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The New Maximal Measures

for Stochastic Processes

Heinz König

Abstract. In recent work the author proposed a reformed notion of stochastic pro-
cesses, which in particular removes notorious problems with uncountable time do-
mains. In case of a Polish state space the new stochastic processes are in one-to-one
correspondence with the traditional ones. This implies for a stochastic process that
the traditional canonical measure on the path space receives a certain distinguished
maximal measure extension which has an immense domain. In the present paper we
prove, under a certain local compactness condition on the Polish state space and for
the time domain [0,∞[, that the maximal domain in question has, for all stochastic
processes, three distinguished members: the set of all continuous paths, the set of
all paths with one-sided limits, and its subset of those paths which at each time are
either left or right continuous. In all these cases the maximal measure of the set
is equal to its outer canonical measure. However, the situation will be seen to be
different for the set of the càdlàg paths, for example in the Poisson process.
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1. Introduction and basic measure theory

The present article continues the author’s contributions to the fundamentals of
stochastic processes [9]–[11]. These papers are based on his work in measure
and integration [6, 8], the aim of which is to build adequate new structures.
This work inspired a reformed concept of stochastic processes, which in par-
ticular removes notorious problems with uncountable time domains. The new
stochastic processes are in one-to-one correspondence with the traditional ones
whenever the state space is a Polish topological space. It is in this situation
that the present article wants to add further evidence in favour of the reformed
concept of stochastic processes.

H. König: Universität des Saarlandes, Fakultät für Mathematik und Informatik,
D-66041 Saarbrücken, Germany; hkoenig@math.uni-sb.de
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We start with two sections of introduction. The present Section 1 recalls
from the earlier survey article [8] the fundamentals of the author’s work in
measure and integration. The subsequent Section 2 recalls from [10] the funda-
mentals on the two notions of stochastic processes, the traditional and the new
one, and then formulates and discusses the new results of the present paper.

The heart of the new measure theory are parallel outer and inner extension
procedures for certain set functions. The outer versions are similar to the fa-
mous extension procedure due to Carathéodory (1914), and therefore look more
familiar than the inner ones. But in recent years the inner versions became more
and more authoritative. In particular our treatment of stochastic processes will
be based on the so-called inner τ version, and hence we shall restrict ourselves
to the inner extension procedures.

Let X be a nonvoid set. We start to recall the famous extension procedure
of Carathéodory cited above. He defines on the one hand for a set function
Θ : P(X)→ [0,∞] with Θ(∅) = 0 the set system

C(Θ) := {A ⊂ X : Θ(M) = Θ(M ∩ A) + Θ(M ∩ A′) ∀M ⊂ X},

the members of which are called measurable Θ. It turns out that Θ|C(Θ) is a
content on an algebra in X. On the other hand he defines for a set function
ϕ : S→ [0,∞] on a set system S in X with ∅ ∈ S and ϕ(∅) = 0 the so-called
outer measure ϕ◦ : P(X)→ [0,∞] to be

ϕ◦(A) = inf

{ ∞
∑

l=0

ϕ(Sl) : (Sl)l in S with
∞
⋃

l=0

Sl ⊃ A

}

.

His main theorem then reads as follows. If ϕ : S → [0,∞] is a content on a

ring and upward σ continuous, then ϕ◦|C(ϕ◦) is a measure on a σ algebra in X

and an extension of ϕ.

In the traditional theory this theorem is the most fundamental tool in order
to produce nontrivial measures. However, it has been under quite some criti-
cism. In the traditional frame the attacks are towards the formation C(·), as
an unmotivated and artificial one, while as a rule no doubt falls upon the outer
measure formation ϕ 7→ ϕ◦. But the new structure to be described below will
disclose that the opposite is true: There are in fact serious deficiencies around
the Carathéodory theorem, but it is the particular form of his outer measure
which must be blamed for them, whereas the formation C(·) remains the deci-
sive methodical idea and even improves when put into the adequate context.
The main defects of the theorem are as follows.

1) The measure extension it produces is of an obvious outer regular charac-
ter, like ϕ◦ itself. It is mysterious how an inner regular counterpart could look
– while inner regular aspects become more and more important.
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2) The measure extension it produces is of an obvious sequential character.
It is mysterious how a nonsequential counterpart could look – while nonsequen-
tial aspects become more and more important. Both times the sum in the
definition of ϕ◦ is a crucial obstacle.

3) The proof of the theorem suffers a complete breakdown as soon as one
attempts to pass from rings S to less restrictive set systems like lattices – while
lattices of subsets become more and more important.

All these defects will disappear under the new structure to which we proceed
now, as said above in its inner version. Let as before X be a nonvoid set. We
adopt a kind of shorthand notation, in that • = ?στ marks three parallel
theories, where ? stands for finite, σ for sequential or countable, and τ for
nonsequential or arbitrary. As an example, for a nonvoid set system S in X let
S• denote the system of the intersections and S• the system of the unions of
the nonvoid • subsystems of S.

In the sequel we assume that S is a lattice in X with ∅ ∈ S and that
ϕ : S → [0,∞[ is an isotone set function with ϕ(∅) = 0. Our basic definitions
are as follows. We define an inner • extension of ϕ to be an extension α : A →
[0,∞] of ϕ which is a content on a ring, and such that moreover S• ⊂ A and

α|S• is downward • continuous (note that α|S• <∞), and
α is inner regular S•.

We define ϕ to be an inner • premeasure iff it admits inner • extensions. The
subsequent inner extension theorem characterizes those ϕ which are inner • pre-
measures, and then describes all inner • extensions of ϕ. The theorem is in terms
of the inner • envelopes ϕ• : P(X)→ [0,∞] of ϕ, defined to be

ϕ•(A) = sup
{

inf
M∈M

ϕ(M) : M ⊂ S nonvoid • with M ↓⊂ A
}

,

where M ↓⊂ A means that M is downward directed with intersection contained
in A. We also need their satellites ϕB

• : P(X) → [0,∞] with B ⊂ X, defined
to be

ϕB
• (A) = sup

{

inf
M∈M

ϕ(M) :
M ⊂ S nonvoid • with

M ↓⊂ A and M ⊂ B ∀M ∈M

}

.

We note that ϕ• is inner regular S•. Moreover ϕ = ϕ•|S iff ϕ is downward
• continuous, and ϕ•(∅) = 0 iff ϕ is downward • continuous at ∅.

Theorem 1.1 (Inner Extension Theorem). Assume that ϕ : S → [0,∞[ is
isotone with ϕ(∅) = 0. Then ϕ is an inner • premeasure iff

ϕ is supermodular and downward • continuous, and

ϕ(B) 5 ϕ(A) + ϕ•(B \ A) for all A ⊂ B in S.
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Equivalently,

ϕ is supermodular and downward • continuous at ∅, and

ϕ(B) 5 ϕ(A) + ϕB
• (B \ A) for all A ⊂ B in S.

In this case Φ := ϕ•|C(ϕ•) is an inner • extension of ϕ, and a measure on a

σ algebra when • = στ ; also Φ is complete. All inner • extensions of ϕ are

restrictions of Φ. Moreover we have the localization principle which reads

for A ⊂ X: S ∩ A ∈ C(ϕ•) for all S ∈ S =⇒ A ∈ C(ϕ•).

Thus we have S ⊂ S• ⊂ C(ϕ•). It is plain that the members of S• are the
most basic measurable subsets.

The prominent rôle of ϕ•|C(ϕ•) as the unique maximal inner • extension of ϕ
emphasizes the fundamental nature of Carathéodory’s formation C(·). There is
no such fact in the traditional context: If ϕ : S → [0,∞] is an upward σ

continuous content on a ring S in X then ϕ◦|C(ϕ◦) need not be a maximal

measure extension of ϕ (for example for S = {∅, X} and ϕ 6= 0 one has
ϕ◦|C(ϕ◦) = ϕ).

We also note a special case of particular importance: S is called • compact

(in the set theoretical sense in contrast to the topological one) iff each nonvoid
• subsystem M ⊂ S fulfils M ↓ ∅ ⇒ ∅ ∈ M. It is obvious that in this case
the above functions ϕ are all downward • continuous at ∅. Thus the second
equivalent condition in Theorem 1.1 becomes much simpler.

The most natural example is that X is a Hausdorff topological space with
S = Comp(X). For an isotone set function ϕ : S → [0,∞[ with ϕ(∅) = 0 then
the three conditions • = ?στ in Theorem 1.1 turn out to be identical, and if
fulfilled produce the same ϕ• and hence the same Φ = ϕ•|C(ϕ•). In this case ϕ
is called a Radon premeasure and Φ the maximal Radon measure which results
from ϕ. The localization principle implies that C(ϕ•) ⊃ Bor(X).

2. Stochastic processes and new results

The present section assumes an infinite index set T called the time domain,
and a nonvoid set Y called the state space. One forms the T -fold product set
X := Y T , called the path space, the members of which are the paths x = (xt)t∈T :
T → Y . For t ∈ T let Ht : X → Y be the canonical projection x 7→ xt. Next let
I = I(T ) consist of the nonvoid finite subsets p, q, . . . of T . For p ∈ I one forms
the product set Y p, with Hp : X → Y p the canonical projection x 7→ (xt)t∈p,
and for the pairs p ⊂ q in I the canonical projections Hpq : Y

q → Y p.

In the traditional situation one equips Y with a σ algebra B of subsets. In
X = Y T one forms the finite-based product set system

B[T ] :=
{

∏

t∈T

Bt : Bt ∈ B ∀ t ∈ T with Bt = Y ∀∀ t ∈ T
}

,
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where ∀∀ means for all except for finitely many, and the generated σ algebra
A := Aσ(B[T ]), which is the smallest σ algebra A in X such that the Ht, for
all t ∈ T , are measurable A → B. It is well known that for uncountable T the
formation A is too narrow, because its members A ∈ A are countably determined

in the sense that A = {x ∈ X : (xt)t∈D ∈ E} for some nonvoid countable D ⊂ T

and some E ⊂ Y D. In this frame a traditional stochastic process with time
domain T and state space (Y,B), for short for T and (Y,B), can be defined
as a probability measure (prob measure for short) α : A → [0,∞[ on A. In
view of the size of the measurable space (X,A) it is a nontrivial problem how
to produce such stochastic processes. The standard method is via projective

limits.

For this purpose one forms in Y p for p ∈ I the product set system Bp :=
B × · · · ×B and the generated σ algebra Bp := Aσ(Bp). Then one considers
the families (βp)p∈I of prob measures βp : Bp → [0,∞[ which are projective in
the sense that βp = βq(H

−1
pq (·))|Bp for all pairs p ⊂ q in I (which makes sense

because Hpq is measurable Bq → Bp). Each stochastic process α : A → [0,∞[
produces such a projective family (βp)p∈I via βp = α(H−1

p (·))|Bp (which as
before makes sense because Hp is measurable A → Bp). One notes that the
correspondence α 7→ (βp)p∈I is injective, but it need not be surjective. The
projective family (βp)p∈I is called solvable iff it comes from some and hence
from a unique stochastic process α : A → [0,∞[, called the projective limit

of the family (βp)p∈I . Thus a stochastic process for T and (Y,B) can also be
defined as such a solvable projective family (βp)p∈I , called the family of finite-
dimensional distributions of the process.

There is a famous particular situation (Y,B) in which all projective families
(βp)p∈I for all T are solvable: this is the substance of the projective limit theorem

due to Kolmogorov (1933). The fundamental fact behind the theorem is that
in a Polish topological space Y all finite (and all locally finite) measures on
Bor(Y ) are inner regular with respect to the lattice Comp(Y ).

Theorem 2.1. Assume that Y is a Polish space and B = Bor(Y ) its Borel σ

algebra. Then on (Y,B) all projective families (βp)p∈I for all T are solvable.

However, the traditional theory remains burdened with the defect that for
uncountable time domain T the σ algebra A is much too small. For example,
in case T = [0,∞[ and Y = R the subset A = C(T,R) ⊂ X = R

T of continuous
paths is not countably determined and hence not in A. One of the consequences
is that in its more than fifty years the theory has not been able to produce
for its stochastic processes an adequate notion of essential subsets in the path
space. These problems will disappear under the reformed concept of stochastic
processes based on the author’s work in measure theory described in the previous
section, to which we proceed now.
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In the new situation one equips Y with a lattice K of subsets which contains
the finite subsets and is • compact, for the moment with • = ?στ . In X = Y T

one forms the finite-based product set system

(K ∪ {Y })[T ] :=
{

∏

t∈T

St : St ∈ K ∪ {Y } ∀ t ∈ T with St = Y ∀∀ t ∈ T
}

,

and S := ((K ∪ {Y })[T ])?. Thus S is a lattice in X with ∅, X ∈ S and is •
compact by [7, 2.6]. This formation is the basic step in the new enterprise. We
also form in Y p for p ∈ I the usual product set system Kp := K × · · · × K and
the generated lattice Kp = (Kp)?.

We turn to the relevant set functions. These are on the one hand onX = Y T

the inner • premeasures ϕ : S → [0,∞[ with ϕ(X) = 1, the inner • prob

premeasures for short, with their maximal inner • extensions Φ = ϕ•|C(ϕ•)
(thus with Φ(X) = 1). On the other hand we consider the families (ϕp)p∈I of
inner • prob premeasures ϕp : Kp → [0,∞[ with their Φp (thus with Φp(Y

p) = 1),
which are projective in the sense that ϕp = (ϕq)•(H

−1
pq (·))|Kp for all p ⊂ q in I.

These entities are connected via the subsequent comprehensive counterpart [10,
Theorem 11] of the classical Kolmogorov projective limit theorem 2.1.

Theorem 2.2. The family of the maps

ϕ 7→ ϕp := ϕ(H−1
p (·))|Kp for p ∈ I

defines a one-to-one correspondence between the inner • prob premeasures ϕ :
S → [0,∞[ and the projective families (ϕp)p∈I of inner • prob premeasures

ϕp : Kp → [0,∞[. For B ⊂ Y p and p ∈ I, we have

(ϕp)•(B) = ϕ•(H
−1
p (B)) and B ∈ C((ϕp)•)⇔ H−1

p (B) ∈ C(ϕ•).

Moreover Φ(A) = inf
p∈I

Φp(Hp(A)) for A ∈ S•.

The present result appears to be more favourable than the traditional one,
because the relations between the families (ϕp)p∈I and their projective limits ϕ
look deeper than before. But the main benefit compared with the traditional
situation is that in case • = τ the resultant prob measure Φ = ϕ•|C(ϕ•) on X
has an immense domain: In fact, even the most prominent subclass Sτ ⊂ C(ϕτ )
contains for example all A ⊂ X of the form A =

∏

t∈T Kt with Kt ∈ K ∪ {Y }
for all t ∈ T , and hence reaches far beyond the class of countably determined
subsets. On the other side, it remains true that all inner • prob premeasures
ϕ : S→ [0,∞[ are rooted in the finite subsets of T .
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Thus we are entitled to define a stochastic process with time domain T and
state space (Y,K), for T and (Y,K) for short, to be an inner τ prob premeasure
ϕ : S → [0,∞[. The maximal inner τ extension Φ = ϕτ |C(ϕτ ) of ϕ will be
called its maximal measure.

We proceed to the comparison with the traditional situation in the most
fundamental particular case. The result is [10, Theorem 13]. Its proof combines
the above Theorems 1.1 and 2.2 with the basic properties of Polish spaces.

Theorem 2.3. Assume that Y is a Polish space with B = Bor(Y ) and K =
Comp(Y ). There is a one-to-one correspondence between

the traditional stochastic processes α : A → [0,∞[ for T and (Y,B), and
the new stochastic processes ϕ : S → [0,∞[ for T and (Y,K).

The correspondence rests upon S ⊂ A ⊂ C(ϕτ ) and reads ϕ = α|S and

α = Φ|A. Moreover ϕτ = (α?|Sτ )? 5 α?.

In the present particular case the decisive point is that the canonical mea-

sure α with its inadequate domain A receives the maximal measure Φ as a
well-defined and highly distinguished measure extension with the immense do-
main C(ϕτ ). In the traditional context there is no such extension of α like Φ,
at least beyond the case of compact Y to which we shall come back at once.
There were attempts to use the outer canonical measure α? instead, in partic-
ular via the idea of Doob [2] that the essential subsets A ⊂ X for a stochastic
process α be those with α?(A) = 1. But this idea is bound to fail except in
particular instances; there is a drastic illustration in [10, Theorem 4]. In the
new context the natural notion of an essential subset A ⊂ X for a stochastic
process ϕ is that the maximal measure Φ lives on A. The sequel will reveal a
certain remarkable and pleasant partial coincidence between the two notions.

At this point we turn to the present new results. For the first result we
introduce for Hausdorff topological spaces Y the condition

(COMP) There exists an isotone sequence (K(n))n of compact subsets
K(n) ⊂ Y such that each compact K ⊂ Y satisfies K ⊂ K(n)
for some n ∈ N.

Note that (COMP) is fulfilled when Y is locally compact and second countable.

Now assume that T = [0,∞[ and let Y be a Polish space. We then define
the subsets C ⊂ D ⊂ E ⊂ F ⊂ X as follows: C consists of the continuous

paths x : T → Y , and F of the paths x : T → Y which possess all one-sided
limits x±t ∈ Y for t ∈ T , with the convention x−0 := x0. Then E consists of the
paths x ∈ F which at each t ∈ T are either left or right continuous, and D of
the paths x ∈ F which are right continuous at all t ∈ T , the so-called càdlàg

ones. Note that none of these subsets is countably determined, and hence not
a member of A.
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Theorem 2.4. Assume that T = [0,∞[ and that the Polish space Y fulfils

(COMP). For each couple α and ϕ of stochastic processes then C,E, F are

members of C(ϕτ ) and fulfil α?(·) = Φ(·).

Theorem 2.4 had certain partial predecessors in the 1959 paper of Nel-
son [13] and in the 1972 and 1980 books of Tjur [14, 15]. Its proof owes basic
methodical ideas to [13, Theorem 3.4] in case F and to [15, Proposition 10.5.1]
in case E. The former one is close to the approach via numbers of upcrossings

due to Doob [3, Chapter VII, Section 3] , which reappears in [14, 15]. The result
[13, 3.4] has been reproduced in the 1989 textbook of Dudley [4, Theorem E. 6,
p. 426].

In all these sources the adequate treatment was restricted to the case of
compact Polish spaces Y (and compact intervals T ), and in place of Φ to the
Radon measure on the compact product space X = Y T which results from an
appropriate Radon measure version of the Kolmogorov theorem 2.1, or from
the so-called regularity extension of Baire probability measures for which we
refer to [4, Theorem 7.3.1] and [6, 8.14]. The step beyond compact Polish state
spaces could not be done in natural manner before the new measure-theoretical
foundations in [6, 8] had been laid down. The reason is that the proper kind
of compactness required in the procedure is not topological compactness but
the more flexible set-theoretical τ compactness, manifested in the formation of
the lattice S in [9, 10]. Before this achievement, a typical severe consequence
was that the case of the state space R could not be treated right away, but
required the problematic detour via R. For this point see for example Bourbaki
[1, p. 120].

On the other side the new maximal measure Φ = ϕτ |C(ϕτ ) is able to illu-
minate the rôle of the set D of the càdlàg paths. Our subsequent second main
result is for the most relevant Poisson process, in the sense of [10, Section 5].
The result is somewhat weaker than the full truth which is still in the dark, but
it suffices to raise the suspicion that the actual importance of the class D could
be inferior to the one attributed to it in the traditional view of our days. In
this connection the author is indebted to [15, Section 10.1.2] and to the 1990
paper of Dudley [5].

Theorem 2.5. Assume that Y = R and T = [0,∞[. Then for the Poisson pro-

cess α and ϕ the set D ⊂ X has ϕτ (D) = 0, and hence is either nonmeasurable

C(ϕτ ) or is in C(ϕτ ) with Φ(D) = 0.

Note that α?(D) = 1, for example from [10, Remark 8].

The subsequent Sections 3 and 4 will be devoted to the proof of Theorem 2.4.
In Section 3 we prove a certain consequence of the Choquet capacitability the-
orem – or rather of its mirror assertion with co-Suslin in place of Suslin – on
which our theorem is based. We also include the respective consequence of the
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actual Choquet theorem in view of its proper interest. The final Theorem 3.3
in Section 3 can be expected to form the basis for future relatives of the present
Theorem 2.4. Then Sections 5 and 6 will present the proof of Theorem 2.5, and
in fact of a much more comprehensive result.

3. Consequences of the Choquet capacitability theorems

Our treatement of the Choquet theorem and its mirror theorem will be based
on [6, Section 10], where these theorems found substantial extensions. For the
Theorems 3.1 and 3.2 below we assume a nonvoid set X and a lattice S with
∅ ∈ S in X. Let S# and S# denote the Suslin and co-Suslin set systems for
such an S as defined in [6, Section 10].

Theorem 3.1. Let ϕ : S → [0,∞] be an outer • premeasure with Φ = ϕ•|C(ϕ•)
(• = στ). Assume that A ∈ (S•)#, and either Φ|S• <∞ or (Φ|S•)σ(A) <∞.

Then A ∈ C(ϕ•) and Φ(A) = (Φ|Sσ)?(A).

We note that the final assertion looks like in the Choquet theorem [8, 2.4]
itself. However, in the present situation that theorem, applied to ϕ• and S•

under the assumption ϕ•|S• = Φ|S• < ∞, furnishes but the weaker assertion
ϕ•(A) =

(

ϕ•|(S•)σ
)

?
(A). Thus it is clear that some more work is required.

Proof. 1) From [6, Theorem 10.12 with 10.14] applied to Φ = ϕ•|C(ϕ•) and
S• ⊂ C(ϕ•) we obtain A ∈ C(ϕ•) and Φ(A) = (Φ|S•)σ(A). To be shown is

Φ(A) = sup{Φ(D) : D ∈ Sσ with D ⊂ A},

where = is obvious. Fix a real c < Φ(A), and then an ε > 0 with c+ ε < Φ(A).
Then take a sequence (An)n in S• with

An ↓⊂ A and c+ ε < lim
n→∞

Φ(An) 5 (Φ|S•)σ(A).

From both assumptions it follows that c+ ε < Φ(An) <∞ for n ∈ N.

2) Since Φ|S• is upward • continuous, there are Sn ∈ S with Sn ⊂ An

and Φ(Sn) > Φ(An) −
ε
2n

for n ∈ N. We form Dn := S1 ∩ · · · ∩ Sn ∈ S,
so that Dn ⊂ Sn ⊂ An and Dn ↓ D ∈ Sσ with D ⊂ A. We claim that
Φ(Dn) > Φ(An)−ε

(

1− 1
2n

)

for n ∈ N; from this we obtain Φ(D) = c and hence
the assertion.

3) The case n = 1 is clear. For the induction step 1 5 n ⇒ n + 1 we note
that Dn+1 = Dn ∩ Sn+1 and An ⊃ Dn ∪ Sn+1, and hence

Φ(Dn+1) + Φ(An) = Φ(Dn) + Φ(Sn+1)

> Φ(An)− ε
(

1− 1
2n

)

+ Φ(An+1)−
ε

2n+1 .

It follows that Φ(Dn+1) > Φ(An+1)− ε
(

1− 1
2n+1

)

.
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Theorem 3.2. Let ϕ : S → [0,∞[ be an inner • premeasure with Φ = ϕ•|C(ϕ•)
(• = στ) and Φ(X) = ϕ•(X) < ∞. For A ∈ (S•)# then A ∈ C(ϕ•) and

Φ(A) = (Φ|Sσ)?(A).

Proof. 1) From the counterpart [6, 10.13 with 10.16] applied to Φ = ϕ•|C(ϕ•)
and S• ⊂ C(ϕ•) we obtain A ∈ C(ϕ•) and Φ(A) = (Φ|S•)

σ(A). To be shown is

Φ(A) = inf{Φ(V ) : V ∈ Sσ with V ⊃ A},

where 5 is obvious. Fix a real c > Φ(A), and then an ε > 0 with c > Φ(A) + ε.
Then take a sequence (An)n in S• with An ↑⊃ A and c − ε > limn→∞Φ(An).
Thus Φ(An) < c− ε for n ∈ N.

2) Since Φ|S• is downward • continuous, there are Sn ∈ S with Sn ⊃ An

and Φ(Sn) < Φ(An) +
ε
2n

for n ∈ N. We form Vn := S1 ∪ · · · ∪ Sn ∈ S,
so that Vn ⊃ Sn ⊃ An and Vn ↑ V ∈ Sσ with V ⊃ A. We claim that
Φ(Vn) < Φ(An) + ε

(

1− 1
2n

)

for n ∈ N; from this we obtain Φ(V ) 5 c and hence
the assertion.

3) The case n = 1 is clear. For the induction step 1 5 n ⇒ n + 1 we note
that Vn+1 = Vn ∪ Sn+1 and An ⊂ Vn ∩ Sn+1, and hence

Φ(Vn+1) + Φ(An) 5 Φ(Vn) + Φ(Sn+1)

< Φ(An) + ε
(

1− 1
2n

)

+ Φ(An+1) +
ε

2n+1 .

It follows that Φ(Vn+1) < Φ(An+1) + ε
(

1− 1
2n+1

)

.

In this connection we recall the basic fact that a σ algebra A in X which
carries a complete finite measure satisfies A# = A# = A. This is a well-known
consequence of the Choquet capacitability theorems, for example contained in
[6, 10.12 and 10.13].

The basis for the sequel will be the consequence of Theorem 3.2 which
follows. We adopt an assumption from the previous section: an infinite time
domain T and a Polish state space Y with B and K, and the resultant path
space X = Y T with A and S.

Theorem 3.3. Let α : A → [0,∞[ and ϕ : S → [0,∞[ be a couple of stochastic

processes as above. Then (Sτ )# ⊂ C(ϕτ ) and α
? = Φ on (Sτ )#.

This is a wide extension of the basic fact that Sτ ⊂ C(ϕτ ) and of the
special case that α? = Φ on Sτ , which is contained in the previous formula
ϕτ = (α?|Sτ )?.

Proof. The assertion (Sτ )# ⊂ C(ϕτ ) is in Theorem 3.2. For A ∈ (Sτ )# then
Φ(A) = (Φ|Sσ)?(A) = (α|Sσ)?(A), because Sσ ⊂ A ⊂ C(ϕτ ). We combine this
with the obvious relations (α|Sσ)?(A) = α?(A) = Φ?(A) = Φ(A) to obtain the
final assertion.
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4. Proof of Theorem 2.4

We assume T = [0,∞[ as before, and Y equipped with a fixed metric d and
with B = Bor(Y ) and K = Comp(Y ) in the metric topology. As before let
X = Y T consist of the paths x = (xt)t∈T : T → Y .

For a nondegenerate interval I ⊂ T we define C(I) ⊂ Y I to consist of the
continuous paths x ∈ Y I , and F (I) ⊂ Y I to consist of the paths x ∈ Y I which
possess all relevant one-sided limits, that is x−t ∈ Y in the t ∈ I with t > inf I
and x+

t ∈ Y in the t ∈ I with t < sup I. Then E(I) ⊂ F (I) consists of the paths
x ∈ F (I) which at each inf I < t < sup I are either left or right continuous.

Lemma 4.1. Let I ⊂ T be a nondegenerate compact interval I = [a, b]. For

x ∈ F (I) define the value set M ⊂ Y to be M = M ◦ ∪M− ∪M+ with M ◦ =
{xt : a 5 t 5 b} and M− = {x−t : a < t 5 b} and M+ = {x+

t : a 5 t < b}. Then
M ∈ K = Comp(Y ).

Proof. To be shown is that each sequence in M has a subsequence which con-
verges to some member of M . A sequence in M either has

(◦ ) a subsequence
(

xs(n)

)

n
in M◦, or

(−) a subsequence
(

x−
t(n)

)

n
in M−, or

(+) a subsequence
(

x+
t(n)

)

n
in M+.

In the latter cases there is a sequence
(

xs(n)

)

n
in M◦ such that d

(

x±
t(n), xs(n)

)

< 1
n
for n ∈ N. This reduces the task to the situation (◦ ). In this situation we

pass to another subsequence to achieve that the sequence
(

s(n)
)

n
is monotone,

and once more to achieve that
(

s(n)
)

n
is either constant or strictly monotone.

But then the sequence
(

xs(n)

)

n
converges either to some member of M ◦ or to

some member of M− or M+.

Proposition 4.2. Let I ⊂ T be a nondegenerate compact interval I = [a, b].

1) We have

C(I) =
⋂

k∈N

⋃

r∈N

⋂

s∈M(I,r)

M(s, k),

where M(I, r) consists of the pairs s = (u, v) of points a 5 u < v 5 b with

v − u 5 1
r
, and M(s, k) :=

{

x ∈ Y I : d(xu, xv) 5 1
k

}

.

2) If (Y, d) is complete, then we have

E(I) =
⋂

k∈N

⋃

r∈N

⋂

s∈M(I,r)

M(s, k),

where M(I, r) consists of the triples s = (u, v, w) of points a 5 u < v <

w 5 b with w − u 5 1
r
, and

M(s, k) :=
{

x ∈ Y I : d(xu, xv) ∧ d(xv, xw) 5 1
k

}

.
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3) If (Y, d) is complete, then we have

F (I) =
⋂

k∈N

⋃

r∈N

⋂

s∈M(I,r)

M(s, k),

where M(I, r) consists of the sequences s = (u(1), v(1), . . . , u(r), v(r)) of

points a 5 u(1) < v(1) < · · · < u(r) < v(r) 5 b, and

M(s, k) :=
r
⋃

l=1

{

x ∈ Y I : d(xu(l), xv(l)) 5 1
k

}

.

Proof. 1) is clear, because it says that the x ∈ C(I) are uniformly continuous.

2) Let R ⊂ Y T denote the second member.

2.i) We prove E(I) ⊂ R. Fix x ∈ E(I) and k ∈ N. For each s ∈ I there
exists δ(s) > 0 such that

u, v ∈ I∩ ]s− δ(s), s[⇒ d(xu, xv) <
1
k

u, v ∈ I∩ ]s, s+ δ(s)[⇒ d(xu, xv) <
1
k
.

This implies that

u < v < w in I∩ ]s− δ(s), s+ δ(s)[⇒ d(xu, xv) ∧ d(xv, xw) 5 1
k
.

In fact, the assertion is clear for v < s and v > s, while in case v = s this point
must be an interior one of I, so that xv = x−v or xv = x+

v , and thus the assertion
is clear as well. Now since I is compact there exist s1, . . . , sm ∈ I with

I ⊂

m
⋃

j=1

]

sj −
1
2
δ(sj), sj +

1
2
δ(sj)

[

.

We take an r ∈ N with 1
r

5 min15j5m
1
2
δ(sj) > 0. For each s = (u, v, w) ∈

M(I, r) we have u ∈
]

sj −
1
2
δ(sj), sj +

1
2
δ(sj)

[

and hence u, v, w ∈ ]sj − δ(sj),
sj + δ(sj)[ for some 1 5 j 5 m. From the above it follows that d(xu, xv) ∧
d(xv, xw) 5 1

k
, that is x ∈M(s, k). Therefore x ∈ R.

2.ii) We prove R ⊂ E(I). Fix x ∈ R.

2.ii.1) We start with an intermediate assertion: If a < s 5 b and k ∈ N then
there exists t ∈ [a, s[ such that t < u, v < s ⇒ d(xu, xv) 5 4

k
. In fact, take an

r ∈ N with
x ∈

⋂

s∈M(I,r)

M(s, k),

that is, for all a 5 u < v < w 5 b with w−u 5 1
r
, one has d(xu, xv)∧d(xv, xw) 5

1
k
. Now we distinguish two cases. First assume that there exists t ∈ I∩ [s− 1

r
, s[
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with d(xt, xs) 5 1
k
. For t < u < s we have d(xt, xu) ∧ d(xu, xs) 5 1

k
, and hence

d(xu, xs) 5 2
k
. Therefore d(xu, xv) 5 4

k
for all t < u, v < s. The opposite case is

d(xt, xs) >
1
k
for all t ∈ I∩[s− 1

r
, s[. For t < u < s we have d(xt, xu)∧d(xu, xs) 5

1
k
, which combined with d(xu, xs) >

1
k
implies that d(xt, xu) 5 1

k
. Thus for each

fixed t ∈ I ∩ [s − 1
r
, s[ we have d(xu, xv) 5 2

k
for all t < u, v < s. This proves

the intermediate assertion.

2.ii.2) Since (Y, d) is complete we see from 2.ii.1) that for a < s 5 b the
limit x−s ∈ Y exists. Likewise for a < s 5 b the limit x+

s ∈ Y exists. Now fix
a < s < b. For each k ∈ N there exists r ∈ N with

x ∈
⋂

s∈M(I,r)

M(s, k),

so that for a 5 u < s < v 5 b with v − u 5 1
r
one has d(xu, xs) ∧ d(xs, xv) 5 1

k
.

It follows that d(x−s , xs) ∧ d(xs, x
+
s ) 5 1

k
for all k ∈ N. Therefore xs = x−s or

xs = s+
s . Thus we have x ∈ E(I).

3) Let R ⊂ Y I denote the second member. For x ∈ Y I thus x ∈ R′ means
that there exists k ∈ N such that for each r ∈ N there is an s ∈ M(I, r) with
d(xu(l), xv(l)) >

1
k
for all 1 5 l 5 r.

3.i) We prove F (I) ⊂ R. Assume not, and fix x ∈ F (I) such that x ∈ R′

with some k ∈ N as above. For each s ∈ I there exists δ(s) > 0 such that

u, v ∈ I∩ ]s− δ(s), s[⇒ d(xu, xv) <
1
k

u, v ∈ I∩ ]s, s+ δ(s)[⇒ d(xu, xv) <
1
k
.

Since I is compact there exist s1, . . . , sm ∈ I with

I ⊂
m
⋃

j=1

]sj − δ(sj), sj + δ(sj)[ =
m
⋃

j=1

]sj − δ(sj), sj[∪{sj}∪ ]sj, sj + δ(sj)[ . (?)

Thus each of the 3m intervals A in (?) fulfils u, v ∈ I ∩A⇒ d(xu, xv) <
1
k
. Now

let r ∈ N, and take some s ∈ M(I, r) with d(xu(l), xv(l)) >
1
k
for all 1 5 l 5 r.

Then it cannot happen that two u(l) for different 1 5 l 5 r are in I ∩A for the
same interval A in (?). Thus r 5 3m, which is a contradiction.

3.ii) We prove R ⊂ F (I). Fix x ∈ (F (I))′, and assume for example that in
some s ∈ [a, b[ the limit x+

s ∈ Y does not exist. Since (Y, d) is complete this
means that there exists k ∈ N such that for each δ > 0 there are u, v ∈ I∩]s, s+δ[
with d(xu, xv) >

1
k
. Thus we obtain two infinite sequences s < · · · < u(r) <

v(r) < · · · < u(1) < v(1) 5 b with u(r), v(r) ↓ s and d(xu(l), xv(l)) >
1
k
for all

l ∈ N. Hence the s = (u(r), v(r), . . . , u(1), v(1)) ∈ M(I, r) for all r ∈ N show
that x ∈ R′.
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Proposition 4.3. Assume that the metric space (Y, d) is complete and fulfils

condition (COMP). Note that this implies that (Y, d) is separable and hence
Polish. Then the subsets C(T ) = C,E(T ) = E,F (T ) = F of Y T = X are

members of (Sτ )#.

Proof. The three cases admit a common proof. For the nondegenerate intervals
I ⊂ T we write P (I) ⊂ Y I for each fixed one of the three C(I), E(I), F (I).

1) For a nondegenerate compact interval I ⊂ T and k, r ∈ N we form

P (k, r, I) :=
⋂

s∈M(I,r)

M(s, k) ⊂ Y I ,

with the entities defined in Proposition 4.2. Thus we have

P (I) =
⋂

k∈N

⋃

r∈N

P (k, r, I).

The definitions show that P (k, r, I) is closed in the product topology of Y I .
Thus for each K ∈ K the intersection KI ∩P (k, r, I) is compact in that product
topology, and hence in view of [7, 2.4.2)] is a member of ((KI)?)τ . It follows
that the product set (KI ∩ P (k, r, I))× Y T\I is a member of

((

KI
)?)

τ
× Y T\I =

((

KI × Y T\I
)?)

τ
⊂ Sτ .

Therefore the product set (KI∩P (I))×Y T\I is a member of ((Sτ )
σ)σ ⊂ (Sτ )#,

with the last inclusion because (Sτ )# is stable under countable unions and
intersections, for example by [6, 10.3].

2) From Lemma 4.1 we have

P (I) =
⋃

K∈K

KI ∩ P (I).

Moreover (COMP) implies that KI ⊂
⋃

n∈N
(K(n))I . Thus

P (I) =
⋃

n∈N

(K(n))I ∩ P (I).

Combined with 1) it follows that the product set P (I) × Y T\I is a member of
((Sτ )#)

σ = (Sτ )#.

3) At last we conclude from

P (T ) =
⋂

m∈N

P ([0,m])× Y T\[0,m],

combined with 2) that P (T ) is a member of ((Sτ )#)σ = (Sτ )#. This is the
assertion.

Proposition 4.3 and Theorem 3.3 combine at once to furnish the first main
Theorem 2.4.
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5. Preparations for the proof of Theorem 2.5

The present final part of the paper assumes T = [0,∞[ and Y = R with the
path spaceX = R

T . We start with some preparations which involve the product
topology of X.

We define X◦ ⊂ X to consist of the paths x = (xt)t∈T ∈ X with the
properties

i) x has values in N0 := N ∪ {0} with x0 = 0 and is monotone increasing,
and hence has one-sided limits x±t ∈ N0 for t ∈ T , with the convention
x−0 := x0 = 0;

ii) x+
t − x−t 5 1 for all t ∈ T ;

iii) x is unbounded, that is xt ↑ ∞ for t ↑ ∞.

For x ∈ X◦ and r ∈ N we define

t(x, r) := sup{t ∈ T : xt 5 r − 1} = inf{t ∈ T : xt = r} ∈ T,

which is the point in T where the r-th jump of x takes place. We list a few
immediate properties.

Remark 5.1. Let x ∈ X◦ and r ∈ N.

i) For t ∈ T we have

t < t(x, r) ⇒ xt 5 r − 1⇒ t 5 t(x, r),

t > t(x, r) ⇒ xt = r ⇒ t = t(x, r).

ii) We have 0 5 t(x, 1) < · · · < t(x, r) < · · · and t(x, r) ↑ ∞ for r ↑ ∞.

iii) We have xt = r for t(x, r) < t < t(x, r + 1), and xt = 0 for 0 5 t < t(x, 1)
when t(x, 1) > 0. Hence x−

t(x,r) = r− 1 and x+
t(x,r) = r, and xt(x,r) is either

= r − 1 or = r.

Remark 5.2. For r ∈ N the function t(·, r) : X◦ → [0,∞[ is continuous in the
product topology of X restricted to X◦.

Proof. We fix a ∈ X◦ with t(a, r) > 0; the case t(a, r) = 0 is a simpler variant.
Let 0 < ε < t(a, r) and put v := t(a, r) + ε and u := t(a, r)− ε. The set

A := {x ∈ X◦ : xv = r and xu 5 r − 1} = {x ∈ X◦ : xv > r − 1 and xu < r}

is open, and from 5.1.i) we see that a ∈ A and that the x ∈ A fulfil u 5 t(x, r) 5

v or |t(x, r)− t(a, r)| 5 ε.

Next we form in X◦ for r ∈ N the subsets

L(r) :=
{

x ∈ X◦ : xt(x,r) = r − 1= x−
t(x,r)

}

R(r) :=
{

x ∈ X◦ : xt(x,r) = r = x+
t(x,r)

}

,
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thus the sets of the paths x ∈ X◦ which are left/right continuous at t(x, r). Note
that t(x, r) > 0 for x ∈ R(r). We have X◦ = L(r)∪R(r) and L(r)∩R(r) = ∅.
The main result of the second part will be in terms of L(r) and R(r). The basis
are the remarkable properties of the compact subsets of L(r) and R(r) which
follow.

Remark 5.3. For fixed r ∈ N let K ⊂ L(r) be compact 6= ∅. Define t(K, r) :=
sup{t(x, r) : x ∈ K}. Thus t(K, r) ∈ T , and

Kr := {x ∈ K : t(x, r) = t(K, r)} ⊂ K

is compact 6= ∅ by 5.2. Also define the compact subsets

Kr
t := {x ∈ K : xt = r} ⊂ K for t ∈ T.

Then

i) Kr
t is monotone increasing in t ∈ T with Kr

0 = ∅ and Kr
t = K for

t > t(K, r).

ii) In case Kr
t 6= ∅ we have t(Kr

t , r) < t, and Kr
s = Kr

t for t(Kr
t , r) < s < t.

iii) We have Kr = {x ∈ K : xt(K,r) = r − 1}, and

K \Kr = {x ∈ K : t(x, r) < t(K, r)}

is = {x ∈ K : xt(K,r) = r} = Kr
t(K,r), and hence is compact as well.

Proof. i) is clear from 5.1.i).

ii) We have t > 0 from i). For x ∈ Kr
t we have xt = r by definition and

hence t = t(x, r) from 5.1.i). But t = t(x, r) cannot happen since xt(x,r) = r−1.
Thus t > t(x, r) for all x ∈ Kr

t and hence t > t(Kr
t , r). Next let t(K

r
t , r) < s < t

For x ∈ Kr
t then s > t(x, r) and hence xs = r from 5.1.i), that is x ∈ Kr

s . Thus
Kr

t ⊂ Kr
s , while K

r
t ⊃ Kr

s from i).

iii) For x ∈ K we have

x ∈ Kr ⇒ xt(K,r) = xt(x,r) = r − 1 because x ∈ L(r)

x ∈ K \Kr ⇒ xt(K,r) = r from 5.1.i);

thus we have ⇔ both times.

Remark 5.4. For fixed r ∈ N let K ⊂ R(r) be compact 6= ∅. Define t(K, r) :=
inf{t(x, r) : x ∈ K} ∈ T . Thus t(K, r) > 0, and

Kr := {x ∈ K : t(x, r) = t(K, r)} ⊂ K

is compact 6= ∅ by 5.2. Also define the compact subsets

Kr
t := {x ∈ K : xt 5 r − 1} ⊂ K for t ∈ T.
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Then:

i) Kr
t is monotone decreasing in t ∈ T with Kr

t = K for 0 5 t < t(K, r) and
∩
t∈T
Kr

t = ∅, so that Kr
t = ∅ for sufficiently large t ∈ T .

ii) In case Kr
t 6= ∅ we have t(Kr

t , r) > t, and Kr
s = Kr

t for t < s < t(Kr
t , r).

iii) We have Kr = {x ∈ K : xt(K,r) = r}, and

K \Kr = {x ∈ K : t(x, r) > t(K, r)}

is = {x ∈ K : xt(K,r) 5 r − 1} = Kr
t(K,r), and hence is compact as well.

The proof is parallel to that of 5.3 in all parts. So far the preparations on
the path space X and its subspace X◦.

We come to the point where the measures and hence the inner premeasures
enter the scene. We start to recall two basic facts: a special case of [6, Theo-
rem 21.17 ] on product formation and [9, Theorem 3.10 ] on direct images. We
adopt the former notations.

Theorem 5.5 (Recollection). Let X and Y be nonvoid sets, and S in X and

T in Y be lattices with ∅. Let ϕ : S → [0,∞[ and ψ : T → [0,∞[ be inner

• premeasures with Φ = ϕ•|C(ϕ•) and Ψ = ψ•|C(ψ•) (• = στ), and ϑ = ϕ×ψ :
(S × T)? → [0,∞[ be their product inner • premeasure by [6, Theorem 21.9];
thus Θ = ϑ•|C(ϑ•) is an extension of Φ × Ψ. Assume that Ψ(Y ) < ∞. Then

for E ∈ C(ϑ•) the sections E(x) := {y ∈ Y : (x, y) ∈ E} ⊂ Y for x ∈ X fulfil

ψ•(E(·)) : X → [0,∞[ is measurable C(ϕ•),

and Θ(E) =
∫

ψ•(E(x))dΦ(x).

Theorem 5.6 (Recollection). Let X and Y be nonvoid sets and H : X → Y .

Let S in X and T in Y be lattices with ∅ such that

(⇒) H(S•) ⊂ T• and (⇐) H−1(T•) ⊂ S>S• (• = ?στ).

Assume that ϕ : S → [0,∞[ is an inner • premeasure with Φ = ϕ•|C(ϕ•) such
that ψ := ϕ•(H

−1(·))|T < ∞. Then ψ : T → [0,∞[ is an inner • premeasure

with Ψ = ψ•|C(ψ•) which fulfils ψ• = ϕ•(H
−1(·)) on P(Y ) and Ψ =

−→
HΦ.

After this we return to the situation T = [0,∞[ and Y = R with X = R
T .

As before let B = Bor(R) and K = Comp(R) with the resultant A and S

in X. We recall from [10, Corollary 14] that Comp(X) ⊂ Sτ ⊂ Cl(X). For
p = {t(1), . . . , t(n)} ∈ I with 0 5 t(1) < · · · < t(n) one forms Kp := (Kp)? on
Y p = R

p := R
n. We recall from 2.2 the fundamental connection between the

inner • prob premeasures ϕ : S → [0,∞[ and the projective families (ϕp)p∈I of
inner • prob premeasures ϕp : Kp → [0,∞[ (• = ?στ).
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As in [9, Section 6] and [10, Section 5] we fix a family (γt)t∈T of Radon prob
premeasures γt : K → [0,∞[ with γ0 = δ0|K which under convolution fulfils
γs ? γt = γs+t for s, t ∈ T , and consider the resultant projective family (ϕp)p∈I
of inner τ prob premeasures ϕp : Kp → [0,∞[. We want to deduce the inductive
version of their definition, which had been written down without proof in [11,
1.1]. Note that the Γt = (γt)•|C((γt)•) are independent of • = ?στ . After this
(γt)t∈T will then be specialized to the Poisson semigroup.

Proposition 5.7. Let q = {t(0), t(1), . . . , t(n)} with 0 5 t(0) < t(1) < · · · <
t(n) and p = {t(1), . . . , t(n)}. Then for E ∈ C((ϕq)τ ) the function s 7→
(ϕp−t(0))τ

(

E(s)− (s, . . . , s)
)

: R → [0,∞[ is measurable C((γt(0))τ ), and

(ϕq)τ (E) =

∫

(ϕp−t(0))τ
(

E(s)− (s, . . . , s)
)

dΓt(0)(s).

Proof. As in [9, Section 6] we use the family (γp)p∈I of the product inner τ prob
premeasures γp : Kp → [0,∞[ formed after [7] section 1, of which the inductive
definition reads γq := γt(0) × γp−t(0). Then the above 5.6 will be applied to the
homeomorphisms Gp : R

p → R
p defined to be

Gp : (s1, . . . , sn) 7→ (t1, . . . , tn) with tl =
l
∑

k=1

sk for 1 5 l 5 n,

and to the lattice Kp on both sides. By [9, Proposition 6.5] this furnishes the
desired projective family (ϕp)p∈I of the ϕp := (γp)τ (G

−1
p (·))|Kp.

Now let E ∈ C((ϕq)τ ), which by 5.6 is equivalent to G−1
q (E) ∈ C((γq)τ ).

Thus 5.5 asserts that the function s 7→ (γp−t(0))τ
(

(G−1
q (E))(s)

)

: R → [0,∞[ is
measurable C((γt(0))τ ), and that

(ϕq)τ (E) = (γq)τ (G
−1
q (E)) =

∫

(γp−t(0))τ
(

(G−1
q (E))(s)

)

dΓt(0)(s).

It remains to rewrite the integrand. For s ∈ R the section (G−1
q (E))(s) consists

of the (s1, . . . , sn) ∈ R
n such that (s, s1, . . . , sn) ∈ G

−1
q (E), which means

Gq(s, s1, . . . , sn) =
(

s,Gp−t(0)(s1, . . . , sn) + (s, . . . , s)
)

∈ E

or Gp−t(0)(s1, . . . , sn) ∈ E(s)− (s, . . . , s). Thus

(G−1
q (E))(s) = G−1

p−t(0)

(

E(s)− (s, . . . , s)
)

,

so that 5.6 furnishes

(γp−t(0))τ
(

(G−1
q (E))(s)

)

= (γp−t(0))τ
(

G−1
p−t(0)

(

E(s)− (s, . . . , s)
))

= (ϕp−t(0))τ
(

E(s)− (s, . . . , s)
)

.

The assertion follows.



New Maximal Measures 129

6. Proof of Theorem 2.5

We continue under the notions and notations of Section 5. In the sequel we
specialize (γt)t∈T to be the Poisson semigroup, defined for t > 0 to be

γt = e−t

∞
∑

l=0

tl

l!
δl|K and hence (γt)τ = e−t

∞
∑

l=o

tl

l!
δl.

Thus the family (ϕp)p∈I obtained above furnishes via 2.2 the Poisson process
ϕ : S → [0,∞[ and its traditional version α : A → [0,∞[. We recall from [10,
Corollary 1 combined with Theorem 6] that ϕτ is inner regular Comp(X) ⊂ Sτ .

Lemma 6.1. For r ∈ N and c ∈ T we have ϕτ ({x ∈ X
◦ : t(x, r) = c}) = 0.

Proof. To be shown is ϕτ (K) = 0 for K ⊂ X◦ compact 6= ∅ with t(x, r) = c

for all x ∈ K. From [10, Theorem 11] we know that

ϕτ (K) 5 (ϕq)τ (Hq(K)) = (ϕq)τ ({(xt)t∈q : x ∈ K}) for all q ∈ I.

We take q = {u, v} with 0 = c = u < v in case c = 0 (note that in this case
r = 1) and 0 < u < c < v in case c > 0. In view of c = t(x, r) < t(x, r + 1)
for x ∈ K and hence c < inf{t(x, r + 1) : x ∈ K} by 5.1.ii) and 5.2 we can take
c < v < inf{t(x, r + 1) : x ∈ K}, so that xv = r for x ∈ K by 5.1.iii). Likewise
in case r = 2 we can take sup{t(x, r − 1) : x ∈ K} < u < c, so that xu = r − 1
for x ∈ K; this relation is also true in case r = 1 for both c > 0 and c = 0. It
follows that ϕτ (K) 5 (ϕ{u,v})τ ({r − 1} × {r}). Now 5.7 furnishes

(ϕ{u,v})τ ({r − 1} × {r}) = (ϕ{v−u})τ ({1})Γu({r − 1}) 5 (γv−u)τ ({1}) 5 v − u,

so that ϕτ (K) 5 v − u. The assertion follows.

We come to the main result of the second part. In combination with [10,
Section 5] it will furnish much more than the desired Theorem 2.5.

Theorem 6.2. For the Poisson process we have ϕτ (L(r)) = ϕτ (R(r)) = 0 for

all r ∈ N.

Proof. The proofs of the two assertions are parallel in all essentials. But this is
not clear a priori, because there are certain differences between left and right.
Therefore we shall present both proofs.

Proof for L(r). To be shown is ϕτ (K) = 0 for K ⊂ L(r) compact 6= ∅.
Assume that ϕτ (K) > 0. We define

c := inf
{

t ∈ T : ϕτ (K
r
t ) = ϕτ (K)

}

,

and obtain the properties which follow.
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1) 0 5 c 5 t(K, r) from 5.3.i).

2) ϕτ (K
r
c ) < ϕτ (K). In fact, assume that ϕτ (K

r
c ) = ϕτ (K) > 0. Then

Kr
c 6= ∅, so that in particular c > 0 from 5.3.i). From 5.3.ii) it follows that

Kr
s = Kr

c and hence ϕτ (K
r
s ) = ϕτ (K

r
c ) = ϕτ (K) for certain 0 < s < c, in

contradiction to the definition of c.

3) Define M :=
⋂

c<t<∞Kr
t ⊂ K ⊂ L(r), so that M is compact with

ϕτ (M) = ϕτ (K) > 0 and hence 6= ∅. We claim that c = t(M, r). In fact, on
the one hand we have for t > c by definition M ⊂ Kr

t , for x ∈ M therefore
xt = r, and combined with xt(x,r) = r − 1 from x ∈ L(r) hence t > t(x, r).
Therefore c = t(M, r). On the other hand c > t(M, r) is impossible, because
for x ∈ M then c > t(x, r) and hence xc = r or x ∈ Kr

c , so that M ⊂ Kr
c and

hence ϕτ (M) 5 ϕτ (K
r
c ) < ϕτ (K) from 2) which is wrong. Thus c = t(M, r) as

claimed.

Now 5.3.iii) shows that M = M r ∪M r
t(M,r) = M r ∪M r

c with M r = {x ∈

M : t(x, r) = t(M, r) = c} and M r
c compact and disjoint. From 6.1 we have

ϕτ (M
r) = 0. It follows that ϕτ (K) = ϕτ (M) = ϕτ (M

r
c ) 5 ϕτ (K

r
c ) < ϕτ (K)

from M ⊂ K and 2), which is a contradiction. Thus we obtain ϕτ (K) = 0.

Proof for R(r). To be shown is ϕτ (K) = 0 for K ⊂ R(r) compact 6= ∅.
Assume that ϕτ (K) > 0. We define

c := sup
{

t ∈ T : ϕτ (K
r
t ) = ϕτ (K)

}

,

and obtain the properties which follow.

1) 0 < t(K, r) 5 c <∞ from 5.4.i).

2) ϕτ (K
r
c ) < ϕτ (K). In fact, assume that ϕτ (K

r
c ) = ϕτ (K) > 0. Then

Kr
c 6= ∅. From 5.4.ii) it follows that Kr

s = Kr
c and hence ϕτ (K

r
s ) = ϕτ (K

r
c ) =

ϕτ (K) for certain s > c, in contradiction to the definition of c.

3) Define M :=
⋂

05t<cK
r
t ⊂ K ⊂ R(r), so that M is compact with

ϕτ (M) = ϕτ (K) > 0 and hence 6= ∅. We claim that c = t(M, r). In fact,
on the one hand we have for t < c by definition M ⊂ Kr

t , for x ∈ M therefore
xt 5 r − 1, and combined with xt(x,r) = r from x ∈ R(r) hence t < t(x, r).
Therefore c 5 t(M, r). On the other hand c < t(M, r) is impossible, because for
x ∈ M then c < t(x, r) and hence xc 5 r − 1 or x ∈ Kr

c , so that M ⊂ Kr
c and

hence ϕτ (M) 5 ϕτ (K
r
c ) < ϕτ (K) from 2) which is wrong. Thus c = t(M, r) as

claimed.

Now 5.4.iii) shows that M = M r ∪M r
t(M,r) = M r ∪M r

c with M r = {x ∈

M : t(x, r) = t(M, r) = c} and M r
c compact and disjoint. From 6.1 we have

ϕτ (M
r) = 0. It follows that ϕτ (K) = ϕτ (M) = ϕτ (M

r
c ) 5 ϕτ (K

r
c ) < ϕτ (K)

from M ⊂ K and 2), which is a contradiction. Thus we obtain ϕτ (K) = 0.

To conclude the second part we combine the new main result 6.2 with those
for the Poisson process in [10, Section 5]. In the path space X = R

T we have the
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chain of subsets C ⊂ D ⊂ E ⊂ F ⊂ X. Beside them the present consideration
was for the subset X◦ ⊂ X and the L(r), R(r) ⊂ X◦ for r ∈ N. One notes that

X◦ ⊂ E and X◦ ∩D =
⋂

r∈N

R(r).

The principal actor in [10, Section 5] was the set E(T ) ⊂ X. We summarize
the former results and add the present consequences.

1) By [10, Theorem 27] we have E(T ) ∈ C(ϕτ ) with Φ(E(T )) = 1.

2) The subsets E(T ), X◦ ⊂ X are not far from each other, but none of
them is contained in the other. However, by [10, Proposition 30.2]) there exists
an A ∈ A with α(A) = 1 such that E(T ) ∩ A ⊂ X◦. From 1) of course
E(T ) ∩ A ∈ C(ϕτ ) with Φ(E(T ) ∩ A) = 1, and since Φ is complete it follows
that X◦ ∈ C(ϕτ ) with Φ(X◦) = 1.

3) Much weaker than 6.2 is the assertion that ϕτ (X
◦∩D) = 0. It combines

with 2) to furnish

ϕτ (D) = ϕτ (D ∩X
◦) + ϕτ (D ∩ (X◦)′) = 0.

Thus we have proved Theorem 1.2.

4) We combine 2) with 6.2 and with X◦ = L(r) ∪ R(r) and L(r) ∩ R(r) =
∅, to conclude that L(r) and R(r) are not in C(ϕτ ). The substance of this
assertion is already in Tjur [15, 10.1.2 and 10.9.4] (but not the quantitative
6.2!). However, it remains open whether the intersection

⋂

r∈N
R(r) = X◦ ∩D

and hence D are in C(ϕτ ) or not.

5) The traditional assertion on the rôle of D ⊂ X for the Poisson process is
α?(D) = 1. It appears in [10, remark 29] in the sharper form α?(E(T )∩D) = 1.
We conclude for A ∈ A with α(A) = 1 that

1 = α?(E(T )∩D) = α?(E(T )∩D∩A)+α?(E(T )∩D∩A′) = α?((E(T )∩A)∩D).

Thus [10, Proposition 30.2]) cited above implies that α?(X◦ ∩D) = 1.

All this manifests an essential difference between the traditional treatment,
this time of the Poisson process, and the present one on the basis of the new
maximal measure Φ = ϕτ |C(ϕτ ). We shall come back to this point in a subse-
quent paper [12].
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