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Quasi-Periodic Solutions
in Nonlinear Asymmetric Oscillations

Xiaojing Yang and Kueiming Lo

Abstract. The existence of Aubry—Mather sets and infinitely many subharmonic
solutions to the following p-Laplacian like nonlinear equation

(p = 1) p(@)) + [agp(x™) — Bep(a7)] + g(x) = h(t)

is discussed, where ¢,(u) = |u|P~2u, p > 1, «,3 are positive constants satisfying
1 1

a r+p[ = % with n € N, h is piece-wise two times differentiable and 2m,-periodic,

g € CY(R) is bounded, z* = max{+z,0}, mp, = psif{;/p).
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1. Introduction

In this paper, we consider the existence of Aubry—Mather sets and quasi-periodic
solutions to the following p-Laplacian like nonlinear differential equation

(p = 1)U p(@") + [ady(at) = Bop(a7)] + g(x) = h(t) (=5). (1)
where ¢,(u) = [u[P"2u,p > 1 is a constant, = = max{+x,0}, a, 3 are positive
constants satisfying

=2 9
a”r + e (2)
h is piece-wise two times differentiable and 27,-periodic, g € C*(R) is bounded

and m, = 1#7;/12)‘ If p = 2, then my = 7 and (1) reduces to second order

differential equation

2" + ozt — Ba” + g(x) = h(t). (3)
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The existence of Aubry-Mather sets and quasi-periodic solutions of (3) was
discussed recently in [3] if g € C? and the limits

lim g(z) = g(+o0), lim g(z) = g(—o0)

T—+00 T——00

exist and ¢ satisfies some further approximate properties at infinity. Capietto
and Liu [3], by applying a version of Aubry—Mather theory due to Pei [11],
proved the existence of quasi-periodic solutions in generalized sense and multi-
plicity of subharmonic solutions to equation (3) under the so-called ”resonance”
situation, i.e., (2) holds for p = 2 and some n € N.

Let C' be the solution of the initial value problem
2" +azt — Bz =0, z(0) =1, 2/(0)=0.

Assume o # 3 and \/La + Lﬁ = 277", m,n € N. Alonso and Ortega [2] proved
that if the function

2w
6r(0) = [ C(n 40y h)ar
0
has only simple zeros, then any solution x of the linear equation
"+ ozt = BaT =h (4)

with large initial values, that is, if |z(to)| + |2'(t9)| > 1 for some ty € R, goes to
infinity in the future or in the past. Moreover, they showed the existence of h
such that unbounded solutions and 27-periodic solutions of (4) can coexist.

Fabry and Fonda [4] and Fabry and Mawhin [5] obtained, by degree meth-
ods, sufficient conditions for the existence of 2m-periodic solutions and of un-
bounded solutions as well as subharmonic solutions for (5) below, respectively.
More precisely, in [5] the following equation is considered:

2" +az” — Bz = g(x) + f(z) + (D), (5)
and it is proved that if the function

_n [g(+oo)  g(=o0) I
a(0) = = | £ 5 }+2W\/a/0 C(t + )h(t) dt

has zeros and all of them are simple, then all solutions of (5) with large initial
values are unbounded if the following resonance condition is satisfied:

2
+ =—, neN,
n

-
-
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and f has a sublinear primitive, that is, hmmboo fo s)ds = 0. Later, the
author of this paper [12] discussed the more general equatlon (1) and considered
the following function:

o(0) = D, — L / " hmt)Cy(m + 0) it

ar
where
b~ g (g, . ;) glroc) g(—go)] |
m-\p" p)| 32
B(r, s) is the S-function B(r, s) = fo t)" s dt for r > 0, s > 0, and C,(2)

is the %%m -periodic solution of the followmg initial value problem:

(P =1 p(W) + [agy(u’) — Bop(u)] =0, u(0) =1, u'(0) =0,

1

if o and 3 satisfy o~ P—l—ﬁp ,m, n € N.

It was shown in [12] that if the function ¢(6) has no zero for all # € R, then
all solutions of (1) are bounded. For more recent results on boundedness and
existence 2m-periodic solutions of (1) and (3), we refer [1], [6]-]9], [11]-[15] and
the references therein.

In the rest of this paper, we denote by S the unique solution of the initial
value problem

(P = 1) Hep(a) + [agy(a™) = Bop(2z7)] =0, x(0) =0, 2'(0)=1. (6)

Definition 1.
(A) A solution of (x,(t), z/,(t)) of (1) is called of Mather type with rotation

number w if w = £ is rational, the solutions (z(t + 2im), z,,(t + 2i7)),
1 <4 <m — 1, are mutually unlinked periodic solutions of periodic 2m

and, in this case,

lim m1n(|xw( )|+ |2, (t)]) = +o0.

w—n teER

(B) If w is irrational, the solution (z,,(t), / (t)) is either a usual quasi-periodic

solution or a generalized one, that is, the closed set

{(z,(2im), a!,(2im)), i € Z}
is a Denjoy’s minimal set.

The main results of this paper are formulated in the following theorems:
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Theorem 1. Assume h € L0, 2m,] is 2m,-periodic and g € C'(R) is bounded
and satisfies the following conditions: the limits lim, ., g(z) = g(+00) and
lim, . g(z) = g(—00) ezist and g satisfies

g(x) = g(£o0) + ci]x\*(Pfl)Usgmc + O(’:E‘f(pfl)afl)

for |x| > 1, where o € (0, ]ﬁ) is a constant and ¢* are constants satisfying
ct ¢
Dy =: 2—(p—1o + 2-(p—Do # 0.
a  »p G

Define a 2m,-periodic function \; as

M) = /02% S(O)h(t + 0)d6 — ]% <9<+;’O> _ g<_oo)) B (g 1) ,

s Br P q
where q = zﬁ is the conjugate exponent of p. Let one of the following conditions
be satisfied:
(I) A(t) #0 forallt € R;
(IT) either (a) A\ (t) >0 and Dy <0 or (b) A\i(t) <0 and Dy > 0.
Then there exists an g9 > 0 such that for any w € (n, n+€y), equation (1) has

a solution (x,(t), =/ (t)) of Mather type with rotation number w.

Theorem 2. Assume g(x) = 0, h is piece-wise two times differentiable and
2my-periodic. Assume

M(t) = /D%p SO)h(t +0)do = 0.

For p # 2, define a 2m,-periodic function \y(t) as

No(t) = (p—2) [ /0 S @t 1 0) /0 SRt + 7)drd6 — / 20t 1 9)d9} .

0

For p =2, define a 2m-periodic function A3(t) as

/ S8 (0) 15t + 0)d6 + / SO (¢ 1 0) ( /0 St + T)dT)Qde]

0 0

A(t) = —%{

— 2w52(0)h(t + )/ (t + 0) / OS(T)h(t + 7)dTdf.

0

Then the conclusions of Theorem 1 are true, if one of the following conditions
holds:

(I) p#2, Ma(t) #0 for allt € R;
(II) p=2, A3(t) #0 forallt € R.
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2. Generalized polar coordinates transformation

If we introduce a new variable y = ¢,(z’), then (1) is equivalent to the planar
system

v =04(y), Y = - Dl-agy(z") + Bep(z7) + h(t) — g(x)], (7)

where ¢ = -P= is the conjugate exponent of p. Let u = sin, ¢ be the solution of

the initial value problem

(¢p(u)) + (p— Dpp(u) =0,  w(0) =0, u'(0) =1

which for ¢ € [0, 22] can be expressed implicitly by

72
sing t ds
= [
0 (1—sP)r

Then it follows from [10] that u = sin, ¢ can be extended to R as a 2m,-periodic
odd C*-function which satisfies sin, ¢ : [0, 2] — [0, 1] and sin,(m, — t) = sin, t
for t € [Z2, mp), sin,(2m, — t) = —sin, t for ¢ € [m,, 2my].

Let the function S be the unique solution of problem (6), then it is not
difficult to verify that S € C?(R) is 2%—periodic and can be expressed as

R _1
a P sin, art, te [0, Q Pﬂp)

S(t) = . . ) ; 8
Q {—ﬁp sin, B (t — o #mp,), t€ [Cfﬁrp, 2%}, ®)

from which it is easy to verify that the following equality holds:

IS"OF +a(ST#)P+3(S (t)P=1, teR. (9)

For p > 0, #(mod 2m,), we define the generalized polar coordinates trans-
formation (p, 0) — (z, y) as

r=prS(2),  y=pion(S'(2)):

Under this transformation and by using (9), (7) is changed into the planar
system

P =pprS' (L) (h(t) — g(@)), O =n—np 1S(L)(h(t) - g(x)).  (10)
If we define r = p%, then (10) can be further simplified as
= (= DS (F)(AE) = g(x)), O =n[l—r""S(3)(h(t) - g(x))], (11)

where x = TTLS(%).
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Let (r(t;70,00), 0(t; 79, 00)) be the solution of (11) with initial value (rq, 6p).
Then for large initial value, i.e., 7o > 1, by the boundedness of h, g, S, S" and
for ¢ in any bounded interval I C [0, 2nm,|, we get r(t) = ro+O(1) which yields
r(t) = ry" 4+ O(ry?). Going back to (11), we get for t € I, 6'(t) > 1 > 0. As
in [3], we can write (11) in the following equivalent form:

dt

a9 n(1—r 1S(%)(h(t

dr (p-1)S' (%) (h(t) - @ >>

o n(1—r=tS(7)(h(t) — g(x))
Now let (r(0;70,10), t(0;70,%0)) be the solution of (12) with initial value (rg, to)

where to € I and 6 € [0, 2nm,]. Then for rq > 1, we obtain 7(0) > ry/2 > 1
and (12) can be written as

(12)

o =LA () (1)~ g()) + 1 (0)S' (S (2) (D) ~g(x))? + -]
dt 1

= [T+ OS (@) B0 —g(@) + 2O (@) (O —g(@) + -],

(13)

where z = z(0) = 1§ IS( )+ O(1).

3. Lemmas

For the proof of theorems, we need the following lemmas:

Lemma 1. Assume the conditions of Theorem 1 hold, then we have

1 :’l"o—i-,u()(to)—i‘O(?”al) (14>
t1 = to +2m, + M (to)rg ' + Agoro 19 1+ 0(152).
where 1 = r(2nm,; ro, to), t1 = t(2nm,;ro, to) and

2mp

po(t) = (p—1) S'(0)f(t + 0)do

0

(t) = /02% S(0)f(t + 6)do — §<9<+§°) - g<_fo>>3 (2, 1)

ar 65 P q

2( ¢t c” T+1 1
>\1+a:——(r—+1+7—+1)3< ,—>
P\ 45 P q

2 11
:—DO—B (T+ ,_)7
p p 4q

where T =1— (p —1)o € (0, 1). Moreover, we have po(t) = —(p — )N\ (%).




Quasi-Periodic Solutions 213

Proof. Tt follows from (13) and for ¢y € R and 6 € [0, 2nm,], we have
r() =ro+0(1),  tO) =to+ L+ 0(rg?). (15)

For ry > 1, substituting (15) into (13), then integrating over [0, 2nm,| and
letting ry = r(2nm,), t; = t(2nm,), we obtain

r1 =10+ polto) + O(ral)

(14+0) (16)
tl :to +27Tp+)\1(t0) —|—)\1+U7"0 —FO(T’O ),
where
-1 2nmy )
o) == [ s (@)nia+ 4o
——g+oo /S' dﬁ——g /S’Q
— —1>/ S'(O)h(t + 0)do,
0
and
1 2 g 0 0 1 0
() = & / S(E)h(t+E)d@—g(Jroo)/S(—)d@ ——g(—oo)/S(E)dH
n LJo I n J
2mp 4%%5 27p

— [ S0t + 0)d6 — g(+o0) / 7 5(6)d6 + g(—o0) / 15(6)[d6,

0 0

where I = {6 € [0, 2nm,] : S(£) > 0} and J = {6 € [0, 2nm,] : S(£) < 0}.
By using the similar method used in [12], we can show that

Tp

12 /21
/ / S(Q)d&z——B( )
0 ai? \Pq

/" S(@)d@:igB (2 1)
al/p grp \p'q

From above equalities, we obtain the expressions of p1(t) and A;(t).

Next, we calculate the value A\ 4,. From (16) and the expression of S in (8),
we obtain

My = —c* / " (S0)) 0 — ¢ / " IS(r)do
0 Tp
al/p

-+ — Tp
S . / (sin, 0)7df
a P [3_77_ 0
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and

/ p(sinp 0)do = 2/ ’ (sin, 0)7dO = gB (T - 1, 1) ;
0 0

p p g

which yields the expression of A;,,. Now the integration by parts yields po(t) =
—(p = DM(D). O

Lemma 2. Assume the conditions of Theorem 2 hold, then we have

T ="T0+ Ml(to)rgl + O(T62>
ty =ty + 2m, + Xa(to)rg 2 + O(ry®),

where

2mp 0
pi(t) =—(p— 1)/0 S(O)n"(t + 0)/0 S(T)h(t + 7)drdd

-1y [ SO + 0)h(t + 0)d6

Mo(t) = (p— 2) /O ™ SOt + ) /0 " St 4 v)drdo

-2 [ S+ 06,

Moreover, we have (p — 2)p1(t) = (p — 1)A5(¢).

Proof. Substituting (15) into (13) and integrating over [0, 8] C [0, 2m,] we,
obtain
T(9> =170+ Mo(to, 6) + O(’I“al)
tO) =to+ £ + M(to,0)rg" + O(rg?) (18)
rH0) = 1yt — po(te, 0)rg® + O(ry?),

where

it )= [z z)an
e (19)
)\l(t,Q):—/ S(Z)h(t + T)dr.

n

Substituting (18)—(19) into (13) and integrating over [0, 2nm,|, we get

1= 1o+ polto) + pi(to)rg ' + O(rg?)
ty = to+2m, + M (to)rgt + Xa(to)ry 2 + O(ry ),
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where A\ (t) = Ay (¢, 2nm,), po(t) = po(t, 2nm,),

p— 1 2nmp Lo . ;
/Ll(t) = / S (ﬁ)h (t + 5))\1(75, 9)6[(9
0

n

p_l 2nmy, 9 'r6Y 12 9
= SR+ )

n 0

=—(p—1) /027% S(O)R"(t +0) /09 S(T)h(t + 7)drdo

—o(p—1) /0% S2(O)A(t + O)' (¢ + 0)dh — (p — DA (HN. (1)

and
1 2nmy 1 2nmy,
Mot) = E/o 52(%)h2(t+%)d9—5/0 S(E)(t + ) uolt, 0)d0
2nmp
+%/ S(LVH (t+ )\ (t, 6)d0
0

27y

=(=2) | SOh(t+0) /09 S(r)W (t+7)drdf

0

—(p-2) /02% S2(O)R*(t + 0)dO 4+ A ()N, (1).
From above equalities we obtain after some elementary calculation
(b= 2)m(t) = (= 1) [ M0 = EX0)" = 0~ DX )],
which implies that, for A1(¢) = 0, we have (p — 2)u1(t) = (p — 1)A5(¢). O
Lemma 3. Assume that the conditions of Theorem 2 hold, and p = 2. Then

r=ro+ p(to)rg ' + O(rg?)

20
t :t0—|—27r+)\3(t0)7’0_3+0(7‘0_4), (20)

where
() = — / " SO (t+6) / St )drdd—2 / " S O)h(t+0)H (t--0)d0

and A3(t) is given as in Theorem 2.

Proof. Substituting (15) into (13) and integrating over [0, 8] C [0, 2n7], we
obtain (18) with ug, A1 given by (19) with p = 2. Substituting (18) into (13)



216 Xiaojing Yang and Kueiming Lo

and integrating over [0, 8] C [0, 2n7], we obtain

7”(9) =Ty + Mo(to, 9) + Ml(to, 9)7’61 + O(?"EQ)
t(0) = to + & + Milto, 0)rg " + Aalto, 0)rg? + O(rg”) (21)
r 1) = gt — polto, 0)rg? + (ug(to, 0) — pa(to, 0))ry® + O(ry ),

where
0
m(t,@):%/o S(E)H(t+ D)\t 7)dr
w1 [ @ par
:7;2 GS’( VI (t+ T /Su/n (t + u/n)dudr
10 . 0 (22>
w1 [sEsEme+2)ir
and
Xo(t,0) = — 1/es( Jh(t + Z) po(t, T)dT—l—l/ S*(Z)R*(t+ Z)dr
—i—n HST)ht—i-T A (t, 7)dr
1 QSh/ Sh’dudT+—/ Sh’/ Shdudr
:; "SEn(t+ Qm/ﬂgwugw (23)

Substituting (21)—(23) into (13) again and integrating over [0, 2n7], we obtain

r1 =10+ polto) + Ml(to)ral + O(TEQ)
bt =to 4 21 + M (to)rg " + Aalto)ry 2 + As(to)rg® + O(rg ),

where A\ (t) = M\ (¢, 2nm), k= 1,2, p;(t) = wi(t, 2nm), 1 =0, 1, and
1 2nm 2 2nm 2 2nm
A3(t) = = / S2h?dO — = / S?h2 juodf + = / S?hh' A\ df
0 nJo nJo
1 2nm ) 1 2nm .
+ — Sh(/,LO — ul)dﬁ - — Sh )\1,u0d9 (24)
nJo nJo

1 2nm 1 2nm
+ —/ Sh”)\%dﬁ + —/ Sh/\odb.
0 0

n n
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Now, substituting the expressions of g, i1, A and g into (24) and using
A1(t) = 0, we obtain from Lemma 2 that A\o(t) = 0 and po(t) = —Ai(t) = 0.
After some elementary calculation, we obtain the expression of A3(¢) given in
Theorem 2. O

4. Proof of the theorems

Now, we are ready to prove the main results of this paper.

Proof of Theorem 1. Assume the conditions of Theorem 1 hold. If (I) is satis-
fied, then the Poincaré map P : (tg, o) — (1, 1) of the solutions of (13) has
the following form:

tl = to + 27Tp + )\1(t0>7”61 + 0(7’62)
=19+ po(to) + O(rg ),
with fi(t) = —(p — DAL(1).
Now we introduce another action variable u and a positive parameter € by

r =L with u € [1,2]. Then 7 > 1 < e < 1. Under this transformation, (25)
is changed to the following form:

(25)

t1 = to + 2m, + M (to)uoe + O(e?)
Uy = Uy — Mo(to)ug€ + 0(62).

Let t; = to + eR(to, ug, €), uy = ug + eWi(to, uo,€), then R(t,u,e) = A\ (t)u +
O(e), W(t,u,e) = —puo(t)ud + O(e), and for t € [0, 2nm,], u € [1,2], we have

OR(t,u,e OR(t,u,e
|R<t7u,e)l+‘ (8t“ ) +‘ (8u“ ) <C (26)
and
oW (t,u,e oW (t,u,e
|W(t,u,5)|—l—‘ (815 )+‘ <8u >§Cg (27)

for some constants C;, Cy. Moreover, if mingeg A\(t) = do > 0, we have for
e teR uell?2,

é?R(t, u, 6) > dQ
Ju -2
and if max;cg1 A1 (t) = —d; < 0, we have

GR(t,u,e) dl
R S Bt A A G )
ou - 2 <0
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In both cases, the Poincaré map of (25) is a monotone map. Going back to (13),
we know that the Poincaré map @ : (6g,r9) — (01,7r1) is also monotone if
ro > 1. Using similar arguments as in [11, Section 4], we may construct a
map  which is a global monotone twist homeomorphism of the cylinder S* x R
and coincides with @ on S x [Ag, +00) with a fixed constant Ay > 1, where
St = R/2m,Z. Therefore, the existence of Mather sets M,, of Q is guaranteed
by Aubry-Mather theory (see [11]). Moreover, for some small €5 > 0, such
invariant sets with rotation w € (n, n + &¢) lie in the domain S! x [Ag, +00).
Hence they are just the Aubry—Mather sets of the Poincaré map of ). The
above discussion shows the existence of Mather sets, this implies that (1) has
a solution (z.,(t), x;,(t)) of Mather type. Moreover, if w = 7 is a rational, the
solutions (x,(t + 2im,), @/ (t + 2im,)), 1 < ¢ < k — 1, are mutually unlinked
periodic solutions of period 2km, and limy_ 4 mingeg ||z, (%), 2,(t))] = +oo.
If w is irrational, the solution (z,(t), z,(t)) is either a usual quasi-periodic
solution or a generalized one.

In case (II), by Lemma 1, the Poincaré map of (13) has the form of (14),

under the same transformation r = u%, (14) is of the following form:

tl = to -+ 27Tp + €R1(t0, U, 8)

uy = ug + eWi(to, uo, €),

where Ry (t,u,e) =\ (t)utA11,u' 777+ 0(e!), and Wi(t, u, £) = —po (£)u+O(e).
It is easy to see that R; and W) satisfy the similar inequalities as (26) and (27).
Moreover, for A\;(t) > 0 and Dy < 0, we have fore < 1,t € R, u € [1,2], A1, >0
and

OR;(t,u,¢)

1
o = )\1(75) + (1 + U))\1+J€U + 0(51) 2 )\1(75) + 5(1 + O’))\1+U€U > 0.

Similarly, for A;(¢) < 0 and Dy > 0, we have A\, < 0 and

OR:(t,u,e 1
% =M(t) + (L +0)Aigee” + O(eh) < Mi(t) + 5(1 + 0)A40e” < 0.
The rest proof is similar to that of case (I), so we omit it for simplicity. O

Proof of Theorem 2 (a sketch). By Lemma 2 and Lemma 3, the Poincaré map
of (13) has the form of (17) or the form of (20). Under the transformation
r = -1, (17) and (20) have the forms

ue’

tl = to + 27Tp + )\Q(to)ugEQ -+ 0(83)
uy = ug — pir (to)uge® + O(€?),
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and
t = to + 21 + As(to)ude® + O(e?)
uy = ug — i (to)uge® + O(e),
respectively. Let
t = to + 21, + 2 Ro(t,u, €), uy = ug + 2Wa(t,u,e) for p#2
ty =ty + 21 + 3 Ry(t,u,e), uy = ug + 3Ws(t,u,e) for p =2,

respectively, then it is not difficult to verify that for 0 < ¢ < 1, W # 0 if
Ai(t) #0, t € R for k = 2,3. The rest proofs are similar to that of Theorem 1,
so we omit them for simplicity. O

Example 1. Consider equation (1) with « = § =n =1, h(t) = 1, g(z) =
arctanz + |z| "sgnx, where 7 € (0,1). Then Theorem 1 implies that, for
all t € R, A\((t) = —%’TB(%, %) < 0. Now (I) of Theorem 1 implies that the
conclusion of Theorem 1 holds.

Example 2. Consider the following equation
(p = 1) (p(2)) + @pla) + |2| Tsgna — 2fa| Tsgnz = 1, (28)

where p>1, 7€ (0,1). Thena=0F=n=1, ¢t =1, ¢ = -2, h(t) =1, and
it is easy to see that S(t) = sin,t, A1(t) = 0 and Dy = ¢t + ¢~ < 0. Now (II)
of Theorem 1 implies that there exists €9 > 0 such that for any w € (n, n+¢y),
(28) has a solution (z,(t), z/,(t)) of Mather type with rotation number w.

w

Example 3. Consider a special case of (1):

(P =1 (dp(2) + &pla) = L. (29)
In this example, p # 2, & = f =n =1, g(z) = 0, h(t) = 1. Then it can
be verified that \(t) = 0, \o(t) = (2 — p) fozw” sin? #df # 0. Now Theorem 2
implies that there exists ey > 0 such that for any w € (n, n + &¢), (29) has a
solution (z,(t), z/,(t)) of Mather type with rotation number w.

w

Example 4. Consider the following linear equation
" + axt — Bz = h(t), (30)

where o # 3 satisfying (2) with p = 2, n = 1, and h is piecewise continuous
and 2r—periodic such that h(t) =1, ¢ € [0, 7=]; h(t) = g, t € (J5,27]. Then it
follows from Theorem 2 that A;(t) = \y(t) = 0 and A\3(¢) = X\3(0) = — 25 (a—3)

a3
# 0. Hence Theorem 2 implies that the conclusion of Theorem 2 holci)’s.
Remark 1. Let p = 2, Theorem 1 reduces to [3, Theorem 1], moreover, our
assumption Dy # 0 is weaker than the assumption ¢ # 0 and ¢"¢™ > 0. In case
g(x) = 0 and A\ (t) = 0, the result of [3] cannot be applied to equation (30), but
Theorem 2 gives partial results. Therefore, our results are natural generalization
and refinements of the result of [3].
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