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J. Caballero, B. López and K. Sadarangani

Abstract. Using a technique associated with measures of noncompactness we prove
the existence of nondecreasing solutions of an integral equation of Volterra type with
supremum in the kernel, in the space C[0, 1].
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1. Introduction

Integral equations arise naturally in applications of real world problems [1, 3, 11,
13, 14, 15]. The theory of integral equations has been well developed with the
help of various tools from functional analysis, topology and fixed-point theory.

The aim of this paper is to investigate the existence of nondecreasing so-
lutions of an integral equation of Volterra type with supremum. Equations of
such kind have been studied in other papers ([4, 16, 12], among others) and in
the monograph [6]. These equations can be considered with connection to the
following Cauchy problem:

x′(t) = u(t,max
[0,t]

|x(τ)|), x(0) = 0 .

The main tool used in our study is associated with the technique of measures
of noncompactness. Especially, that technique is very useful in the existence
theory for some functional, integral and differential equations [1, 9, 15]. Let us
mention that in applications the most useful measures of noncompactness are
those defined in an axiomatic way (c.f. [8, 10] and references therein). It is
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caused by the fact that using such measures of noncompactness and the fixed
point theorem of Darbo type we are able to prove not only the existence of
solutions of considered functional and integral equations but also we can obtain
certain characterizations of those solutions.

In the present paper, we apply the measure of noncompactness defined
in [10]. This measure is closely related to the monotonicity of real functions
defined and continuous on bounded and closed interval.

2. Notation and auxiliary facts

Assume E is a real Banach space with norm ‖ · ‖ and zero element 0. Denote
by Br the closed ball centered at 0 and with radius r. If X is a nonempty subset
of E we denote by X, ConvX the closure and the closed convex closure of X,
respectively. The symbols λX and X+Y denote the usual algebraic operations
on sets. Finally, let us denote by ME the family of nonempty bounded subsets
of E and by NE its subfamily consisting of all relatively compact sets.

Definition (see [9]). A function µ : ME −→ [0,∞) is said to be a measure of

noncompactness in the space E if it satisfies the following conditions:

1. The family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and kerµ ⊂ NE.

2. X ⊂ Y ⇒ µ(X) ≤ µ(Y ).

3. µ(X) = µ(ConvX) = µ(X).

4. µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1].

5. If {Xn}n is a sequence of closed sets of ME such that Xn+1 ⊂ Xn, for
n = 1, 2, . . ., and if limn→∞ µ(Xn) = 0, then the set X∞ =

⋂∞
n=1 Xn is

nonempty.

The family kerµ described above is called the kernel of the measure of

noncompactness µ. Further facts concerning measures of noncompactness and
their properties may be found in [9].

Now, let us suppose that M is a nonempty subset of a Banach space E

and the operator T : M 7→ E is continuous and transforms bounded sets onto
bounded ones. We say that T satisfies theDarbo condition (with constant k ≥ 0)
with respect to a measure of noncompactness µ if for any bounded subset X

of M we have µ(TX) ≤ kµ(X). If T satisfies the Darbo condition with k < 1,
then it is called a contraction with respect to µ.

For our purpose we will only need the following fixed point theorem [9].

Theorem 2.1. Let Q be a nonempty, bounded, closed and convex subset of the

Banach space E and µ a measure of noncompactness in E. Let F : Q 7→ Q be

a contraction with respect to µ. Then F has a fixed point in the set Q.
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Remark. Under the assumptions of the above theorem it can be shown that
the set FixF of fixed points of F belonging to Q is a member of kerµ. In
fact, µ(FixF ) = µ(F (FixF )) ≤ kµ(FixF ) and as k < 1, we deduce that
µ(FixF ) = 0.

Let C[0, 1] denote the space of all real functions defined and continuous on
the interval [0, 1]. For convenience, we write I = [0, 1] and C(I) = C[0, 1]. The
space C(I) is furnished with standard norm

‖x‖ = max{|x(t)| : t ∈ I}.

Next, we recall the definition of a measure of noncompactness in C(I) which
will be used in Section 3. This measure was introduced and studied in [10].

Fix a nonempty and bounded subset X of C(I). For ε > 0 and x ∈ X,
denote by w(x, ε) the modulus of continuity of x defined by

w(x, ε) = sup{|x(t)− x(s)| : t, s ∈ I, |t− s| ≤ ε} .

Furthermore, put

w(X, ε) = sup{w(x, ε) : x ∈ X}

w0(X) = lim
ε→0

w(X, ε).

Next, let us define the following quantities:

i(x) = sup{|x(s)− x(t)| − [x(s)− x(t)] : t, s ∈ I, t ≤ s}

i(X) = sup{i(x) : x ∈ X}.

Observe that i(X) = 0 if and only if all functions belonging to X are nonde-
creasing on I. Finally, let

µ(X) = w0(X) + i(X). (1)

It can be shown [10] that the function µ is a measure of noncompactness in
the space C(I). Moreover, the kernel kerµ consists of all sets X belonging to
MC(I) such that all functions from X are equicontinuous and nondecreasing on
the interval I.

3. Main result

In this section we consider the following nonlinear integral equation of Volterra
type:

x(t) = a(t) + (Tx) (t)

∫ t

0

u
(

t, s, x(s),max
[0,s]

|x(τ)|
)

ds, t ∈ I . (2)

The functions a and u, as well as the operator T are given while x = x(t) is an
unknown function. We will study this equation under the following assumptions:
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(i) a ∈ C(I) and it is nondecreasing and nonnegative on the interval I.

(ii) The operator T : C(I) 7→ C(I) is continuous and satisfies the Darbo
condition for the measure of noncompactness µ (defined in (1)) with a
constant q. Moreover, T is a positive operator, i.e., Tx ≥ 0 if x ≥ 0.

(iii) There exist nonnegative constants c and d such that ‖Tx‖ ≤ c+ d‖x‖ for
each x ∈ C(I) and t ∈ I.

(iv) u : I × I ×R×R+ 7→ R is continuous, u : I × I ×R+×R+ 7→ R+ and the
function t 7→ u(t, s, x, y) is nondecreasing for each (s, x, y) ∈ I × R× R+.

(v) There exist nonnegative constants α and β with |u(t, s, x, y)| ≤ α+ β|y|.

(vi) There exists L > 0 such that

|u(t, s, x, y)− u(t, s, x′, y′)| ≤ L(max{|x− x′|, |y − y′|}).

(vii) There exists r0 > 0 such that ‖a‖ + (c + dr0) · (α + β · r0) ≤ r0 and
q(α+ β · r0) < 1.

Before we formulate our main result we will prove the following lemmas which
will be needed further on.

Lemma 3.1. Suppose that x ∈ C(I) and define

(Gx)(t) = max
[0,t]

|x(τ)| for t ∈ I.

Then Gx ∈ C(I).

Proof. Without loss of generality, we can assume that x ≥ 0. We will prove
that for ε > 0

w(Gx, ε) ≤ w(x , ε).

Suppose contrary. This means that there exist t1, t2 ∈ I, t1 ≤ t2, t2 − t1 ≤ ε,
such that

w(x, ε) < |(Gx)(t2)− (Gx)(t1)| . (3)

As Gx is a nondecreasing function we have

0 < (Gx)(t2)− (Gx)(t1). (4)

Further, let us find 0 ≤ τ2 ≤ t2 with the property (Gx)(t2) = x(τ2). Taking into
account the inequality (4), we have t1 ≤ τ2. Thus,

(Gx)(t2)− (Gx)(t1) = x(τ2)− (Gx)(t1) ≤ x((τ2)− x(t1)

and, as τ2 − t1 ≤ t2 − t1 ≤ ε, we get

(Gx)(t2)− (Gx)(t1) ≤ x(τ2)− x(t1) ≤ w(x, ε).

Thus, we arrive at a contradiction. Consequently, for ε > 0, w(Gx, ε) ≤ w(x, ε)
and, as x ∈ C(I), the proof is complete.
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Lemma 3.2. Let (xn), x ∈ C(I). Suppose that xn → x in C(I). Then Gxn →
Gx uniformly on I.

Proof. Note that, for t ∈ I and y ∈ C(I), (Gy)(t) = ‖y|[0,t]‖, where y|[0,t] denotes
the restriction of the function y on the interval [0, t] and the norm is considered
in the space C([0, t]). In view of this fact we can deduce

‖Gxn −Gx‖ = sup
t∈I

|(Gxn)(t)− (Gx)(t)| = sup
t∈I

∣

∣‖xn|[0,t]‖ − ‖x|[0,t]‖
∣

∣ ≤ ‖xn − x‖.

As xn → x in C(I) we obtain the desired result.

Now we present our main result.

Theorem 3.3. Under assumptions (i)–(vii) equation (2) has at least one so-

lution x = x(t) which belongs to the space C(I) and is nondecreasing on the

interval I.

Proof. Let us consider the operator A defined on the space C(I) by

(Ax) (t) = a(t) + (Tx)(t)

∫ t

0

u(t, s, x(s), G(x)(s))ds

where G is defined in Lemma 3.1

Firstly, if we consider the previous assumptions, we can see clearly that if
x ∈ C(I) then Ax ∈ C(I). Consequently, the operator A transforms the space
C(I) into itself. Moreover, for each t ∈ I we have

|(Ax)(t)| =
∣

∣

∣
a(t) + (Tx)(t)

∫ t

0

u(t, s, x(s), G(x)(s))ds
∣

∣

∣

≤ ‖a‖+ (c+ d‖x‖)

∫ t

0

(α+ βG(x)(s))ds

≤ ‖a‖+ (c+ d‖x‖) · (α + β‖x‖).

Hence, ‖Ax‖ ≤ ‖a‖ + (c + d‖x‖) · (α + β‖x‖). From assumption (vii), we can
get that the operator A transforms the ball Br0

= B(0, r0) into itself.

In the sequel, we consider the operator A on the subset B+
r0
of the ball Br0

defined by

B+
r0
= {x ∈ Br0

: x(t) ≥ 0 for t ∈ I}.

Obviously, the set B+
r0
is nonempty, bounded, closed and convex. On the other

hand, in view of our assumptions (i), (ii) and (iv), if x ∈ B+
r0
, then Ax ∈ B+

r0
.

Next, we prove that A is continuous on B+
r0
. To do this , let {xn} be a

sequence in B+
r0
such that xn → x and we will prove that Axn → Ax. In fact,
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for each t ∈ I we have

∣

∣(Axn)(t)− (Ax)(t)
∣

∣

=

∣

∣

∣

∣

(Txn)(t)

∫ t

0

u(t, s, xn(s), G(xn)(s))ds− (Tx)(t)

∫ t

0

u(t, s, x(s), G(x)(s))ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

(Txn)(t)

∫ t

0

u(t, s, xn(s), G(xn)(s))ds− (Tx)(t)

∫ t

0

u(t, s, xn(s), G(xn)(s))ds

∣

∣

∣

∣

+

∣

∣

∣

∣

(Tx)(t)

∫ t

0

u(t, s, xn(s), G(xn)(s))ds− (Tx)(t)

∫ t

0

u(t, s, x(s), G(x)(s))ds

∣

∣

∣

∣

≤
∣

∣(Txn)(t)− (Tx)(t)
∣

∣

∫ t

0

∣

∣u(t, s, xn(s), G(xn)(s))
∣

∣ds

+ |(Tx)(t)|

∫ t

0

∣

∣u(t, s, xn(s), G(xn)(s))− u(t, s, x(s), G(x)(s))
∣

∣ds .

In virtue of Lemma 3.2,

‖Axn − Ax‖

≤ ‖Txn − Tx‖(α + β‖xn‖)

+ (c+ d‖x‖)L

∫ t

0

max
{

|xn(s)− x(s)|,
[

max
[0,s]

|xn(τ)| −max
[0,s]

|x(τ)|
]}

ds

≤ ‖Txn − Tx‖(α + β · r0) + (c+ d · r0)L ‖xn − x‖.

(5)

As T is a continuous operator, there exists n1 ∈ N such that for n ≥ n1, we
have

‖Txn − Tx‖ ≤
ε

2(α + βr0)
.

Moreover, we can find n2 ∈ N such that for all n ≥ n2, we have that ‖xn−x‖ ≤
ε

2L(c+dr0)
. Finally, if we take n ≥ max{n1, n2}, from (5) we get ‖Axn−Ax‖ ≤ ε.

This fact proves that A is continuous in B+
r0
.

In the sequel, we prove that the operator A satisfies the Darbo condition
with respect to the measure of noncompactness introduced in Section 2. Let
X be a nonempty subset of B+

r0
. Fix ε > 0 and t1, t2 ∈ I with |t2 − t1| ≤ ε.

Without loss of generality, we may assume that t1 ≤ t2. Then we obtain

|(Ax)(t2)− (Ax)(t1)| =

∣

∣

∣

∣

a(t2) + (Tx)(t2)

∫ t2

0

u(t2, s, x(s), G(x)(s))ds

−a(t1)− (Tx)(t1)

∫ t1

0

u(t1, s, x(s), G(x)(s))ds

∣

∣

∣

∣
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≤ |a(t2)− a(t1)|

+

∣

∣

∣

∣

(Tx)(t2)

∫ t2

0

u(t2, s, x(s), G(x)(s))ds− (Tx)(t1)

∫ t2

0

u(t2, s, x(s), G(x)(s))ds

∣

∣

∣

∣

+

∣

∣

∣

∣

(Tx)(t1)

∫ t2

0

u(t2, s, x(s), G(x)(s))ds− (Tx)(t1)

∫ t2

0

u(t1, s, x(s), G(x)(s))ds

∣

∣

∣

∣

+

∣

∣

∣

∣

(Tx)(t1)

∫ t2

0

u(t1, s, x(s), G(x)(s))ds− (Tx)(t1)

∫ t1

0

u(t1, s, x(s), G(x)(s))ds

∣

∣

∣

∣

≤ w(a, ε) + |(Tx)(t2)− (Tx)(t1)|

∫ t2

0

|u(t2, s, x(s), G(x)(s))|ds

+ |(Tx)(t1)|

∫ t2

0

|u(t2, s, x(s), G(x)(s))− u(t1, s, x(s), G(x)(s))|ds

+ |(Tx)(t1)|

∫ t2

t1

|u(t1, s, x(s), G(x)(s))|ds

≤ w(a, ε) + w(Tx, ε) · (α+ βr0) + (c+ dr0) · wu(ε, ·) + ε · (c+ dr0)(α+ βr0).

Hence,

w(Ax, ε) ≤ w(a, ε)+w(Tx, ε)·(α+βr0)+(c+dr0)·wu(ε, ·)+ε·(c+dr0)(α+βr0).

Consequently,

w(AX, ε) ≤ w(a, ε)+w(TX, ε)·(α+βr0)+(c+dr0)·wu(ε, ·)+ε·(c+dr0)(α+βr0).

From the uniform continuity of the function u on the set I × I ×R+ ×R+ and
the continuity of the function a on I, we have that wu(ε, ·)→ 0 and w(a, ε)→ 0
as ε→ 0. So, applying limit when ε→ 0, we obtain

w0(AX) ≤ (α+ βr0)w0(TX). (6)

Now, we study the term related to the monotonicity. Fix x ∈ X and
t1, t2 ∈ I with t1 < t2. Then, taking into account our assumptions, we have

|(Ax)(t2)− (Ax)(t1)| − ((Ax)(t2)− (Ax)(t1))

=

∣

∣

∣

∣

a(t2) + (Tx)(t2)

∫ t2

0

u(t2, s, x(s), G(x)(s))ds− a(t1)−

−(Tx)(t1)

∫ t1

0

u(t1, s, x(s), G(x)(s))ds

∣

∣

∣

∣

−

(

(a(t2) + (Tx)(t2)

∫ t2

0

u(t2, s, x(s), G(x)(s))ds− a(t1)−

−(Tx)(t1)

∫ t1

0

u(t1, s, x(s), G(x)(s))ds)

)
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≤ [|a(t2)− a(t1)| − (a(t2)− a(t1))]

+

∣

∣

∣

∣

(Tx)(t2)

∫ t2

0

u(t2, s, x(s), G(x)(s))ds− (Tx)(t1)

∫ t1

0

u(t1, s, x(s), G(x)(s))ds

∣

∣

∣

∣

−

(

(Tx)(t2)

∫ t2

0

u(t2, s, x(s), G(x)(s))ds− (Tx)(t1)

∫ t1

0

u(t1, s, x(s), G(x)(s))ds

)

≤

∣

∣

∣

∣

(Tx)(t2)

∫ t2

0

u(t2, s, x(s), G(x)(s))ds− (Tx)(t1)

∫ t2

0

u(t2, s, x(s), G(x)(s))ds

∣

∣

∣

∣

+

∣

∣

∣

∣

(Tx)(t1)

∫ t2

0

u(t2, s, x(s), G(x)(s))ds− (Tx)(t1)

∫ t1

0

u(t1, s, x(s), G(x)(s))ds

∣

∣

∣

∣

−

(

(Tx)(t2)

∫ t2

0

u(t2, s, x(s), G(x)(s))ds− (Tx)(t1)

∫ t2

0

u(t2, s, x(s), G(x)(s))ds

)

−

(

(Tx)(t1)

∫ t2

0

u(t2, s, x(s), G(x)(s))ds− (Tx)(t1)

∫ t1

0

u(t1, s, x(s), G(x)(s))ds

)

,

and hence

|(Ax)(t2)− (Ax)(t1)| − ((Ax)(t2)− (Ax)(t1))

≤ [|(Tx)(t2)− (Tx)(t1)|− ((Tx)(t2)− (Tx)(t1))]

∫ t2

0

u(t2, s, x(s), G(x)(s))ds

+ (Tx)(t1)

[ ∣

∣

∣

∣

∫ t2

0

u(t2, s, x(s), G(x)(s))ds−

∫ t1

0

u(t1, s, x(s), G(x)(s))ds

∣

∣

∣

∣

−

(
∫ t2

0

u(t2, s, x(s), G(x)(s))ds−

∫ t1

0

u(t1, s, x(s), G(x)(s))ds

)]

.

(7)

Now, we will prove that
∫ t2

0

u(t2, s, x(s), G(x)(s))ds−

∫ t1

0

u(t1, s, x(s), G(x)(s))ds ≥ 0.

In fact, notice that
∫ t2

0

u(t2, s, x(s), G(x)(s))ds−

∫ t1

0

u(t1, s, x(s), G(x)(s))ds

=

∫ t2

0

u(t2, s, x(s), G(x)(s))ds−

∫ t2

0

u(t1, s, x(s), G(x)(s))ds

+

∫ t2

0

u(t1, s, x(s), G(x)(s))ds−

∫ t1

0

u(t1, s, x(s), G(x)(s))ds

=

∫ t2

0

(

u(t2, s, x(s), G(x)(s))− u(t1, s, x(s), G(x)(s))
)

ds

+

∫ t2

t1

u(t1, s, x(s), G(x)(s))ds .
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Since t→ u(t, s, x, y) is nondecreasing, we have that

u(t2, s, x(s), G(x)(s)) ≥ u(t1, s, x(s), G(x)(s))

(assumption (iv)), and, consequently,
∫ t2

0

(u(t2, s, x(s), G(x)(s))− u(t1, s, x(s), G(x)(s)))ds ≥ 0. (8)

On the other hand, as u : I × I × R+ × R+ 7→ R+ then
∫ t2

t1

u(t1, s, x(s), G(x)(s))ds ≥ 0. (9)

Finally, (8) and (9) imply
∫ t2

0

u(t2, s, x(s), G(x)(s))ds−

∫ t1

0

u(t1, s, x(s), G(x)(s))ds ≥ 0 .

This together with (7) yields

|(Ax)(t2)− (Ax)(t1)| − ((Ax)(t2)− (Ax)(t1))

≤ [|(Tx)(t2)− (Tx)(t1)| − ((Tx)(t2)− (Tx)(t1))]

∫ t2

0

u(t2, s, x(s), G(x)(s))ds

≤ (α + β · r0) · i(Tx) .

Therefore, i(Ax) ≤ (α + β · r0) · i(Tx) and, consequently,

i(AX) ≤ (α + β · r0) · i(TX). (10)

Finally, combining (6) and (10), we get

µ(AX) = w0(AX) + i(AX) ≤ (α + β · r0) · µ(TX) ≤ (α + β · r0) · q · µ(X) .

Since (α+β · r0) · q < 1 (assumption (vii)), Theorem 1 guarantees the existence
of a nondecreasing solution of (2).

4. Examples

In this section we show that assumptions of our existence result are rather easy
to verify. We illustrate this assertion with the help of some examples.

Example 4.1. Consider the integral equation

x(t) = 1 +
1

8
x(t)

∫ t

0

(

t+ sin s+ | cos(x(s))|+
∣

∣

∣
cos

(

max
[0,s]

|x(τ)|
)∣

∣

∣

)

ds. (11)

In this case a(t) = 1 and this function verifies assumption (i). Moreover,
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(Tx)(t) = 1
8
x(t) and satisfies assumptions (ii) and (iii) with q = 1

8
, c = 0 and

d = 1
8
. In our case the function u is given by u(t, s, x, y) = t+ sin s+ | cos x|+

| cos y| and satisfies assumptions (iv), (v) and (vi) with α = 4, β = 0 and L = 2.
In this case the inequality ‖a‖+(c+dr0)(α+βr0) ≤ r0 appearing in assumption
(vii) has the form 1 + ( 1

8
r0) · 4 ≤ r0 which is satisfied for r0 = 2 and, moreover,

q(α + βr0) =
1
8
· 4 = 1

2
< 1. Theorem 3.3 guarantees that the integral equation

(11) has a nondecreasing solution in the ball B2 of the space C(I).

Example 4.2. Consider the integral equation

x(t) = et +
1

6
max
[0,t]

|x(τ)|

∫ t

0

(

t+ sin s+ e−max[0,s] |x(τ)|
)

ds. (12)

In this case a(t) = et and it is obvious that such function verifies assumption (i)
with ‖a‖ = e. The operator T has the form (Tx)(t) = 1

6
max[0,t] |x(τ)|. In virtue

of Lemma 3.1, such operator satisfies assumptions (ii) and (iii) with q = 1
6
, c = 0

and d = 1
6
. In our case, the function u has the form u(t, s, x, y) = t+sin s+ e−y

and satisfies assumptions (iv), (v) and (vi) with α = 3, β = 0 and L = 1. The
inequality ‖a‖+ (c+ dr0)(α + βr0) ≤ r0 appearing in assumption (vii) has the
form e+(1

6
r0) ·3 ≤ r0 and it is satisfied for r0 = 2e and, as, q(α+βr0) =

1
6
·3 =

1
2
< 1, Theorem 3.3 guarantees that our integral equation has a nondecreasing

solution in the ball B2e of the space C(I).

Example 4.3. Consider the integral equation

x(t) = 1 +
1

2

∫ t

0

t

s+ arctg x(s) + arctg(max[0,s] |x(τ)|) + 2π
ds. (13)

In this case a(t) = 1 and ‖a‖ = 1. This function satisfies assumption (i). The
operator is given by (Tx)(t) = 1

2
which satisfies assumption (ii) and (iii) with

q = 0, c = 1
2
and d = 0. In our case the function u is given by u(t, s, x, y) =

t (s+arctg x+arctg y+2π)−1 and such function verifies assumptions (iv), (v) and
(vi) with α = 1, β = 0 and L = 2. The inequality ‖a‖+(c+ dr0)(α+ βr0) ≤ r0

in assumption (vii) has the form 1 + 1
2
≤ r0 which it is satisfied for r0 = 3

2
.

Moreover, as, q(α + βr0) = 0 · 1 = 0 < 1, Theorem 3.3 guarantees that our
integral equation has a nondecreasing solution in the ball B 3

2

of the space C(I).
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