Zeitschrift für Analysis und ihre Anwendungen (C) European Mathematical Society Journal for Analysis and its Applications Volume 26 (2007), 207–220

Quasi-Periodic Solutions in Nonlinear Asymmetric Oscillations

Xiaojing Yang and Kueiming Lo

Abstract. The existence of Aubry–Mather sets and infinitely many subharmonic solutions to the following p-Laplacian like nonlinear equation

$$
(p-1)^{-1}(\phi_p(x'))' + [\alpha\phi_p(x^+) - \beta\phi_p(x^-)] + g(x) = h(t)
$$

is discussed, where $\phi_p(u) = |u|^{p-2}u, p > 1, \alpha, \beta$ are positive constants satisfying $\alpha^{-\frac{1}{p}} + \beta^{-\frac{1}{p}} = \frac{2}{n}$ with $n \in \mathbb{N}$, h is piece-wise two times differentiable and $2\pi_p$ -periodic, $g \in C^1(R)$ is bounded, $x^{\pm} = \max\{\pm x, 0\}$, $\pi_p = \frac{2\pi}{p \sin(\pi)}$ $\frac{2\pi}{p\sin(\pi/p)}$.

Keywords. Aubry–Mather sets, p-Laplacian, resonance, quasi-periodic solutions Mathematics Subject Classification (2000). 34C25

1. Introduction

In this paper, we consider the existence of Aubry–Mather sets and quasi-periodic solutions to the following p -Laplacian like nonlinear differential equation

$$
(p-1)^{-1}(\phi_p(x'))' + [\alpha\phi_p(x^+) - \beta\phi_p(x^-)] + g(x) = h(t) \quad (\text{and} \quad (1)
$$

where $\phi_p(u) = |u|^{p-2}u, p > 1$ is a constant, $x^{\pm} = \max{\{\pm x, 0\}}, \alpha, \beta$ are positive constants satisfying

$$
\alpha^{-\frac{1}{p}} + \beta^{-\frac{1}{p}} = \frac{2}{n},\tag{2}
$$

h is piece-wise two times differentiable and $2\pi_p$ -periodic, $g \in C^1(R)$ is bounded and $\pi_p = \frac{2\pi}{n \sin(n)}$ $\frac{2\pi}{p\sin(\pi/p)}$. If $p = 2$, then $\pi_2 = \pi$ and (1) reduces to second order differential equation

$$
x'' + \alpha x^{+} - \beta x^{-} + g(x) = h(t).
$$
 (3)

Xiaojing Yang: Department of Mathematics, Tsinghua University, Beijing, 100084, China; yangxj@mail.tsinghua.edu.cn

Kueiming Lo: School of Software, Tsinghua University, Beijing 100084, China; gluo@tsinghua.edu.cn

This work is supported by the Funds 2004CB719400 and NSFC60474026.

The existence of Aubry–Mather sets and quasi-periodic solutions of (3) was discussed recently in [3] if $g \in C^2$ and the limits

$$
\lim_{x \to +\infty} g(x) = g(+\infty), \quad \lim_{x \to -\infty} g(x) = g(-\infty)
$$

exist and g satisfies some further approximate properties at infinity. Capietto and Liu [3], by applying a version of Aubry–Mather theory due to Pei [11], proved the existence of quasi-periodic solutions in generalized sense and multiplicity of subharmonic solutions to equation (3) under the so-called "resonance" situation, i.e., (2) holds for $p = 2$ and some $n \in \mathbb{N}$.

Let C be the solution of the initial value problem

$$
x'' + \alpha x^{+} - \beta x^{-} = 0, \qquad x(0) = 1, \quad x'(0) = 0.
$$

Assume $\alpha \neq \beta$ and $\frac{1}{\sqrt{\alpha}} + \frac{1}{\sqrt{\beta}} = \frac{2m}{n}$ $\frac{m}{n}$, $m, n \in \mathbb{N}$. Alonso and Ortega [2] proved that if the function

$$
\phi_f(\theta) = \int_0^{2\pi} C \left(\frac{m\theta}{n} + t\right) h(t) dt
$$

has only simple zeros, then any solution x of the linear equation

$$
x'' + \alpha x^+ - \beta x^- = h \tag{4}
$$

with large initial values, that is, if $|x(t_0)|+|x'(t_0)| \gg 1$ for some $t_0 \in \mathbb{R}$, goes to infinity in the future or in the past. Moreover, they showed the existence of h such that unbounded solutions and 2π -periodic solutions of (4) can coexist.

Fabry and Fonda [4] and Fabry and Mawhin [5] obtained, by degree methods, sufficient conditions for the existence of 2π -periodic solutions and of unbounded solutions as well as subharmonic solutions for (5) below, respectively. More precisely, in [5] the following equation is considered:

$$
x'' + \alpha x^{+} - \beta x^{-} = g(x) + f(x) + h(t),
$$
\n(5)

and it is proved that if the function

$$
\Phi_h(\theta) = \frac{n}{\pi} \left[\frac{g(+\infty)}{\alpha} - \frac{g(-\infty)}{\beta} \right] + \frac{1}{2\pi\sqrt{\alpha}} \int_0^{2\pi} C(t+\theta)h(t) dt
$$

has zeros and all of them are simple, then all solutions of (5) with large initial values are unbounded if the following resonance condition is satisfied:

$$
\frac{1}{\sqrt{\alpha}} + \frac{1}{\sqrt{\beta}} = \frac{2}{n}, \quad n \in \mathbb{N},
$$

and f has a sublinear primitive, that is, $\lim_{|x| \to \infty} \frac{1}{x}$ $\frac{1}{x} \int_0^x f(s) ds = 0$. Later, the author of this paper [12] discussed the more general equation (1) and considered the following function:

$$
\phi(\theta) = D_p - \frac{p}{\alpha^{\frac{1}{p}}} \int_0^{2\pi_p} h(mt)C_p(mt + \theta) dt,
$$

where

$$
D_p = \frac{2n}{m}B\left(\frac{2}{p}, 1-\frac{1}{p}\right)\left[\frac{g(+\infty)}{\alpha^{\frac{2}{p}}}-\frac{g(-\infty)}{\beta^{\frac{2}{p}}}\right],
$$

 $B(r, s)$ is the β -function $B(r, s) = \int_0^1 (1-t)^{r-1} t^{s-1} dt$ for $r > 0$, $s > 0$, and $C_p(t)$ is the $\frac{2\pi_p m}{n}$ -periodic solution of the following initial value problem:

$$
(p-1)^{-1}(\phi_p(u'))' + [\alpha\phi_p(u^+) - \beta\phi_p(u^-)] = 0, \quad u(0) = 1, \ u'(0) = 0,
$$

if α and β satisfy $\alpha^{-\frac{1}{p}} + \beta^{-\frac{1}{p}} = \frac{2m}{p}$ $\frac{dm}{n}$, $m, n \in \mathbb{N}$.

It was shown in [12] that if the function $\phi(\theta)$ has no zero for all $\theta \in \mathbb{R}$, then all solutions of (1) are bounded. For more recent results on boundedness and existence 2π -periodic solutions of (1) and (3), we refer [1], [6]–[9], [11]–[15] and the references therein.

In the rest of this paper, we denote by S the unique solution of the initial value problem

$$
(p-1)^{-1}(\phi_p(x'))' + [\alpha \phi_p(x^+) - \beta \phi_p(x^-)] = 0, \quad x(0) = 0, \quad x'(0) = 1.
$$
 (6)

Definition 1.

(A) A solution of $(x_\omega(t), x'_\omega(t))$ of (1) is called of *Mather type with rotation number* ω if $\omega = \frac{k}{n}$ $\frac{k}{m}$ is rational, the solutions $(x_{\omega}(t+2i\pi), x'_{\omega}(t+2i\pi)),$ $1 \leq i \leq m-1$, are mutually unlinked periodic solutions of periodic $2m\pi$ and, in this case,

$$
\lim_{\omega \to n} \min_{t \in \mathbb{R}} (|x_{\omega}(t)| + |x'_{\omega}(t)|) = +\infty.
$$

(B) If ω is irrational, the solution $(x_{\omega}(t), x'_{\omega}(t))$ is either a usual quasi-periodic solution or a generalized one, that is, the closed set

$$
\{(x_{\omega}(2i\pi), x_{\omega}'(2i\pi)), i \in \mathbb{Z}\}\
$$

is a Denjoy's minimal set.

The main results of this paper are formulated in the following theorems:

Theorem 1. Assume $h \in L^{\infty}[0, 2\pi_p]$ is $2\pi_p$ -periodic and $g \in C^1(\mathbb{R})$ is bounded and satisfies the following conditions: the limits $\lim_{x\to+\infty} g(x) = g(+\infty)$ and lim_{x→−∞} $g(x) = g(-\infty)$ exist and g satisfies

$$
g(x) = g(\pm \infty) + c^{\pm} |x|^{-(p-1)\sigma} sgnx + O(|x|^{-(p-1)\sigma - 1})
$$

for $|x| \gg 1$, where $\sigma \in (0, \frac{1}{p-1})$ $\frac{1}{p-1}$) is a constant and c^{\pm} are constants satisfying

$$
D_0 =: \frac{c^+}{\alpha^{\frac{2-(p-1)\sigma}{p}}} + \frac{c^-}{\beta^{\frac{2-(p-1)\sigma}{p}}} \neq 0.
$$

Define a $2\pi_p$ -periodic function λ_1 as

$$
\lambda_1(t) = \int_0^{2\pi_p} S(\theta)h(t+\theta)d\theta - \frac{2}{p}\left(\frac{g(+\infty)}{\alpha^{\frac{2}{p}}} - \frac{g(-\infty)}{\beta^{2/p}}\right)B\left(\frac{2}{p},\frac{1}{q}\right),
$$

where $q = \frac{p}{n}$ $\frac{p}{p-1}$ is the conjugate exponent of p. Let one of the following conditions be satisfied:

- (I) $\lambda_1(t) \neq 0$ for all $t \in \mathbb{R}$;
- (II) either (a) $\lambda_1(t) \geq 0$ and $D_0 < 0$ or (b) $\lambda_1(t) \leq 0$ and $D_0 > 0$.

Then there exists an $\varepsilon_0 > 0$ such that for any $\omega \in (n, n + \varepsilon_0)$, equation (1) has a solution $(x_\omega(t), x'_\omega(t))$ of Mather type with rotation number ω .

Theorem 2. Assume $g(x) \equiv 0$, h is piece-wise two times differentiable and $2\pi_p$ -periodic. Assume

$$
\lambda_1(t) = \int_0^{2\pi_p} S(\theta)h(t+\theta)d\theta \equiv 0.
$$

For $p \neq 2$, define a $2\pi_p$ -periodic function $\lambda_2(t)$ as

$$
\lambda_2(t) = (p-2) \left[\int_0^{2\pi_p} S(\theta) h(t+\theta) \int_0^{\theta} S(\tau) h'(t+\tau) d\tau d\theta - \int_0^{2\pi_p} S^2(\theta) h^2(t+\theta) d\theta \right].
$$

For $p = 2$, define a 2π -periodic function $\lambda_3(t)$ as

$$
\lambda_3(t) = -\frac{1}{2} \bigg[\int_0^{2\pi} S^3(\theta) h^3(t+\theta) d\theta + \int_0^{2\pi} S(\theta) h''(t+\theta) \left(\int_0^{\theta} S(\tau) h(t+\tau) d\tau \right)^2 d\theta \bigg] - \int_0^{2\pi} S^2(\theta) h(t+\theta) h'(t+\theta) \int_0^{\theta} S(\tau) h(t+\tau) d\tau d\theta.
$$

Then the conclusions of Theorem 1 are true, if one of the following conditions holds:

(I) $p \neq 2$, $\lambda_2(t) \neq 0$ for all $t \in \mathbb{R}$; (II) $p = 2$, $\lambda_3(t) \neq 0$ for all $t \in \mathbb{R}$.

2. Generalized polar coordinates transformation

If we introduce a new variable $y = \phi_p(x')$, then (1) is equivalent to the planar system

$$
x' = \phi_q(y), \quad y' = (p-1)[-\alpha\phi_p(x^+) + \beta\phi_p(x^-) + h(t) - g(x)],\tag{7}
$$

where $q = \frac{p}{n-1}$ $\frac{p}{p-1}$ is the conjugate exponent of p. Let $u = \sin_p t$ be the solution of the initial value problem

$$
(\phi_p(u'))' + (p-1)\phi_p(u) = 0, \qquad u(0) = 0, \ u'(0) = 1
$$

which for $t \in [0, \frac{\pi_p}{2}]$ $\frac{\tau_p}{2}$ can be expressed implicitly by

$$
t = \int_0^{\sin_p t} \frac{ds}{(1 - s^p)^{\frac{1}{p}}}.
$$

Then it follows from [10] that $u = \sin_p t$ can be extended to R as a $2\pi_p$ -periodic odd C^2 -function which satisfies $\sin_p t : [0, \frac{\pi_p}{2}]$ $\left[\frac{\tau_p}{2}\right] \rightarrow [0, 1]$ and $\sin_p(\pi_p - t) = \sin_p t$ for $t \in \left[\frac{\pi_p}{2}\right]$ $\sum_{p=2}^{\tau_p} \pi_p$, $\sin_p(2\pi_p - t) = -\sin_p t$ for $t \in [\pi_p, 2\pi_p]$.

Let the function S be the unique solution of problem (6) , then it is not difficult to verify that $S \in C^2(R)$ is $\frac{2\pi p}{n}$ -periodic and can be expressed as

$$
S(t) = \begin{cases} \alpha^{-\frac{1}{p}} \sin_p \alpha^{\frac{1}{p}} t, & t \in [0, \alpha^{-\frac{1}{p}} \pi_p) \\ -\beta^{-\frac{1}{p}} \sin_p \beta^{\frac{1}{p}} (t - \alpha^{-\frac{1}{p}} \pi_p), & t \in [\alpha^{-\frac{1}{p}} \pi_p, \frac{2\pi_p}{n}], \end{cases}
$$
(8)

from which it is easy to verify that the following equality holds:

$$
|S'(t)|^p + \alpha (S^+(t))^p + \beta (S^-(t))^p \equiv 1, \quad t \in R.
$$
 (9)

For $\rho > 0$, $\theta \pmod{2\pi_n}$, we define the generalized polar coordinates transformation $(\rho, \theta) \rightarrow (x, y)$ as

$$
x = \rho^{\frac{1}{p}} S\left(\frac{\theta}{n}\right), \qquad y = \rho^{\frac{1}{q}} \phi_p\left(S'\left(\frac{\theta}{n}\right)\right).
$$

Under this transformation and by using (9) , (7) is changed into the planar system

$$
\rho' = p\rho^{\frac{1}{p}} S'(\frac{\theta}{n})(h(t) - g(x)), \qquad \theta' = n - n\rho^{-\frac{1}{q}} S(\frac{\theta}{n})(h(t) - g(x)). \tag{10}
$$

If we define $r = \rho^{\frac{1}{q}}$, then (10) can be further simplified as

$$
r' = (p-1)S'\left(\frac{\theta}{n}\right)(h(t) - g(x)), \quad \theta' = n\left[1 - r^{-1}S\left(\frac{\theta}{n}\right)(h(t) - g(x))\right], \quad (11)
$$

where $x = r^{\frac{1}{p-1}} S(\frac{\theta}{n})$ $\frac{\theta}{n}$.

212 Xiaojing Yang and Kueiming Lo

Let $(r(t; r_0, \theta_0), \theta(t; r_0, \theta_0))$ be the solution of (11) with initial value (r_0, θ_0) . Then for large initial value, i.e., $r_0 \gg 1$, by the boundedness of h, g, S, S' and for t in any bounded interval $I \subset [0, 2n\pi_p]$, we get $r(t) = r_0 + O(1)$ which yields $r^{-1}(t) = r_0^{-1} + O(r_0^{-2})$. Going back to (11), we get for $t \in I$, $\theta'(t) \ge \frac{1}{2} > 0$. As in $[3]$, we can write (11) in the following equivalent form:

$$
\frac{dt}{d\theta} = \frac{1}{n(1 - r^{-1}S(\frac{\theta}{n})(h(t) - g(x)))}
$$
\n
$$
\frac{dr}{d\theta} = \frac{(p - 1)S'(\frac{\theta}{n})(h(t) - g(x))}{n(1 - r^{-1}S(\frac{\theta}{n})(h(t) - g(x))}.
$$
\n(12)

Now let $(r(\theta; r_0,t_0), t(\theta; r_0,t_0))$ be the solution of (12) with initial value (r_0, t_0) where $t_0 \in I$ and $\theta \in [0, 2n\pi_p]$. Then for $r_0 \gg 1$, we obtain $r(\theta) \geq r_0/2 \gg 1$ and (12) can be written as

$$
\frac{dr}{d\theta} = \frac{p-1}{n} \Big[S'(\frac{\theta}{n}) (h(t) - g(x)) + r^{-1}(\theta) S'(\frac{\theta}{n}) S(\frac{\theta}{n}) (h(t) - g(x))^2 + \cdots \Big]
$$
\n
$$
\frac{dt}{d\theta} = \frac{1}{n} \Big[1 + r^{-1}(\theta) S(\frac{\theta}{n}) (h(t) - g(x)) + r^{-2}(\theta) S^2(\frac{\theta}{n}) (h(t) - g(x))^2 + \cdots \Big],
$$
\n
$$
\text{where } x = r(\theta) = r^{\frac{1}{p-1}} S(\theta) + O(1)
$$
\n(1)

where $x = x(\theta) = r_0^{\frac{p-1}{p-1}} S(\frac{\theta}{n})$ $\frac{\theta}{n}$ + O(1).

3. Lemmas

For the proof of theorems, we need the following lemmas:

Lemma 1. Assume the conditions of Theorem 1 hold, then we have

$$
r_1 = r_0 + \mu_0(t_0) + O(r_0^{-1})
$$

\n
$$
t_1 = t_0 + 2\pi_p + \lambda_1(t_0)r_0^{-1} + \lambda_{1+\sigma}r_0^{-(1+\sigma)} + O(r_0^{-2}),
$$
\n(14)

where $r_1 = r(2n\pi_p; r_0, t_0), t_1 = t(2n\pi_p; r_0, t_0)$ and

$$
\mu_0(t) = (p-1) \int_0^{2\pi_p} S'(\theta) f(t+\theta) d\theta
$$

\n
$$
\lambda_1(t) = \int_0^{2\pi_p} S(\theta) f(t+\theta) d\theta - \frac{2}{p} \left(\frac{g(+\infty)}{\alpha_p^2} - \frac{g(-\infty)}{\beta_p^2} \right) B \left(\frac{2}{p}, \frac{1}{q} \right)
$$

\n
$$
\lambda_{1+\sigma} = -\frac{2}{p} \left(\frac{c^+}{\alpha_p^2} + \frac{c^-}{\beta_p^2} \right) B \left(\frac{\tau+1}{p}, \frac{1}{q} \right)
$$

\n
$$
= -D_0 \frac{2}{p} B \left(\frac{\tau+1}{p}, \frac{1}{q} \right),
$$

where $\tau = 1 - (p - 1)\sigma \in (0, 1)$. Moreover, we have $\mu_0(t) = -(p - 1)\lambda'_1(t)$.

Proof. It follows from (13) and for $t_0 \in \mathbb{R}$ and $\theta \in [0, 2n\pi_p]$, we have

$$
r(\theta) = r_0 + O(1), \qquad t(\theta) = t_0 + \frac{\theta}{n} + O(r_0^{-1}). \tag{15}
$$

For $r_0 \gg 1$, substituting (15) into (13), then integrating over [0, $2n\pi_p$] and letting $r_1 = r(2n\pi_p)$, $t_1 = t(2n\pi_p)$, we obtain

$$
r_1 = r_0 + \mu_0(t_0) + O(r_0^{-1})
$$

\n
$$
t_1 = t_0 + 2\pi_p + \lambda_1(t_0)r_0^{-1} + \lambda_{1+\sigma}r_0^{-(1+\sigma)} + O(r_0^{-2}),
$$
\n(16)

where

$$
\mu_0(t) = \frac{p-1}{n} \int_0^{2n\pi_p} S'\left(\frac{\theta}{n}\right) h\left(t + \frac{\theta}{n}\right) d\theta
$$

$$
- \frac{p-1}{n} g(+\infty) \int_I S'\left(\frac{\theta}{n}\right) d\theta - \frac{p-1}{n} g(-\infty) \int_J S'\left(\frac{\theta}{n}\right) d\theta
$$

$$
= (p-1) \int_0^{2\pi_p} S'(\theta) h(t + \theta) d\theta,
$$

and

$$
\lambda_1(t) = \frac{1}{n} \left[\int_0^{2n\pi_p} S(\frac{\theta}{n}) h(t + \frac{\theta}{n}) d\theta - g(+\infty) \int_I S(\frac{\theta}{n}) d\theta \right] - \frac{1}{n} g(-\infty) \int_J S(\frac{\theta}{n}) d\theta
$$

=
$$
\int_0^{2\pi_p} S(\theta) h(t + \theta) d\theta - g(+\infty) \int_0^{\frac{\pi_p}{\alpha^{1/p}}} S(\theta) d\theta + g(-\infty) \int_{\frac{\pi_p}{\alpha^{1/p}}}^{2\pi_p} |S(\theta)| d\theta,
$$

where $I = \{ \theta \in [0, 2n\pi_p] : S(\frac{\theta}{n})$ $\frac{\theta}{n}$) > 0} and $J = \{ \theta \in [0, 2n\pi_p] : S(\frac{\theta}{n})$ $\frac{\theta}{n}$) < 0}.

By using the similar method used in [12], we can show that

$$
\int_0^{\frac{\pi_p}{\alpha^{1/p}}} S(\theta) d\theta = \frac{1}{\alpha^{\frac{2}{p}}} \frac{2}{p} B\left(\frac{2}{p}, \frac{1}{q}\right)
$$

$$
\int_{\alpha^{1/p}}^{\frac{2\pi_p}{n}} S(\theta) d\theta = \frac{1}{\beta^{\frac{2}{p}}} \frac{2}{p} B\left(\frac{2}{p}, \frac{1}{q}\right).
$$

From above equalities, we obtain the expressions of $\mu_1(t)$ and $\lambda_1(t)$.

Next, we calculate the value $\lambda_{1+\sigma}$. From (16) and the expression of S in (8), we obtain

$$
\lambda_{1+\sigma} = -c^+ \int_0^{\frac{\pi p}{\alpha^{1/p}}} \left(S(\theta) \right)^{\tau} d\theta - c^- \int_{\frac{\pi p}{\alpha^{1/p}}}^{\frac{2\pi p}{n}} |S(\tau)|^{\tau} d\theta
$$

$$
= -\left(\frac{c^+}{\alpha^{\frac{\tau+1}{p}}} + \frac{c^-}{\beta^{\frac{\tau+1}{p}}} \right) \int_0^{\pi_p} (\sin_p \theta)^{\tau} d\theta
$$

$$
\int_0^{\pi_p} (\sin_p \theta)^\tau d\theta = 2 \int_0^{\frac{\pi_p}{2}} (\sin_p \theta)^\tau d\theta = \frac{2}{p} B\left(\frac{\tau+1}{p}, \frac{1}{q}\right),
$$

which yields the expression of $\lambda_{1+\sigma}$. Now the integration by parts yields $\mu_0(t) =$ $-(p-1)\lambda_1(t)$. \Box

Lemma 2. Assume the conditions of Theorem 2 hold, then we have

$$
r_1 = r_0 + \mu_1(t_0)r_0^{-1} + O(r_0^{-2})
$$

\n
$$
t_1 = t_0 + 2\pi_p + \lambda_2(t_0)r_0^{-2} + O(r_0^{-3}),
$$
\n(17)

where

$$
\mu_1(t) = -(p-1) \int_0^{2\pi_p} S(\theta)h''(t+\theta) \int_0^{\theta} S(\tau)h(t+\tau)d\tau d\theta
$$

$$
-2(p-1) \int_0^{2\pi_p} S^2(\theta)h(t+\theta)h(t+\theta)d\theta
$$

$$
\lambda_2(t) = (p-2) \int_0^{2\pi_p} S(\theta)h'(t+\theta) \int_0^{\theta} S(\tau)h(t+\tau)d\tau d\theta
$$

$$
- (p-2) \int_0^{2\pi_p} S^2(\theta)h^2(t+\theta)d\theta.
$$

Moreover, we have $(p-2)\mu_1(t) = (p-1)\lambda'_2(t)$.

Proof. Substituting (15) into (13) and integrating over $[0, \theta] \subset [0, 2\pi_p]$ we, obtain

$$
r(\theta) = r_0 + \mu_0(t_0, \theta) + O(r_0^{-1})
$$

\n
$$
t(\theta) = t_0 + \frac{\theta}{n} + \lambda_1(t_0, \theta)r_0^{-1} + O(r_0^{-2})
$$

\n
$$
r^{-1}(\theta) = r_0^{-1} - \mu_0(t_0, \theta)r_0^{-2} + O(r_0^{-3}),
$$
\n(18)

where

$$
\mu_0(t,\theta) = \frac{p-1}{n} \int_0^{\theta} S'\left(\frac{\tau}{n}\right) h\left(t + \frac{\tau}{n}\right) d\tau
$$

$$
\lambda_1(t,\theta) = \frac{1}{n} \int_0^{\theta} S\left(\frac{\tau}{n}\right) h\left(t + \frac{\tau}{n}\right) d\tau.
$$
 (19)

Substituting (18)–(19) into (13) and integrating over [0, $2n\pi_p$], we get

$$
r_1 = r_0 + \mu_0(t_0) + \mu_1(t_0)r_0^{-1} + O(r_0^{-2})
$$

\n
$$
t_1 = t_0 + 2\pi_p + \lambda_1(t_0)r_0^{-1} + \lambda_2(t_0)r_0^{-2} + O(r_0^{-3}),
$$

where $\lambda_1(t) = \lambda_1(t, 2n\pi_p)$, $\mu_0(t) = \mu_0(t, 2n\pi_p)$,

$$
\mu_1(t) = \frac{p-1}{n} \int_0^{2n\pi_p} S'(\frac{\theta}{n}) h'(t + \frac{\theta}{n}) \lambda_1(t, \theta) d\theta
$$

+
$$
\frac{p-1}{n} \int_0^{2n\pi_p} S(\frac{\theta}{n}) S'(\frac{\theta}{n}) h^2(t + \frac{\theta}{n}) d\theta
$$

=
$$
-(p-1) \int_0^{2\pi_p} S(\theta) h''(t + \theta) \int_0^{\theta} S(\tau) h(t + \tau) d\tau d\theta
$$

-
$$
2(p-1) \int_0^{2\pi_p} S^2(\theta) h(t + \theta) h'(t + \theta) d\theta - (p-1) \lambda_1(t) \lambda_1'(t)
$$

and

$$
\lambda_2(t) = \frac{1}{n} \int_0^{2n\pi_p} S^2(\frac{\theta}{n}) h^2(t + \frac{\theta}{n}) d\theta - \frac{1}{n} \int_0^{2n\pi_p} S(\frac{\theta}{n}) h(t + \frac{\theta}{n}) \mu_0(t, \theta) d\theta
$$

+
$$
\frac{1}{n} \int_0^{2n\pi_p} S(\frac{\theta}{n}) h'(t + \frac{\theta}{n}) \lambda_1(t, \theta) d\theta
$$

=
$$
(p-2) \int_0^{2\pi_p} S(\theta) h(t + \theta) \int_0^{\theta} S(\tau) h'(t + \tau) d\tau d\theta
$$

-
$$
(p-2) \int_0^{2\pi_p} S^2(\theta) h^2(t + \theta) d\theta + \lambda_1(t) \lambda'_1(t).
$$

From above equalities we obtain after some elementary calculation

$$
(p-2)\mu_1(t) = (p-1)\left[\lambda'_2(t) - \frac{p}{2}(\lambda'_1(t))^2 - (p-1)\lambda_1(t)\lambda''_1(t)\right],
$$

which implies that, for $\lambda_1(t) \equiv 0$, we have $(p-2)\mu_1(t) = (p-1)\lambda'_2(t)$.

Lemma 3. Assume that the conditions of Theorem 2 hold, and $p = 2$. Then

$$
r_1 = r_0 + \mu_1(t_0)r_0^{-1} + O(r_0^{-2})
$$

\n
$$
t_1 = t_0 + 2\pi + \lambda_3(t_0)r_0^{-3} + O(r_0^{-4}),
$$
\n(20)

 \Box

where

$$
\mu_1(t) = -\int_0^{2\pi} S(\theta)h''(t+\theta) \int_0^{\theta} S(\tau)h(t+\tau)d\tau d\theta - 2\int_0^{2\pi} S^2(\theta)h(t+\theta)h'(t+\theta)d\theta
$$

and $\lambda_3(t)$ is given as in Theorem 2.

Proof. Substituting (15) into (13) and integrating over $[0, \theta] \subset [0, 2n\pi]$, we obtain (18) with μ_0 , λ_1 given by (19) with $p = 2$. Substituting (18) into (13) and integrating over $[0, \theta] \subset [0, 2n\pi]$, we obtain

$$
r(\theta) = r_0 + \mu_0(t_0, \theta) + \mu_1(t_0, \theta) r_0^{-1} + O(r_0^{-2})
$$

\n
$$
t(\theta) = t_0 + \frac{\theta}{n} + \lambda_1(t_0, \theta) r_0^{-1} + \lambda_2(t_0, \theta) r_0^{-2} + O(r_0^{-3})
$$

\n
$$
r^{-1}(\theta) = r_0^{-1} - \mu_0(t_0, \theta) r_0^{-2} + (\mu_0^2(t_0, \theta) - \mu_1(t_0, \theta)) r_0^{-3} + O(r_0^{-4}),
$$
\n(21)

where

$$
\mu_1(t,\theta) = \frac{1}{n} \int_0^{\theta} S'(\frac{\tau}{n}) h'(t + \frac{\tau}{n}) \lambda_1(t,\tau) d\tau \n+ \frac{1}{n} \int_0^{\theta} S(\frac{\tau}{n}) S'(\frac{\tau}{n}) h^2(t + \frac{\tau}{n}) d\tau \n= \frac{1}{n^2} \int_0^{\theta} S'(\frac{\tau}{n}) h'(t + \frac{\tau}{n}) \int_0^{\tau} S(u/n) h(t + u/n) du d\tau \n+ \frac{1}{n} \int_0^{\theta} S(\frac{\tau}{n}) S'(\frac{\tau}{n}) h^2(t + \frac{\tau}{n}) d\tau
$$
\n(22)

and

$$
\lambda_2(t,\theta) = -\frac{1}{n} \int_0^{\theta} S(\frac{\tau}{n}) h(t + \frac{\tau}{n}) \mu_0(t,\tau) d\tau + \frac{1}{n} \int_0^{\theta} S^2(\frac{\tau}{n}) h^2(t + \frac{\tau}{n}) d\tau \n+ \frac{1}{n} \int_0^{\theta} S(\tau) h(t + \tau) \lambda_1(t,\tau) d\tau \n= \frac{1}{n^2} \int_0^{\theta} Sh \int_0^{\tau} Sh' du d\tau + \frac{1}{n^2} \int_0^{\theta} Sh' \int_0^{\tau} Sh du d\tau \n= \frac{1}{n^2} \int_0^{\theta} S(\frac{\tau}{n}) h(t + \frac{\tau}{n}) d\tau \int_0^{\theta} S(\frac{\tau}{n}) h'(t + \frac{\tau}{n}) d\tau.
$$
\n(23)

Substituting (21)–(23) into (13) again and integrating over [0, $2n\pi$], we obtain

$$
r_1 = r_0 + \mu_0(t_0) + \mu_1(t_0)r_0^{-1} + O(r_0^{-2})
$$

\n
$$
t_1 = t_0 + 2\pi + \lambda_1(t_0)r_0^{-1} + \lambda_2(t_0)r_0^{-2} + \lambda_3(t_0)r_0^{-3} + O(r_0^{-4}),
$$

where $\lambda_k(t) = \lambda_k(t, 2n\pi)$, $k = 1, 2$, $\mu_i(t) = \mu_i(t, 2n\pi)$, $i = 0, 1$, and

$$
\lambda_3(t) = \frac{1}{n} \int_0^{2n\pi} S^3 h^3 d\theta - \frac{2}{n} \int_0^{2n\pi} S^2 h^2 \mu_0 d\theta + \frac{2}{n} \int_0^{2n\pi} S^2 h h' \lambda_1 d\theta + \frac{1}{n} \int_0^{2n\pi} Sh(\mu_0^2 - \mu_1) d\theta - \frac{1}{n} \int_0^{2n\pi} Sh' \lambda_1 \mu_0 d\theta + \frac{1}{n} \int_0^{2n\pi} Sh'' \lambda_1^2 d\theta + \frac{1}{n} \int_0^{2n\pi} Sh' \lambda_2 d\theta.
$$
 (24)

Now, substituting the expressions of μ_0 , μ_1 , λ_1 and λ_2 into (24) and using $\lambda_1(t) \equiv 0$, we obtain from Lemma 2 that $\lambda_2(t) \equiv 0$ and $\mu_0(t) = -\lambda_1(t) \equiv 0$. After some elementary calculation, we obtain the expression of $\lambda_3(t)$ given in Theorem 2. \Box

4. Proof of the theorems

Now, we are ready to prove the main results of this paper.

Proof of Theorem 1. Assume the conditions of Theorem 1 hold. If (I) is satisfied, then the Poincaré map $P : (t_0, r_0) \to (t_1, r_1)$ of the solutions of (13) has the following form:

$$
t_1 = t_0 + 2\pi_p + \lambda_1(t_0)r_0^{-1} + O(r_0^{-2})
$$

\n
$$
r_1 = r_0 + \mu_0(t_0) + O(r_0^{-1}),
$$
\n(25)

with $\mu_0(t) = -(p-1)\lambda'_1(t)$.

Now we introduce another action variable u and a positive parameter ε by $r = \frac{1}{u\varepsilon}$ with $u \in [1, 2]$. Then $r \gg 1 \Leftrightarrow \varepsilon \ll 1$. Under this transformation, (25) is changed to the following form:

$$
t_1 = t_0 + 2\pi_p + \lambda_1(t_0)u_0\varepsilon + O(\varepsilon^2)
$$

$$
u_1 = u_0 - \mu_0(t_0)u_0^2\varepsilon + O(\varepsilon^2).
$$

Let $t_1 = t_0 + \varepsilon R(t_0, u_0, \varepsilon), u_1 = u_0 + \varepsilon W(t_0, u_0, \varepsilon),$ then $R(t, u, \varepsilon) = \lambda_1(t)u +$ $O(\varepsilon)$, $W(t, u, \varepsilon) = -\mu_0(t)u_0^2 + O(\varepsilon)$, and for $t \in [0, 2n\pi_p]$, $u \in [1, 2]$, we have

$$
|R(t, u, \varepsilon)| + \left| \frac{\partial R(t, u, \varepsilon)}{\partial t} \right| + \left| \frac{\partial R(t, u, \varepsilon)}{\partial u} \right| \le C_1 \tag{26}
$$

and

$$
|W(t, u, \varepsilon)| + \left| \frac{\partial W(t, u, \varepsilon)}{\partial t} \right| + \left| \frac{\partial W(t, u, \varepsilon)}{\partial u} \right| \le C_2 \tag{27}
$$

for some constants C_1 , C_2 . Moreover, if $\min_{t\in\mathbb{R}}\lambda_1(t) = d_0 > 0$, we have for $\varepsilon \ll 1, t \in \mathbb{R}, u \in [1, 2],$

$$
\frac{\partial R(t, u, \varepsilon)}{\partial u} \ge \frac{d_0}{2} > 0
$$

and if $\max_{t \in S^1} \lambda_1(t) = -d_1 < 0$, we have

$$
\frac{\partial R(t, u, \varepsilon)}{\partial u} \le -\frac{d_1}{2} < 0.
$$

In both cases, the Poincaré map of (25) is a monotone map. Going back to (13) , we know that the Poincaré map $Q : (\theta_0, r_0) \to (\theta_1, r_1)$ is also monotone if $r_0 \gg 1$. Using similar arguments as in [11, Section 4], we may construct a map \overline{Q} which is a global monotone twist homeomorphism of the cylinder $S^1 \times \mathbb{R}$ and coincides with Q on $S^1 \times [A_0, +\infty)$ with a fixed constant $A_0 \gg 1$, where $S^1 = \mathbb{R}/2\pi_p\mathbb{Z}$. Therefore, the existence of Mather sets M_ω of \overline{Q} is guaranteed by Aubry–Mather theory (see [11]). Moreover, for some small $\varepsilon_0 > 0$, such invariant sets with rotation $\omega \in (n, n + \varepsilon_0)$ lie in the domain $S^1 \times [A_0, +\infty)$. Hence they are just the Aubry–Mather sets of the Poincaré map of Q . The above discussion shows the existence of Mather sets, this implies that (1) has a solution $(x_\omega(t), x'_\omega(t))$ of Mather type. Moreover, if $\omega = \frac{m}{k}$ $\frac{m}{k}$ is a rational, the solutions $(x_\omega(t + 2i\pi_p), x'_\omega(t + 2i\pi_p)), 1 \leq i \leq k - 1$, are mutually unlinked periodic solutions of period $2k\pi_p$ and $\lim_{k\to+\infty} \min_{t\in\mathbb{R}} ||(x_\omega(t), x'_\omega(t))|| = +\infty$. If ω is irrational, the solution $(x_{\omega}(t), x'_{\omega}(t))$ is either a usual quasi-periodic solution or a generalized one.

In case (II) , by Lemma 1, the Poincaré map of (13) has the form of (14) , under the same transformation $r = \frac{1}{w}$ $\frac{1}{ue}$, (14) is of the following form:

$$
t_1 = t_0 + 2\pi_p + \varepsilon R_1(t_0, u_0, \varepsilon)
$$

$$
u_1 = u_0 + \varepsilon W_1(t_0, u_0, \varepsilon),
$$

where $R_1(t, u, \varepsilon) = \lambda_1(t)u + \lambda_{1+\sigma}u^{1+\sigma}\varepsilon^{\sigma} + O(\varepsilon^1)$, and $W_1(t, u, \varepsilon) = -\mu_0(t)u^2 + O(\varepsilon)$. It is easy to see that R_1 and W_1 satisfy the similar inequalities as (26) and (27). Moreover, for $\lambda_1(t) \geq 0$ and $D_0 < 0$, we have for $\varepsilon \ll 1, t \in \mathbb{R}, u \in [1, 2], \lambda_{1+\sigma} > 0$ and

$$
\frac{\partial R_1(t, u, \varepsilon)}{\partial u} = \lambda_1(t) + (1 + \sigma)\lambda_{1+\sigma} \varepsilon^{\sigma} + O(\varepsilon^1) \ge \lambda_1(t) + \frac{1}{2}(1 + \sigma)\lambda_{1+\sigma} \varepsilon^{\sigma} > 0.
$$

Similarly, for $\lambda_1(t) \leq 0$ and $D_0 > 0$, we have $\lambda_{1+\sigma} < 0$ and

$$
\frac{\partial R_1(t, u, \varepsilon)}{\partial u} = \lambda_1(t) + (1 + \sigma)\lambda_{1+\sigma} \varepsilon^{\sigma} + O(\varepsilon^1) \leq \lambda_1(t) + \frac{1}{2}(1 + \sigma)\lambda_{1+\sigma} \varepsilon^{\sigma} < 0.
$$

 \Box

The rest proof is similar to that of case (I), so we omit it for simplicity.

Proof of Theorem 2 (a sketch). By Lemma 2 and Lemma 3, the Poincaré map of (13) has the form of (17) or the form of (20). Under the transformation $r=\frac{1}{n}$ $\frac{1}{ue}$, (17) and (20) have the forms

$$
t_1 = t_0 + 2\pi_p + \lambda_2(t_0)u_0^2 \varepsilon^2 + O(\varepsilon^3)
$$

$$
u_1 = u_0 - \mu_1(t_0)u_0^3 \varepsilon^2 + O(\varepsilon^3),
$$

and

$$
t_1 = t_0 + 2\pi + \lambda_3(t_0)u_0^3 \varepsilon^3 + O(\varepsilon^4)
$$

$$
u_1 = u_0 - \mu_1(t_0)u_0^3 \varepsilon^3 + O(\varepsilon^4),
$$

respectively. Let

$$
t_1 = t_0 + 2\pi_p + \varepsilon^2 R_2(t, u, \varepsilon), \ u_1 = u_0 + \varepsilon^2 W_2(t, u, \varepsilon) \quad \text{for } p \neq 2
$$

$$
t_1 = t_0 + 2\pi + \varepsilon^3 R_3(t, u, \varepsilon), \ u_1 = u_0 + \varepsilon^3 W_3(t, u, \varepsilon) \quad \text{for } p = 2,
$$

respectively, then it is not difficult to verify that for $0 < \varepsilon \ll 1$, $\frac{\partial R_k(t, u, \varepsilon)}{\partial u}$ $\frac{\partial u}{\partial u}^{(t,u,\varepsilon)} \neq 0$ if $\lambda_k(t) \neq 0, t \in \mathbb{R}$ for $k = 2, 3$. The rest proofs are similar to that of Theorem 1, so we omit them for simplicity. so we omit them for simplicity.

Example 1. Consider equation (1) with $\alpha = \beta = n = 1$, $h(t) \equiv 1$, $g(x) =$ $\arctan x + |x|^{-\tau} \operatorname{sgn} x$, where $\tau \in (0,1)$. Then Theorem 1 implies that, for all $t \in \mathbb{R}$, $\lambda_1(t) = -\frac{2\pi}{p}$ $\frac{2\pi}{p}B(\frac{1}{p}%)^{2n}+\frac{2\pi}{p}B(\frac{1}{p})^{2n}$ $\frac{1}{p}, \frac{1}{q}$ $\frac{1}{q}$ \geq 0. Now (I) of Theorem 1 implies that the conclusion of Theorem 1 holds.

Example 2. Consider the following equation

$$
(p-1)^{-1}(\phi_p(x'))' + \phi_p(x) + |x|^{-\tau} \operatorname{sgn} x - 2|x|^{-\tau} \operatorname{sgn} x = 1,
$$
 (28)

where $p > 1$, $\tau \in (0, 1)$. Then $\alpha = \beta = n = 1$, $c^{+} = 1$, $c^{-} = -2$, $h(t) \equiv 1$, and it is easy to see that $S(t) = \sin_p t$, $\lambda_1(t) \equiv 0$ and $D_0 = c^+ + c^- < 0$. Now (II) of Theorem 1 implies that there exists $\varepsilon_0 > 0$ such that for any $\omega \in (n, n + \varepsilon_0)$, (28) has a solution $(x_\omega(t), x'_\omega(t))$ of Mather type with rotation number ω .

Example 3. Consider a special case of (1):

$$
(p-1)^{-1}(\phi_p(x'))' + \phi_p(x) = 1.
$$
\n(29)

In this example, $p \neq 2$, $\alpha = \beta = n = 1$, $g(x) \equiv 0$, $h(t) = 1$. Then it can be verified that $\lambda_1(t) \equiv 0$, $\lambda_2(t) = (2 - p) \int_0^{2\pi_p} \sin_p^2 \theta d\theta \neq 0$. Now Theorem 2 implies that there exists $\varepsilon_0 > 0$ such that for any $\omega \in (n, n + \varepsilon_0)$, (29) has a solution $(x_\omega(t), x'_\omega(t))$ of Mather type with rotation number ω .

Example 4. Consider the following linear equation

$$
x'' + \alpha x^{+} - \beta x^{-} = h(t),
$$
\n(30)

where $\alpha \neq \beta$ satisfying (2) with $p = 2$, $n = 1$, and h is piecewise continuous and 2π -periodic such that $h(t) = 1, t \in [0, \frac{\pi}{\sqrt{\alpha}}]; h(t) = \frac{\beta}{\alpha}$ $\frac{\beta}{\alpha}$, $t \in (\frac{\pi}{\sqrt{\alpha}}, 2\pi]$. Then it follows from Theorem 2 that $\lambda_1(t) = \lambda_2(t) \equiv 0$ and $\lambda_3(t) \equiv \lambda_3(0) = -\frac{2}{3\alpha^3}(\alpha - \beta)$ $\neq 0$. Hence Theorem 2 implies that the conclusion of Theorem 2 holds.

Remark 1. Let $p = 2$, Theorem 1 reduces to [3, Theorem 1], moreover, our assumption $D_0 \neq 0$ is weaker than the assumption $c^{\pm} \neq 0$ and $c^{\pm}c^- > 0$. In case $q(x) \equiv 0$ and $\lambda_1(t) \equiv 0$, the result of [3] cannot be applied to equation (30), but Theorem 2 gives partial results. Therefore, our results are natural generalization and refinements of the result of [3].

References

- [1] Alonso, J. M. and Ortega, R., Unbounded solutions of semilinear equations at resonance. *Nonlinearity* 9 (1996), $1099 - 1111$.
- [2] Alonso, J. M. and Ortega, R., Roots of unity and unbounded motions of an asymmetric oscillator. J. Diff. Equations 143 (1998), $201 - 220$.
- [3] Capietto, A. and Liu, B., Quasi-periodic solutions of a forced asymmetric oscillator at resonance. Nonlinear Anal. 56 (2004), $105 - 117$.
- [4] Fabry, C. and Fonda, A., Nonlinear resonance in asymmetric oscillators. J. Diff. Equations 147 (1998), $58 - 78$.
- [5] Fabry, C. and Mawhin, J., Oscillations of a forced asymmetric oscillator at resonance. *Nonlinearity* 13 (2000), 493 – 505.
- [6] Fonda, A., Positively homogeneous hamiltonian systems in the plane. J. Diff. Equations 200 (2004), $162 - 184$.
- [7] Liu, B., Boundedness in asymmetric oscillations. J. Math. Anal. Appl. 231 $(1999), 355 - 373.$
- [8] Liu, B. and You, J., Quasiperiodic solutions of Duffing's equations. Nonlinear Anal. 33 (1998), $645 - 655$.
- [9] Ortega, R., Boundedness in a piece-wise linear oscillator and a variant of the small twist theorem. Proc. London Math. Soc. 79 (1999), $381 - 413$.
- [10] Pino, M. A., Drabek, P. and Manasevich, R., The Fredholm alternative at the first eigenvalue for the one dimensional p-Laplacian. J. Diff. Equations 151 $(1999), 355 - 373.$
- [11] Pei, M., Aubry–Mather sets for finite-twist maps of a cylinder and semilinear Duffing equations. J. Diff. Equations 113 (1994), 106 – 127.
- [12] Yang, X., Boundedness in nonlinear asymmetric oscillations. J. Diff. Equations 183 (2002), 108 – 131.
- [13] Yang, X., Boundedness of solutions of a class of nonlinear systems. Math. Proc. Cambridge Phil. Soc. 136 (2004), 185 – 193.
- [14] Yang, X., Boundedness in nonlinear oscillations. Math. Nachr. 128 (2004), $102 - 113.$
- [15] Yuan, X., Lagrange stability for asymmetric Duffing equations. Nonlinear Anal. 43 (2001), 137 – 151.

Received December 28, 2004; revised September 7, 2005