lim
ε→0

(1)uε +∇y ·u1 = lim
ε→0

(1)∇·uε +∇y ·u1 (6.8)

a.e. in R
3×Y . This decomposition is orthogonal in L2(R3×Y)3.

7. Two-scale limit of some classical laws

In this section we illustrate some simple applications of the above results, in
view of the application to the homogenization of linear and nonlinear problems
in electromagnetism and continuum mechanics, cf. e.g. [36]–[39].

Two-scale limit of the Ampère law. Let us consider the classical Ampère
law of magnetostatics, and assume that the magnetic field H and the electric
current field J depend on a scale parameter ε:

∇×Hε = 4πJε a.e. in R
3. (7.1)
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Under boundedness hypotheses (here omitted), after Theorem 4.2 as ε vanishes
along a suitable sequence

Jε ⇀
2
J, Hε ⇀

2
H, ∇×Hε ⇀

2
∇×H̄ +∇y×H1 in L2(R3×Y)3. (7.2)

Defining J̄ and J̃ as in (1.7), we then get the coarse- and fine-scale Ampère
laws:

∇×H̄ = 4πJ̄ a.e. in R
3,

∇y×H = 0, ∇y×H1 = 4πJ̃ a.e. in R
3×Y .

(7.3)

Moreover, as Jε is divergence-free, by Theorem 5.2,

∇·J̄ = 0 a.e. in R
3, ∇y ·J̃ = 0 a.e. in R

3×Y . (7.4)

Two-scale limit of the Gauss law. Next we consider the classical Gauss law
of electrostatics, and assume that the electric displacement D and the electric
charge γ depend on a parameter ε:

∇·Dε = 4πγε a.e. in R
3. (7.5)

Under boundedness hypotheses, after Theorem 5.2 as ε vanishes along a suitable
sequence

Dε ⇀
2
D in L2(R3×Y)3

γε ⇀
2
γ, ∇·Dε ⇀

2
∇·D̄ +∇y ·D1 in L2(R3×Y).

(7.6)

Defining γ̄ and γ̃ as in (1.7), we then get the coarse- and fine-scale Gauss laws:

∇·D̄ = 4πγ̄ a.e. in R
3

∇y ·D = 0, ∇y ·D1 = 4πγ̃ a.e. in R
3×Y .

(7.7)

Two-scale limit of the system of linear elasticity. Let us denote the
displacement by u, the deformation tensor by e, the Cauchy stress by σ, and
an applied load by f in a domain Ω of R

3. Assuming dependence on a scale
parameter ε, the definition of e and the balance of momentum read

∇suε = eε, ∇·σε = f a.e. in Ω. (7.8)

(Of course a further equation is needed to close the problem). Under suitable
boundedness hypotheses, after Theorems 3.2 and 6.2 as ε vanishes along a
suitable sequence

uε ⇀ u in W 1,p(R3)3, eε ⇀
2
e in Lp(R3×Y)9 (p ∈ ]1,+∞[),

σε ⇀
2
σ in L2(R3×Y)9, ∇·σε ⇀

2
∇·σ̄ +∇y ·σ1 in L2(R3×Y)3.

(7.9)
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Notice that u is independent of the fine-scale variable y, cf. Theorem 2.2. Defin-
ing ē, ẽ and f̄ , f̃ as in (1.7), we then get the coarse- and fine-scale laws:

∇su = ē, ∇·σ̄ = f̄ a.e. in R
3

∇s
yu1 = ẽ, ∇y ·σ = 0, ∇y ·σ1 = f̃ a.e. in R

3×Y .
(7.10)

8. On the homogenization of some elliptic equations

So far we confined ourselves to first-order linear differential operators with con-
stant coefficients. It is clear that several results take over to operators with
x-dependent coefficients. One may also include coefficients that also depend on
the unknown function uε, provided that the latter converges strongly two-scale.

The results that we derived so far are based on the L2-boundedness of some
first-order operators, and may be applied to the homogenization of a large
number of partial differential equations. Here we illustrate a simple example.

A quasilinear elliptic equation. We deal with the system

∇×
[

A(uε(x), x,
x
ε
)·
(

∇×uε + f
)]

= 0

∇·uε = 0
in R

3. (8.1)

This equation may account for equilibrium in a heterogeneous and anisotropic
electric conductor that occupies a domain Ω of R

3 and is surrounded by an
insulating environment, e.g. air. In this case uε represents the magnetic field
(uε = Hε), −f is a prescribed electric current field supported outside Ω, and A
is the electric resistance (that vanishes outside Ω). (8.1)1 then follows from the
stationary Ampère and Faraday equations coupled with Ohm’s laws:

∇×Hε = Jε , ∇×Eε = 0, Eε = A·(Jε + f) a.e. in R
3.

The resistance is here assumed to depend on the magnetic-field, as it is pre-
scribed by the classical Hall effect, cf. e.g. [20]. The magnetic field Hε must
also be related by a constitutive law to the magnetic induction Bε, which is
divergence free. If the magnetic permeability is scalar and uniform, i.e., Bε is
proportional to Hε, then we retrieve (8.1)2.

Let Ω be a bounded Lipschitz domain of R
3 and A (= {aij : i, j = 1, 2, 3})

a function R
3×Ω×Y → R

9 such that

A(v, ·, ·) is measurable w.r.t. the σ-algebra

generated by B(Ω)×L(Y), ∀v ∈ R
3 (8.2)
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(our discussion would be unchanged if B(Ω)×L(Y) were replaced by L(Ω)×B(Y)),

v 7→ A(v, x, y) is continuous, for any x and a.a. y, (8.3)

∃c1, c2 ∈ R (0 < c1 < c2) such that for any (v, x) and a.a. y

c1ξiξi ≤ aij(v, x, y)ξiξj,
∣

∣{aij(v, x, y)ξi}
∣

∣ ≤ c2|ξ| ∀ξ ∈ R
3.

(8.4)

The function (v, x) 7→ A(v, x, x
ε
) is thus of Caratheodory class, and the mapping

x 7→ A(v(x), x, x
ε
) is measurable in Ω whenever so is the function v.

Let f ∈ L2(Ω)3 and for any ε > 0 consider the problem of finding uε ∈
H1

∗ (Ω)
3 such that (8.1) is fulfilled in D′(Ω). By the compactness of the injection

H1
∗ (Ω)

3 → L2(Ω)3, it is easy to see that this equation has a solution.

Theorem 8.1. Assume that the conditions (8.2)–(8.4) are fulfilled. For any
ε > 0 let uε ∈ H

1
∗ (Ω)

3 be a solution of (8.1), and let u∗1ε ∈ `
2(H1

∗ (Y)
3) be such

that (extending uε with vanishing value outside Ω and omitting restrictions)

∇·u∗1ε(m, y) = 0 for a.a. y ∈ Y
∫

Y

[∇×u∗1ε(m, y)− (∇×uε)(ε(m+ y))]·∇×ζ dy = 0 ∀ζ ∈ H1(Y)3.
(8.5)

(By Lemma 4.1 this problem has a unique solution.) Let us set

u1ε(ε(m+ y)) := u∗1ε(m, y)

zε(ε(m+ y)) := ∇×u∗1ε(m, y)
for a.a. y ∈ Y, ∀m ∈ Z

3. (8.6)

Then there exist u ∈ H1
∗ (Ω)

3 and u1 ∈ L
2
(

Ω;H1
∗ (Y)

3
)

such that, as ε→ 0 along
a suitable subsequence,

uε ⇀ u in H1
∗ (Ω)

3, (8.7)

u1ε ⇀
2
u1 , zε ⇀

2
∇y×u1 in L2(Ω×Y)3, (8.8)

∇×uε →
2
∇×u+∇y×u1 in L2(Ω×Y)3. (8.9)

This entails that
∫∫

Ω×Y

{A(u(x), x, y)·[∇×u(x) +∇y×u1(x, y) + f(x)]}

[∇×v(x) +∇y×v1(x, y)] dx dy = 0

∀v ∈ H1
∗ (Ω)

3, ∀v1 ∈ L
2
(

Ω;H1(Y)3
)

(8.10)

∇·u = 0 in D′(Ω), ∇y ·u1 = 0 in D′(Ω×Y). (8.11)

By the arbitrariness of v and v1, the equation (8.10) is equivalent to the
system

∇×

∫

Y

{A(u(x), x, y)·[∇×u(x)+∇y×u1(x, y)+f(x)]}dy = 0 in D′(Ω)3

∇y×{A(u(x), x, y)·[∇×u(x)+∇y×u1(x, y)+f(x)]} = 0 in D′(Ω×Y)3.

(8.12)



Two-Scale Convergence 159

Proof. In this argument all fields defined in Ω are extended to R
3 with vanishing

value. Multiplying (8.1) by uε it is easy to see that the family {uε} is uniformly
bounded in H1

∗ (Ω)
3. Theorem 3.2 then yields (8.7), (8.8) and

∇×uε ⇀
2
∇×u+∇y×u1 in L2(Ω×Y)3,

as ε vanishes along a suitable sequence. Thus uε → u in L2(Ω)3, whence

A(uε(x), x,
x
ε
)→
2
A(u(x), x, y) in L2(Ω×Y)9. (8.13)

For any v ∈ D(Ω)3 and any v1 ∈ D(Ω×Y)
3, multiplying (8.1) by v(x)+εv1(x,

x
ε
)

and integrating in Ω we get

∫∫

Ω×Y

{

A(uε(x), x,
x
ε
)·[∇×uε(x) + f(x)]

}

· [∇×v(x) + ε∇x×v1(x,
x
ε
) +∇y×v1(x,

x
ε
)] dx dy = 0.

(8.14)

Passing to the limit in (8.1) we then get (8.10). The equations (8.11) are direct
consequences of (8.1)2 and (8.5)1.

Let us now come to (8.9). By (8.7), denoting by ε′ a suitable subsequence,
A(uε′(x), x,

x
ε′
) →

2
A(u(x), x, y) a.e. in Ω × Y . Let us set gε′ := ∇ × uε′ and

g := ∇×u+∇y×u1. Recalling the upper estimate of (8.4), the two-scale Vitali
theorem (cf. Lemma 2.3) then yields

∫

Ω

{

[A(uε′(x), x,
x
ε′
)·gε′(x)]·gε′(x)− [A(u(x), x, x

ε′
)·gε′(x)]·gε′(x)

}

dx→ 0.

By (8.10) and (8.14) (here with v = gε′ and v1 ≡ 0) we then get

∫

Ω

[A(u(x), x, x
ε′
)·gε′(x)]·gε′(x) dx→

∫∫

Ω×Y

[A(u(x), x, y)·g(x, y)]·g(x, y)
}

dx dy.

Notice that

v 7→

∫

Ω

[A(u(x), x, x
ε′
)·v(x)]·v(x) dx,

w 7→

∫∫

Ω×Y

[A(u(x), x, y)·w(x, y)]·w(x, y) dx dy

are the square of uniformly convex norms over L2(Ω)3 and L2(Ω×Y)3, re-
spectively. By a two-scale extension of the property of compactness by strict
convexity [40], (8.12) then yields (8.9) for the subsequence {gε′}. This actu-
ally holds for the whole sequence {gε}, since the same argument applies to any
subsequence. tu
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Other quasilinear elliptic equations. If the magnetic induction wε = Bε is
a nonlinear function of the magnetic field uε, then (8.1) must be coupled with
the condition ∇·wε ≡ 0. If A is independent of uε, for any ε existence of a
solution of the corresponding system can be proved via a procedure based on
Murat’s and Tartar’s compensated compactness and on compactness by strict
convexity. As ε vanishes, convergence to a homogenized problem may then be
derived via two-scale extensions of those compactness techniques, cf. [39], using
the spaces L2rot(R

3)3 and L2div(R
3)3, and applying of the results of Sections 4, 5.

The analogous of the system (8.1) for the gradient operator reads

−∇·
[

A(uε(x), x,
x
ε
)·(∇uε + f)

]

= 0 in Ω; (8.15)

here uε is a scalar function, and no further condition like (8.1)2 is needed. If uε

is interpreted as a temperature field, this may represent thermal equilibrium in
a heterogeneous and anisotropic material, with a temperature-dependent heat
conductivity tensor A. It is easy to see that this equation has at least one solu-
tion. This problem has been studied in a large literature, see the monographs
quoted in the Introduction. The two-scale limit behaviour as ε vanishes may
be treated along the lines of the procedure that we used for (8.1).

Finally let us come to equations of the form

∇×
[

A(∇×uε(x), x,
x
ε
)·∇×uε

]

= f in Ω, (8.16)

−∇·
[

A(∇uε(x), x,
x
ε
)·∇uε

]

= f in Ω. (8.17)

For each of them existence of a solution may be proved, provided that the
corresponding operator is monotone; if it is even cyclically monotone, then this
is the Euler equation of a convex functional, and variational techniques may be
used, cf. [40]. More general quasi-linear equations will be studied apart.

9. Conclusions

Let a sequence {uε} be such that uε ⇀
2
u in L2(RN×Y)M , and P :Dom(P )→

L2(RN)M̃ be a first-order differential operator (with constant coefficients), for
suitable integers M, M̃ . In each of the five cases that we dealt with in
Sections 2–6, we constructed a sequence {u1ε} such that, as ε vanishes along a
suitable subsequence, defining ū as in (1.7),

u1ε ⇀
2
u1, εPu1ε ⇀

2
Pyu1, Puε ⇀

2
Pū+ Pyu1 in L2(RN×Y)M̃ ; (9.1)

here ū is the weak one-scale limit of {uε}, Py is the version of P acting on the
variable y. For instance, in Section 2, M = 1, M̃ = N , P = ∇, Dom(P ) =
H1(RN); in Section 4, M = M̃ = 3, P = ∇×, Dom(P ) = L2rot(R

3)3.
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We encountered two basic situations. In Sections 2, 3 the domain of P
has compact injection in L2(RN)M , so that uε → u in this space; the two-scale
limit function then coincides with u, which does not depend on the fine-scale
variable y. On the other hand in Sections 4, 5, 6 the sequence does not strongly
one-scale converge in L2(RN)M , so that the two-scale limit function u may
depend on y; however of course uε ⇀ ū in L2(RN)M . We then represented the
weak two-scale limit of Puε in the form Pū + Pyu1; this entails that the fine-
scale information are confined to the term ∇y× u1. Notice that Pū and Pyu1
are orthogonal in L2(RN× Y)M .

An alternative representation of the form Pu + Pyũ1 for the curl and di-
vergence operators was studied by Wellander and Kristensson [41], who used a
technique that is reminiscent of that of Theorem 3 of [27] and Proposition 1.14
of [1] for the gradient.

Remark added in proofs. Here we briefly compare the latter alternative
representation of the two-scale limit of the curl with that of Section 4. By
Theorem 4.2 ∇y×u = 0, hence there exists ϕ ∈ L2

(

R
3;H1

∗ (Y)
)

such that
u(x, y) = ū(x) +∇yϕ(x, y) for a.a. (x, y) ∈ R

3×Y . Thus

∇×ū = ∇x×u−∇x×∇yϕ = ∇x×u+∇y×∇xϕ in D′(R3×Y)3.

Setting u∗1 := u1 +∇xϕ ∈ H
−1
(

R
3;H1

∗ (Y)
3
)

we then infer that

∇×ū+∇y×u1 = ∇x×u+∇y×(∇xϕ+ u1) = ∇x×u+∇y×u
∗
1. (9.2)

However it is not obvious that ∇x×u ∈ L
2(R3×Y)3, and thus the latter equality

a priori just holds in H−1
(

R
3;L2(Y)3

)

; in other terms, both ∇x×u and ∇y×u
∗
1

might be elements of the latter space.
An analogous remark concerning the representation of the two-scale limit

of the divergence applies to Theorems 5.2 and 6.1.

Acknowledgements. This research was supported by the projects “Mathe-
matical modelling and analysis of free boundary problems” and “Free boundary
problems, phase transitions and models of hysteresis” of Italian M.I.U.R.. The
author also gratefully acknowledges a useful talk with Stephan Luckhaus.

References

[1] Allaire, G., Homogenization and two-scale convergence. S.I.A.M. J. Math.

Anal. 23 (1992), 1482 – 1518.

[2] Allaire, G., Shape Optimization by the Homogenization Method. New York:
Springer 2002.



162 A. Visintin

[3] Allaire, G. and Conca, C., Bloch wave homogenization and spectral asymptotic
analysis. J. Math. Pures Appl. 77 (1998), 153 – 208.

[4] Arbogast, T., Douglas, J. and Hornung, U., Derivation of the double porosity
model of single phase flow via homogenization theory. S.I.A.M. J. Math. Anal.

21 (1990), 823 – 836.

[5] Bakhvalov, N. and Panasenko, G., Homogenization: Averaging Processes in

Periodic Media. Dordrecht: Kluwer 1989.

[6] Bensoussan, G., Lions, J.-L. and Papanicolaou, G., Asymptotic Analysis for

Periodic Structures. Amsterdam: North-Holland 1978.

[7] Bossavit, A., Griso, G. and Miara, B., Modelling of periodic electromagnetic
structures. Bianisotropic materials with memory. J. Math. Pures. Appl. 84
(2005), 819 – 850.

[8] Bourgeat, A., Luckhaus, S. and Mikelić, A., Convergence of the homogenization
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[19] Jikov, V. V., Kozlov, S. M. and Olĕınik, O. A., Homogenization of Differential

Operators and Integral Functionals. Berlin: Springer 1994.

[20] Landau, L. and Lifshitz, E., Electrodynamics of Continuous Media. Oxford:
Pergamon Press 1960.



Two-Scale Convergence 163
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2002, pp. 1 – 84.

[34] Visintin, A., Some properties of two-scale convergence. Rendic. Accad. Lincei
XV (2004), 93 – 107.

[35] Visintin, A., Towards a two-scale calculus. E.S.A.I.M. Control Optim. Calc.

Var. 12 (2006), 371 – 397.

[36] Visintin, A., Homogenization of doubly-nonlinear equations. Rendic. Accad.

Lincei. 17 (2006), 211 – 222.

[37] Visintin, A., Homogenization of the nonlinear Kelvin–Voigt model of visco-
elasticity and of the Prager model of elasto-plasticity. Continuum Mech. Ther-

modyn. 18 (2006), 223 – 252.



164 A. Visintin

[38] Visintin, A., Homogenization of the nonlinear Maxwell model of visco-elasticity
and of the Prandtl–Reuss model of elasto-plasticity (submitted).

[39] Visintin, A., Electromagnetic processes in doubly-nonlinear composites (sub-
mitted).

[40] Visintin, A., Two-scale convergence of some integral functionals. Calc. Var.
Partial Differential Equations (in press).

[41] Wellander, N. and Kristensson, G., Homogenization of the Maxwell equations
at fixed frequency. S.I.A.M. J. Appl. Math. 64 (2003), 170 – 195.

[42] Zhikov, V. V., On an extension of the method of two-scale convergence and its
applications. Sb. Math. 191 (2000), 973 – 1014.

Received December 20, 2004; revised June 30, 2006


