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Uniqueness in Determining

Polygonal Periodic Structures

J. Elschner and M. Yamamoto

Abstract. We consider the inverse problem of recovering a two-dimensional perfectly
reflecting diffraction grating from scattered waves measured above the structure. We
establish the uniqueness within the class of general polygonal grating profiles by a
minimal number of incoming plane waves, without excluding Rayleigh frequencies
and further geometric constraints on the profile. This extends and improves the
uniqueness results of Elschner, Schmidt and Yamamoto [Inverse Problems 19 (2003),
779–787].
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1. Introduction

The problem of recovering a periodic structure from knowledge of the scattered
field occurs in many applications, e.g., in diffractive optics; see [3, 18]. In this
paper we consider the scattering of monochromatic plane waves by a perfectly
reflecting diffraction grating in an isotropic lossless medium. Our goal is to
prove global uniqueness in determining polygonal periodic grating profiles by
near field observations with a minimal number of incident waves.

Let the profile of the diffraction grating be given by a Lipschitz curve Λ ⊂ R
2

which is 2π-periodic with respect to x1, where (x1, x2) ∈ R
2. The unbounded

domain above Λ is denoted by ΩΛ. Suppose that a plane wave given by

ui(x) := exp(iαx1 − iβx2), (α, β) = k(sin θ, cos θ)

is incident from the top, where k > 0 is the wave number and θ ∈ (− π
2
, π
2
) is

the incident angle.
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We consider the scattering of ui in the case of a perfectly reflecting grating
profile Λ, which is modeled by the Dirichlet problem (TE polarization) or the
Neumann problem (TM polarization). Then the total field u = u(x1, x2), which
is the sum of ui and the scattered field us, satisfies

∆u+ k2u = 0 in ΩΛ, u = 0 or ∂νu = 0 on Λ, (1)

and is assumed to be α-quasiperiodic in x1:

u(x1 + 2π, x2) = exp(2iαπ)u(x1, x2) . (2)

Furthermore, us is required to satisfy the radiation condition

us(x) =
∑

n∈Z

An exp
(

i(n+ α)x1 + iβnx2
)

for x2 sufficiently large, (3)

with the Rayleigh coefficients An ∈ C and

βn :=







(

k2 − (n+ α)2
)

1

2 , if |n+ α| ≤ k

i
(

(n+ α)2 − k2
)

1

2 , if |n+ α| > k .
(4)

Note that βn is real for at most a finite number of indices.

There always exists a solution u ∈ H1
loc(ΩΛ) of problem (1)–(3) which need

not be unique in general. For the existence result see, e.g., [5, 7] where the more
general TE and TM transmission problems have been studied, and nonunique-
ness examples for both the direct Dirichlet and Neumann problems can be found
in [13]. Moreover, it is known that the solution to the Dirichlet problem is al-
ways unique if the profile curve Λ is given by the graph of a function (see [16]
for C2 and [8] for Lipschitz functions), whereas this may be not true for the
Neumann problem [15].

The inverse Dirichlet or Neumann problem can now be formulated as fol-
lows:

(IP): Determine the profile Λ from the knowledge of one wave number k, pos-
sibly several incident directions θ, and the total field u|x2=b on a straight
line {x ∈ R

2 : x2 = b} lying in ΩΛ.

Note that this problem also involves near field measurements since the evanes-
cent modes cannot be measured far away from the grating profile.

In general, global uniqueness with one incident wave in problem (IP) is
not true. This can be seen from the simple counterexample of the scattering
of ui = exp(−ikx2) when one moves the flat grating in certain multiples of
the wavelength. It was shown in [14] that a finite number of incident waves are
sufficient to recover a C2 grating profile from the total field above the structure.
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In particular, one obtains the global uniqueness with one incident direction in
the inverse Dirichlet problem if the wave number or the amplitude of the grating
is sufficiently small.

Global uniqueness results for the inverse Dirichlet and Neumann problems
with a minimal number of incident waves were first established within the class
of profiles given by the graph of a piecewise linear function or a step function
[10, 11]. The purpose of this paper is to extend these results to the practically
important case of general polygonal grating profiles. Moreover, contrary to [10],
we can allow Rayleigh frequencies and are able to remove the additional geo-
metric assumption on the profile made in the Neumann case. Now we state our
main result.

Theorem. Let Λ1 and Λ2 be 2π-periodic polygonal profiles consisting of finitely
many segments, and let us exclude the case where Λ1 and Λ2 are parallels to the
x1 axis. Let uj = u(Λj; θ) satisfy the corresponding direct diffraction problem
(1)–(3) in Ωj = ΩΛj , j = 1, 2, and choose b such that {x ∈ R

2 : x2 = b} ⊂
Ω1 ∩ Ω2.

(i) In the Dirichlet case the relations

u1(x1, b) = u2(x1, b) for all x1 ∈ (0, 2π) (5)

for two different incident angles θ imply Λ1 = Λ2. If one excludes the
Rayleigh frequencies by assuming

βn 6= 0 , i.e. , k2 6= (n+ α)2 for all n ∈ Z , (6)

then the relation (5) for one incident wave is sufficient.

(ii) For the inverse Neumann problem, we have Λ1= Λ2 if the relations (5) hold
for four different incident directions, whereas three incoming waves are
enough if the Rayleigh frequencies are excluded for each incident angle θ.

It will be shown by appropriate counterexamples that a smaller number
of incident waves is not sufficient to determine the grating profile uniquely, in
general. We refer to the remarks at the end of the paper.

The proof of the theorem is carried out in the next section and relies on
a refinement of the arguments in [10] in combination with those developed in
[1, 6, 9] for inverse scattering by polygonal sound-soft and sound-hard obstacles.

2. Proof of the theorem

2.1. Finding an “exit direction”. Arguing by contradiction, let Λ1 6= Λ2 be
two periodic polygonal curves, with the case Λj = {x ∈ R

2 : x2 = cj}, c1 < c2,
excluded. Consider the solutions uj = u(Λj; θ) ∈ H

1
loc(Ωj) of the corresponding
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direct diffraction problems, and let Ω be the unbounded connected component
of Ω1∩Ω2. Note that by elliptic regularity, each function uj is infinitely smooth
up to the boundary, with the exception of the corner points of Λj. Moreover,
since uj satisfies the Helmholtz equation, uj is real-analytic in Ωj. Since u1 = u2
and then also ∂2u1 = ∂2u2 on {x2 = b}, we have

u(x) = u(θ)(x) := u1(x) = u2(x) in Ω ; (7)

see, e.g., [2]. Henceforth by a ray we mean a straight line starting from one
point and extended to infinity.

The following auxiliary result extends Lemma 2 in [10] to general polygonal
grating profiles. Note that the proof is more straightforward in the case where
Λ1 and Λ2 are given by the graphs of piecewise linear functions; see [10, Sec. 2.2].

Proposition 1. There exists a ray S ⊂ Ω such that u|S = 0 in the Dirichlet
case and ∂νu|S = 0 in the Neumann case.

Proof. Henceforth A1A2 stands for the open segment in R
2 with end points A1

and A2. Since Λ1 6= Λ2, there exists a segment A1A2 ⊂ ∂Ω ∩ Ω1 without loss
of generality (see [9, Sec. 3] for the details), and by (7) we have u1 = 0 resp.
∂νu1 = 0 on A1A2. Thus the set G defined by

G =

{

S :
S is a (finite or infinite) open segment extended to maximal length
in Ω1 such that u1 = 0 resp. ∂νu1 = 0 on S

}

is not empty. If G contains an infinite segment, then we already have the desired
ray. So we may assume that the subset of finite segments is not empty, and by
periodicity we can restrict ourselves to the set

G0=







S :
S is a finite open segment with both ends on Λ1, starting in a fixed
period, say 0 ≤ x1 ≤ 2π, and ending in the same, in the preceding
or subsequent period, such that u1 = 0 resp. ∂νu1 = 0 on S







.

Proceeding similarly to the case of scattering by polygonal bounded obstacles
(cf. [1, 6, 9]), we can prove that G0 is a finite set, which then implies the existence
of a ray S with the desired properties or a contradiction to the assumption that
Λ1 6= Λ2. Let us give a sketch of the finiteness proof, first for the inverse
Dirichlet problem and then for the Neumann case, and we refer to [6, 9] for the
details.

If G0 contains infinitely many segments, we can choose sequences of points
{Pj}, {Qj} such that Pj 6= Pj′ if j 6= j ′, Pj, Qj ∈ Λ1, PjQj ⊂ Ω1 and u1 = 0 on
PjQj for all j. Since the length of Λ1 restricted to {x ∈ R

2 : −2π ≤ x1 ≤ 4π} is
finite, we find subsequences Pj → P∞, Qj → Q∞, lying at one side of P∞, Q∞,
respectively. Moreover, Pj are not vertices of Λ1 and PjPj+1, QjQj+1 ⊂ Λ1
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for all j. It may happen that the stationary sequence Qj = Q∞ occurs or
that P∞ = Q∞. Consider the polygonal open set Dj bounded by the segments
PjQj, PjPj+1, Pj+1Qj+1, QjQj+1, which is a triangle or quadrangle, or consists
of two triangles with a common vertex.

For any j, u1 satisfies the homogeneous Dirichlet problem for the Helmholtz
operator ∆+k2 onDj, and the area ofDj tends to zero as j →∞. However, this
contradicts the Poincaré inequality for H1 functions with vanishing boundary
values (see, e.g., [12, Ch. 7.8]) and thus proves the finiteness of the set G0.

In the case of the Neumann problem, more sophisticated arguments are
needed to show that the corresponding set G0 is finite. As in [6] or [9, Sec. 3],
we can construct a sequence of triangles Dj, whose diameters converge to zero
as j → ∞, and such that u1 satisfies the homogeneous Neumann problem
for the Helmholtz operator on Dj for all j. Then we obtain a contradiction
to the optimal Poincaré inequality of [17] for planar convex domains. In the
n-dimensional case when n ≥ 3, a gap in the original proof of this inequality
was indicated and fixed in [4].

We now complete the proof of Proposition1 following the proof of Lemma 3.7
in [1]. Consider the open set

G∗ :=
(

Ω1 \
⋃

S∈G0

S
)

∩
{

x ∈ R
2 : 0 < x1 < 2π

}

,

which has one unbounded connected component G∞ and a finite number of
bounded connected components. We note that there exists only one unbounded
connected component, because the boundaries of any components of Ω1 \ G0
consist of finite segments.

Now we choose a point P ∈ ∂G∞ lying on exactly one open segment S
of G0, and select points P+ ∈ G∞ and P− ∈ G∗ \ Ḡ∞ sufficiently close to P .
Moreover, we can choose a continuous curve γ(t), t ∈ [t1,∞), which intersects
the set G0 only at the point P ∈ S and satisfies, for some t2 > t̄ > t1,

γ(t1) = P−; γ(t) ∈ G∗ \ Ḡ∞, t ∈ (t1, t̄)

γ(t̄) = P ; γ(t) ∈ G∞, t > t̄

with γ(t2) = P+ and γ(t) leading to infinity as t→∞ .

We will find a segment S∗ 6= S with u1 = 0 on S∗, intersecting γ at some t > t̄.
Then, either S∗ can be extended to a ray in Ω on which u1 vanishes (an exit
direction), or we have a finite segment belonging to G0 which is a contradiction.

Let G± be the connected components of (Ω1 \ S) ∩ {x ∈ R
2 : 0 < x1 < 2π}

containing P±, and consider the connected components E± of G± ∩ Π(G∓)
containing P±, where Π denotes the symmetric transform with respect to the
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extended straight line of S. Then E− = Π(E+). Let E = E− ∪ E+ ∪ S. Note
that ∂E consists of segments of Λ1 and Π(Λ1).

Since u1 is odd symmetric with respect to S, we obtain u1 = 0 on ∂E.
Note that E is bounded since G− is bounded. Therefore, for some t > t̄, γ(t)
intersects ∂E ∩G∞ and thus another segment S∗ 6= S with u1 = 0 on S∗. This
finishes the proof of Proposition 1 in the Dirichlet case.

The proof in the Neumann case is analogous; we only have to use the fact
that u1 is even symmetric with respect to S in the above argument.

2.2. Reduction to a finite sum of propagating waves. The function u
defined in (7) has the Rayleigh expansion

u(x) = u(θ)(x)

=

(

A exp(iαx1 − iβx2) +
∑

n∈P
An exp

(

i(α+ n)x1 + iβnx2
)

)

+

(

∑

n∈Z\P
An exp

(

i(n+ α)x1 + iβnx2
)

)

:= v + w (x2 > b) ,

(8)

where A = 1 and P denotes the finite set {n ∈ Z : βn ∈ R}. Note that
−iβn ≥ C > 0 for all n ∈ Z\P and βn ∼ |n|i as |n| → ∞. Of course, α, β, βn
and An depend on the incident direction θ.

Proposition 2. The existence of an exit direction (cf. Proposition 1) implies
that w = 0 in (8), i.e., An = 0 for all n ∈ Z\P .

Proof. Since a translation of the x coordinates only amounts to different co-
efficients in the expansion (8) with A 6= 0, we can assume that the ray S of
Proposition 1 starts at x = 0. We have

∂νu = − sinφ ∂1u+ cosφ ∂2u on S, (9)

if the ray S is given by S = {(t cosφ, t sinφ) : t > 0}. We have to consider the
following two cases:

(i) Dirichlet case: As in [10], u|S = 0 implies An = 0 for all n ∈ Z\P if
φ 6= 0. For φ = 0, we obviously even have An = 0 for n 6= 0.

(ii) Neumann case: From (8) and (9) we have

∂νu(x) = B exp(iαx1 − iβx2) +
∑

n∈Z

Bn exp
(

i(α + n)x1 + iβnx2
)

on S

B = (−iα sinφ− iβ cosφ)A

Bn =
(

− i(n+ α) sinφ+ iβn cosφ
)

An , n ∈ Z .

(10)
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Then, for n ∈ Z\P , we have Bn 6= 0 if and only if An 6= 0. Note that βn /∈ R

for these n, implying the assertion for φ 6= π
2
, and that by (4) |n + α| > k > 0

for n ∈ Z\P if φ = π
2
. Then Proposition 2 follows as in the Dirichlet case;

see [10].

2.3. End of proof in the Dirichlet case. We now have from (8) and Propo-
sition 2 that

u = v = A exp(iαx1 − iβx2) +
∑

n∈P
An exp

(

i(α+ n)x1 + iβnx2
)

, A 6= 0. (11)

Moreover, v is analytic in R
2 and satisfies v|L = 0 on each straight line L

extending a segment of Λ1 ∪ Λ2. So, by assumption, there exist at least two
lines L1, L2 intersecting at x = 0, where v vanishes. Let ψ denote the polar
angle between L1 and L2. Using the reflection argument with odd extension,
we end up with the following two cases (cf. [10]):

(i): ψ = λπ, λ ∈ (0, 1) irrational, and v|Ljψ = 0 for all j ∈ N.
Here Ljψ denotes the line of polar angle jψ with respect to L1. Since the direc-
tions of Ljψ are dense in [0, 2π), we obtain v = 0 in R

2 which is a contradiction
to A 6= 0. Therefore, case (i) cannot occur.

(ii): ψ = λπ, λ rational, and v|Ljπ/N = 0, j = 0, . . . , N−1, for some integer
N ≥ 2.
Since v is odd symmetric with respect to the lines Ljπ/N , we obtain v(x) =
(−1)Nv(−x) , x ∈ R

2 , or equivalently,

A exp(iαx1 − iβx2) +
∑

n∈P
An exp

(

i(n+ α)x1 + iβnx2
)

= (−1)NA exp(−iαx1 + iβx2)+ (−1)N
∑

n∈P
An exp

(

− i(n+ α)x1− iβnx2
)

;
(12)

see [10]. This implies, for some n0 ∈ P and all x ∈ R
2,

(−1)NA exp(−iαx1 + iβx2) = An0
exp

(

i(n0 + α)x1 + iβn0
x2
)

,

and because of A 6= 0,

n0 = −2α, βn0
= β, A(−1)N = An0

. (13)

Moreover, (12) gives for all x ∈ R
2

∑

n∈P\{n0}
An exp

(

i(n+ α)x1 + iβnx2
)

= (−1)N
∑

n∈P\{n0}
An exp

(

− i(n+ α)x1 − iβnx2
)

.
(14)



172 J. Elschner and M. Yamamoto

Therefore, for any n ∈ P\{n0}, we must have either An = 0, or βn = 0 in which
case a Rayleigh frequency occurs. If there is no Rayleigh frequency, we have
An = 0 for all n ∈ P\{n0}. Otherwise there exists n1 ∈ Z with βn1

= 0 and
n1 + α = k, and by equality (14) there is another index n2 ∈ Z such that

βn1
= βn2

= 0, n1 + α = −(n2 + α) = k, An2
= (−1)NAn1

. (15)

Furthermore, we have An = 0 if n 6= n0, n1, n2. Hence, in terms of (11), (13)
and (15), for even N , v takes the form

v(x) = A cos(αx1 − βx2) +B cos(kx1), A 6= 0, (16)

where B = 0 if there is no Rayleigh frequency. Similarly, for odd N , cos has to
be replaced by sin:

v(x) = A sin(αx1 − βx2) +B sin(kx1), A 6= 0. (17)

To complete the proof of the theorem in the Dirichlet case, we now investigate
the relation v|L = 0, where v is given by (16) or (17), and L is the straight
line given by L = L(φ) = {(t cosφ, t sinφ) : t ∈ R}, where φ ∈ (− π

2
, π
2
]. Since

(α, β) = k(sin θ, cos θ) with θ ∈ (−π
2
, π
2
), we have αx1 − βx2 = tk sin(θ − φ) on

L(φ), and (16) can be written as

A cos(tk sin(θ − φ)) +B cos(tk cosφ) = 0, t ∈ R. (18)

This is impossible for B = 0. To explore the case B 6= 0, we note that for
a, b ∈ R the functions

cos(at), cos(bt) are linearly independent on R if and only if a = ±b. (19)

Hence (18) implies that

sin(θ − φ) = ± cosφ = ± sin
(π

2
− φ

)

(20)

giving the relations θ−φ = π
2
+φ or θ−φ = φ− π

2
under the above constraints

on θ and φ.

Therefore, the functions (16) can only vanish on the line L(φ) if, for the
given incident direction θ,

φ =
θ

2
−
π

4
or φ =

θ

2
+
π

4
. (21)

On the other hand, we know that v vanishes on two lines Lj = L(φj), j = 1, 2,
where φ1 < φ2 without loss of generality. Hence, by (21) we have

θ = 2φ1 +
π

2
= 2φ2 −

π

2
. (22)



Polygonal Periodic Structures 173

Now we observe that the relations (22) are not possible for another incident
direction θ1 6= θ. This completes the proof if v has the representation (16).

Finally we consider the case v|L = 0 with L = L(φ) and v given by (17).
Then we have

A sin(tk sin(θ − φ)) +B sin(tk cosφ) = 0, t ∈ R. (23)

For B = 0, (23) implies that φ = θ which is not possible for φ = φ1, φ2, φ1 < φ2.
Thus we have proved the uniqueness with one incident wave if the Rayleigh
frequencies are excluded.

We are left with the case B 6= 0, i.e., there exist Rayleigh frequencies. Since
(19) also holds with cos replaced by sin, we obtain the relations (20)–(22) again.
However, taking a different incident direction θ1 6= θ, we obtain a contradiction
as above. This finishes the proof of assertion (i) of the theorem.

2.4. End of proof in the Neumann case. This time the finite expansion (11)
satisfies ∂νu|L = 0 on each straight line extending a segment of Λ1 ∪ Λ2. By
assumption, there are at least two lines Lj = L(φj), j = 1, 2, φ1 < φ2, with
this property. Let again ψ = φ2 − φ1 be the angle between L1 and L2. Using
now the reflection argument with even extension, we arrive at the following two
cases (compare Subsection 2.3):

(i): ψ = λπ, λ ∈ (0, 1) irrational, and ∂νv|Ljψ = 0 for all j ∈ N.
Hence we have ∂νv|L = 0 for all directions L = L(φ), φ ∈ [0, 2π). Passing to
polar coordinates x = r(cosφ, sinφ) and multiplying by r, from (10) we obtain
the relation

−(iαx2 + iβx1)A exp(iαx1 − iβx2)

+
∑

n∈P

(

− i(n+ α)x2 + iβnx1
)

An exp
(

i(n+ α)x1 + iβnx2
)

= 0 (24)

for all x ∈ R
2. However, (24) is not possible since A 6= 0 and the functions on

the left hand side of this equality are linearly independent on R
2. Therefore the

case (i) cannot happen.

(ii): λ rational, and ∂νv|Ljπ/N = 0, j = 0, . . . , N−1, for some integer N ≥ 2.
Since v is symmetric with respect to the lines Ljπ/N , we obtain this time v(x) =
v(−x), x ∈ R

2, implying the relations (12)–(15) without the factor (−1)N .
Therefore, v takes the form (16), and we have to investigate the relation ∂νv|L =
0 with L = L(φ), which can be written as

∂νv|L = (α sinφ+ β cosφ)A sin(tk sin(θ − φ)) +Bk sinφ sin(tk cosφ) = 0

for t ∈ R, or equivalently,

A cos(θ − φ) sin(tk sin(θ − φ)) +B sinφ sin(tk cosφ) = 0, t ∈ R. (25)
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The last relation holds for φ = φj, j = 1, 2, φ1 < φ2. First we consider the case
that φ1 = 0 or φ2 = π

2
. Then (25) and θ ∈ (−π

2
, π
2
) imply that θ = 0, so that

two incident directions are enough to determine the profile in this case.

From now on, we can assume that φ1, φ2 /∈ {0, π
2
}. If B = 0 (e.g., no

Rayleigh frequency occurs), then (25) gives

θ = φ, or θ = φ−
π

2
if φ > 0 and θ = φ+

π

2
if φ < 0 .

Hence, by φ1, φ2 ∈ (−π
2
, π
2
) \ {0}, we have φ1 < 0 < φ2, so that

φ1 = θ or φ2 = θ, with φ2 − φ1 =
π

2
, −

π

2
< φ1 < 0 < φ2 <

π

2
. (26)

From (26) we observe that three different incident directions θ with B=B(θ)= 0
in (25) and ∂νv(θ)|Lj = 0, j = 1, 2, are impossible. This proves assertion (ii) of
the theorem if Rayleigh frequencies are excluded for each incoming wave.

Finally, let θ be an incident direction such that (15) holds and (25) is
fulfilled with B 6= 0 and φ = φj, j = 1, 2, φ1 < φ2. Since B sinφ sin(tk cosφ)
does not vanish identically in R by φ ∈ (−π

2
, π
2
) \ {0}, we have cos(θ − φ) 6= 0

in (25), and as in Subsection 2.3 we further obtain relations (22). Note that
these relations cannot be true for another incident direction θ1 6= θ unless the
corresponding coefficient B = B(θ1) in (25) is zero. Since the equality B(θ) = 0
can only hold for at most two different incident angles θ, we have thus proved
that measurements with four incoming waves are always sufficient to ensure
the uniqueness in the inverse Neumann problem. This finishes the proof of the
theorem.

Remark 1. The counterexamples of [10] show that in the case of Rayleigh
frequencies one incident wave is not enough to ensure the uniqueness in the
inverse Dirichlet problem in general.

We now present an example for non-uniqueness in the inverse Neumann
problem with two incident waves if no Rayleigh frequencies occur:

Consider the quadratic grid generated by the 2π-periodic extensions of the
lines L(φ), φ = ±π

4
, and the incident waves with θ1 = −π

4
, θ2 = π

4
, and let

k = 1√
2
. Then we have

k sin θj =
(−1)j

2
, k cos θj =

1

2
,

k2 =
1

2
6= (n+ k sin θj)

2 = n2 + (−1)jn+
1

4
for all n ∈ Z ,

i.e., no Rayleigh frequencies for θ1 and θ2, and the functions

vj(x) = v(θj)(x) = 2 cos
(

(−1)j
x1
2
−
x2
2

)
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satisfy the Helmholtz equation in the whole plane and the corresponding quasi-
periodicity and radiation conditions. Note that (11) takes the form (16) with
A = 2 and B = 0 for θ = θ1, θ2. Moreover, the normal derivatives ∂νvj, j = 1, 2,
vanish on the lines {x2 = ±x1} since

∂νvj|L(±π
4
) = 2 cos

(

θj ±
π

4

)

sin
(

tk sin
(

θj ±
π

4

))

= 0

for all t ∈ R and j = 1, 2; compare the left hand side of (25).

Remark 2. To construct a non-uniqueness example for the inverse Neumann
problem with three incident angles θj, j = 1, 2, 3, we consider a rectangular
grid generated by the 2π-periodic extensions of two lines Li = L(φi), i = 1, 2,
φ1 < φ2. We have to show that, for each j, there is a solution vj = v(θj) of
the Helmholtz equation in the whole plane satisfying homogeneous Neumann
conditions on both lines Li as well as the corresponding quasiperiodicity and
radiation conditions. Then, by the considerations at the end of the above proof,
we are left with the following case:

φ1 = θ2 =
θ1
2
−
π

4
< 0, φ2 = θ3 =

θ1
2

+
π

4
> 0 ; (27)

compare (22) and (26). Moreover, each v(θj) takes the form (16) withB(θ1) 6= 0,
B(θ2) = B(θ3) = 0, and a Rayleigh frequency occurs at least for θ = θ1.

Let k = 25
2
, and choose the incident angles θj such that

sin θ1 =
7

25
, sin θ2 = −

3

5
, sin θ3 =

4

5
, (28)

implying the relations

cos θ2 = sin θ3 =
4

5
, cos θ3 = − sin θ2 =

3

5
,

cos θ1 =
24

25
= cos

(

2θ2 +
π

2

)

= − sin 2θ2 .
(29)

Therefore, the incident angles satisfy the constraints (27), and from (28) and
(29) we further have that

k(sin θ1, cos θ1) =
( 7

2
, 12

)

, k(sin θ2, cos θ2) =
(

−
15

2
, 10
)

,

k(sin θ3, cos θ3) =
(

10,
15

2

)

(30)

and the straight lines Li are given by

L1 =

{

( 4

5
t,−

3

5
t
)

: t ∈ R

}

, L2 =

{

( 3

5
t,
4

5
t
)

: t ∈ R

}

. (31)
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Using the ansatz (16) (with A = 2 for each incident direction), together with
(30) and (31), it can easily be checked that the functions vj defined by

v1(x) = 2 cos
( 7

2
x1 − 12x2

)

+ 2 cos
( 25

2
x1

)

,

v2(x) = 2 cos
( 15

2
x1 + 10x2

)

, v3(x) = 2 cos
(

10x1 −
15

2
x2

)

(32)

are the required solutions to the Helmholtz equation. In particular, the func-
tions (32) satisfy homogeneous Neumann conditions on L1 ∪ L2 and thus on
the grid generated by the 2π-periodic extensions of these lines. Moreover, for
θ = θ1, we note that (15) holds with n1 = 9 and n2 = −16, so that indeed a
Rayleigh frequency occurs.

From (27) we also obtain the uniqueness in the inverse Neumann problem
with three different incident directions if all incident angles are either non-
negative or non-positive.

Finally, we remark that we excluded in our theorem the standard non-
uniqueness examples where the two profiles are parallels to the x1 axis. In that
case it is easy to find counterexamples to the uniqueness in the inverse Dirichlet
and Neumann problems for an arbitrarily large number of incident waves.
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