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Quasi-Periodic Solutions

in Nonlinear Asymmetric Oscillations

Xiaojing Yang and Kueiming Lo

Abstract. The existence of Aubry–Mather sets and infinitely many subharmonic
solutions to the following p-Laplacian like nonlinear equation

(p− 1)−1(φp(x
′))′ + [αφp(x

+)− βφp(x
−)] + g(x) = h(t)

is discussed, where φp(u) = |u|p−2u, p > 1, α, β are positive constants satisfying

α
− 1

p +β
− 1

p = 2
n with n ∈ N, h is piece-wise two times differentiable and 2πp-periodic,

g ∈ C1(R) is bounded, x± = max{±x, 0}, πp = 2π
p sin(π/p) .
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1. Introduction

In this paper, we consider the existence of Aubry–Mather sets and quasi-periodic
solutions to the following p-Laplacian like nonlinear differential equation

(p− 1)−1(φp(x
′))′ + [αφp(x

+)− βφp(x
−)] + g(x) = h(t) (′= d

dt
), (1)

where φp(u) = |u|p−2u, p > 1 is a constant, x± = max{±x, 0}, α, β are positive
constants satisfying

α−
1
p + β−

1
p =

2

n
, (2)

h is piece-wise two times differentiable and 2πp-periodic, g ∈ C1(R) is bounded
and πp = 2π

p sin(π/p)
. If p = 2, then π2 = π and (1) reduces to second order

differential equation

x′′ + αx+ − βx− + g(x) = h(t). (3)
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The existence of Aubry–Mather sets and quasi-periodic solutions of (3) was
discussed recently in [3] if g ∈ C2 and the limits

lim
x→+∞

g(x) = g(+∞), lim
x→−∞

g(x) = g(−∞)

exist and g satisfies some further approximate properties at infinity. Capietto
and Liu [3], by applying a version of Aubry–Mather theory due to Pei [11],
proved the existence of quasi-periodic solutions in generalized sense and multi-
plicity of subharmonic solutions to equation (3) under the so-called ”resonance”
situation, i.e., (2) holds for p = 2 and some n ∈ N.

Let C be the solution of the initial value problem

x′′ + αx+ − βx− = 0, x(0) = 1, x′(0) = 0.

Assume α 6= β and 1√
α
+ 1√

β
= 2m

n
, m, n ∈ N. Alonso and Ortega [2] proved

that if the function

φf (θ) =

∫ 2π

0

C
(

mθ
n

+ t
)

h(t) dt

has only simple zeros, then any solution x of the linear equation

x′′ + αx+ − βx− = h (4)

with large initial values, that is, if |x(t0)|+ |x′(t0)| À 1 for some t0 ∈ R, goes to
infinity in the future or in the past. Moreover, they showed the existence of h
such that unbounded solutions and 2π-periodic solutions of (4) can coexist.

Fabry and Fonda [4] and Fabry and Mawhin [5] obtained, by degree meth-
ods, sufficient conditions for the existence of 2π-periodic solutions and of un-
bounded solutions as well as subharmonic solutions for (5) below, respectively.
More precisely, in [5] the following equation is considered:

x′′ + αx+ − βx− = g(x) + f(x) + h(t), (5)

and it is proved that if the function

Φh(θ) =
n

π

[

g(+∞)

α
− g(−∞)

β

]

+
1

2π
√
α

∫ 2π

0

C(t+ θ)h(t) dt

has zeros and all of them are simple, then all solutions of (5) with large initial
values are unbounded if the following resonance condition is satisfied:

1√
α
+

1√
β

=
2

n
, n ∈ N ,
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and f has a sublinear primitive, that is, lim|x|→∞
1
x

∫ x

0
f(s)ds = 0. Later, the

author of this paper [12] discussed the more general equation (1) and considered
the following function:

φ(θ) = Dp −
p

α
1
p

∫ 2πp

0

h(mt)Cp(mt+ θ) dt,

where

Dp =
2n

m
B

(

2

p
, 1− 1

p

)

[

g(+∞)

α
2
p

− g(−∞)

β
2
p

]

,

B(r, s) is the β-function B(r, s) =
∫ 1

0
(1− t)r−1ts−1 dt for r > 0, s > 0, and Cp(t)

is the 2πpm

n
-periodic solution of the following initial value problem:

(p− 1)−1(φp(u
′))′ + [αφp(u

+)− βφp(u
−)] = 0, u(0) = 1, u′(0) = 0,

if α and β satisfy α−
1
p + β−

1
p = 2m

n
, m, n ∈ N.

It was shown in [12] that if the function φ(θ) has no zero for all θ ∈ R, then
all solutions of (1) are bounded. For more recent results on boundedness and
existence 2π-periodic solutions of (1) and (3), we refer [1], [6]–[9], [11]–[15] and
the references therein.

In the rest of this paper, we denote by S the unique solution of the initial
value problem

(p− 1)−1(φp(x
′))′ + [αφp(x

+)− βφp(x
−)] = 0, x(0) = 0, x′(0) = 1. (6)

Definition 1.

(A) A solution of (xω(t), x
′
ω(t)) of (1) is called of Mather type with rotation

number ω if ω = k
m

is rational, the solutions (xω(t + 2iπ), x′ω(t + 2iπ)),
1 ≤ i ≤ m− 1, are mutually unlinked periodic solutions of periodic 2mπ
and, in this case,

lim
ω→n

min
t∈R

(|xω(t)|+ |x′ω(t)|) = +∞.

(B) If ω is irrational, the solution (xω(t), x
′
ω(t)) is either a usual quasi-periodic

solution or a generalized one, that is, the closed set

{(xω(2iπ), x′ω(2iπ)), i ∈ Z}

is a Denjoy’s minimal set.

The main results of this paper are formulated in the following theorems:
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Theorem 1. Assume h ∈ L∞[0, 2πp] is 2πp-periodic and g ∈ C1(R) is bounded
and satisfies the following conditions: the limits limx→+∞ g(x) = g(+∞) and
limx→−∞ g(x) = g(−∞) exist and g satisfies

g(x) = g(±∞) + c±|x|−(p−1)σsgnx+O(|x|−(p−1)σ−1)

for |x| À 1, where σ ∈ (0, 1
p−1

) is a constant and c± are constants satisfying

D0 =:
c+

α
2−(p−1)σ

p

+
c−

β
2−(p−1)σ

p

6= 0.

Define a 2πp-periodic function λ1 as

λ1(t) =

∫ 2πp

0

S(θ)h(t+ θ)dθ − 2

p

(

g(+∞)

α
2
p

− g(−∞)

β2/p

)

B

(

2

p
,
1

q

)

,

where q = p
p−1

is the conjugate exponent of p. Let one of the following conditions
be satisfied:

(I) λ1(t) 6= 0 for all t ∈ R;

(II) either (a) λ1(t) ≥ 0 and D0 < 0 or (b) λ1(t) ≤ 0 and D0 > 0.

Then there exists an ε0 > 0 such that for any ω ∈ (n, n+ ε0), equation (1) has
a solution (xω(t), x

′
ω(t)) of Mather type with rotation number ω.

Theorem 2. Assume g(x) ≡ 0, h is piece-wise two times differentiable and
2πp-periodic. Assume

λ1(t) =

∫ 2πp

0

S(θ)h(t+ θ)dθ ≡ 0 .

For p 6= 2, define a 2πp-periodic function λ2(t) as

λ2(t) = (p−2)
[
∫ 2πp

0

S(θ)h(t+ θ)

∫ θ

0

S(τ)h′(t+ τ)dτdθ −
∫ 2πp

0

S2(θ)h2(t+ θ)dθ

]

.

For p = 2, define a 2π-periodic function λ3(t) as

λ3(t) = −
1

2

[
∫ 2π

0

S3(θ)h3(t+ θ)dθ +

∫ 2π

0

S(θ)h′′(t+ θ)

(
∫ θ

0

S(τ)h(t+ τ)dτ

)2

dθ

]

−
∫ 2π

0

S2(θ)h(t+ θ)h′(t+ θ)

∫ θ

0

S(τ)h(t+ τ)dτdθ.

Then the conclusions of Theorem 1 are true, if one of the following conditions
holds:

(I) p 6= 2, λ2(t) 6= 0 for all t ∈ R;

(II) p = 2, λ3(t) 6= 0 for all t ∈ R.
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2. Generalized polar coordinates transformation

If we introduce a new variable y = φp(x
′), then (1) is equivalent to the planar

system

x′ = φq(y), y′ = (p− 1)[−αφp(x
+) + βφp(x

−) + h(t)− g(x)], (7)

where q = p
p−1

is the conjugate exponent of p. Let u = sinp t be the solution of
the initial value problem

(φp(u
′))′ + (p− 1)φp(u) = 0, u(0) = 0, u′(0) = 1

which for t ∈ [0, πp
2
] can be expressed implicitly by

t =

∫ sinp t

0

ds

(1− sp)
1
p

.

Then it follows from [10] that u = sinp t can be extended to R as a 2πp-periodic
odd C2-function which satisfies sinp t : [0,

πp
2
] → [0, 1] and sinp(πp − t) = sinp t

for t ∈ [πp
2
, πp], sinp(2πp − t) = − sinp t for t ∈ [πp, 2πp].

Let the function S be the unique solution of problem (6), then it is not
difficult to verify that S ∈ C2(R) is 2πp

n
-periodic and can be expressed as

S(t) =

{

α−
1
p sinp α

1
p t, t ∈

[

0, α−
1
pπp

)

−β− 1
p sinp β

1
p (t− α−

1
pπp), t ∈

[

α−
1
pπp,

2πp
n

]

,
(8)

from which it is easy to verify that the following equality holds:

|S ′(t)|p + α(S+(t))p + β(S−(t))p ≡ 1, t ∈ R. (9)

For ρ > 0, θ(mod 2πp), we define the generalized polar coordinates trans-
formation (ρ, θ)→ (x, y) as

x = ρ
1
pS
(

θ
n

)

, y = ρ
1
qφp

(

S ′
(

θ
n

))

.

Under this transformation and by using (9), (7) is changed into the planar
system

ρ′ = pρ
1
pS ′
(

θ
n

)

(h(t)− g(x)), θ′ = n− nρ−
1
qS
(

θ
n

)

(h(t)− g(x)). (10)

If we define r = ρ
1
q , then (10) can be further simplified as

r′ = (p− 1)S ′
(

θ
n

)

(h(t)− g(x)), θ′ = n
[

1− r−1S
(

θ
n

)

(h(t)− g(x))
]

, (11)

where x = r
1

p−1S
(

θ
n

)

.



212 Xiaojing Yang and Kueiming Lo

Let (r(t; r0, θ0), θ(t; r0, θ0)) be the solution of (11) with initial value (r0, θ0).
Then for large initial value, i.e., r0 À 1, by the boundedness of h, g, S, S ′ and
for t in any bounded interval I ⊂ [0, 2nπp], we get r(t) = r0+O(1) which yields
r−1(t) = r−1

0 + O(r−2
0 ). Going back to (11), we get for t ∈ I, θ′(t) ≥ 1

2
> 0. As

in [3], we can write (11) in the following equivalent form:

dt

dθ
=

1

n(1− r−1S
(

θ
n

)

(h(t)− g(x))

dr

dθ
=

(p− 1)S ′
(

θ
n

)

(h(t)− g(x))

n(1− r−1S
(

θ
n

)

(h(t)− g(x))
.

(12)

Now let (r(θ; r0, t0), t(θ; r0, t0)) be the solution of (12) with initial value (r0, t0)
where t0 ∈ I and θ ∈ [0, 2nπp]. Then for r0 À 1, we obtain r(θ) ≥ r0/2 À 1
and (12) can be written as

dr

dθ
=
p− 1

n

[

S ′
(

θ
n

)

(h(t)−g(x)) + r−1(θ)S ′
(

θ
n
)S
(

θ
n

)

(h(t)−g(x))2 + · · ·
]

dt

dθ
=

1

n

[

1 + r−1(θ)S
(

θ
n

)

(h(t)−g(x)) + r−2(θ)S2
(

θ
n

)

(h(t)−g(x))2 + · · ·
]

,

(13)

where x = x(θ) = r
1

p−1

0 S
(

θ
n

)

+O(1).

3. Lemmas

For the proof of theorems, we need the following lemmas:

Lemma 1. Assume the conditions of Theorem 1 hold, then we have

r1 = r0 + µ0(t0) +O(r−1
0 )

t1 = t0 + 2πp + λ1(t0)r
−1
0 + λ1+σr

−(1+σ)
0 +O(r−2

0 ),
(14)

where r1 = r(2nπp; r0, t0), t1 = t(2nπp; r0, t0) and

µ0(t) = (p− 1)

∫ 2πp

0

S ′(θ)f(t+ θ)dθ

λ1(t) =

∫ 2πp

0

S(θ)f(t+ θ)dθ − 2

p

(

g(+∞)

α
2
p

− g(−∞)

β
2
p

)

B

(

2

p
,
1

q

)

λ1+σ = −2

p

(

c+

α
τ+1
p

+
c−

β
τ+1
p

)

B

(

τ + 1

p
,
1

q

)

= −D0
2

p
B

(

τ + 1

p
,
1

q

)

,

where τ = 1− (p− 1)σ ∈ (0, 1). Moreover, we have µ0(t) = −(p− 1)λ′1(t).
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Proof. It follows from (13) and for t0 ∈ R and θ ∈ [0, 2nπp], we have

r(θ) = r0 +O(1), t(θ) = t0 +
θ
n
+O(r−1

0 ). (15)

For r0 À 1, substituting (15) into (13), then integrating over [0, 2nπp] and
letting r1 = r(2nπp), t1 = t(2nπp), we obtain

r1 = r0 + µ0(t0) +O(r−1
0 )

t1 = t0 + 2πp + λ1(t0)r
−1
0 + λ1+σr

−(1+σ)
0 +O(r−2

0 ),
(16)

where

µ0(t) =
p− 1

n

∫ 2nπp

0

S ′
(

θ
n

)

h
(

t+ θ
n

)

dθ

− p− 1

n
g(+∞)

∫

I

S ′
(

θ
n

)

dθ − p− 1

n
g(−∞)

∫

J

S ′
(

θ
n

)

dθ

= (p− 1)

∫ 2πp

0

S ′(θ)h(t+ θ)dθ,

and

λ1(t) =
1

n

[
∫ 2nπp

0

S
(

θ
n

)

h
(

t+ θ
n

)

dθ − g(+∞)

∫

I

S
(

θ
n

)

dθ

]

− 1

n
g(−∞)

∫

J

S
(

θ
n

)

dθ

=

∫ 2πp

0

S(θ)h(t+ θ)dθ − g(+∞)

∫

πp

α1/p

0

S(θ)dθ + g(−∞)

∫

2πp
n

πp

α1/p

|S(θ)|dθ ,

where I = {θ ∈ [0, 2nπp] : S(
θ
n
) > 0} and J = {θ ∈ [0, 2nπp] : S(

θ
n
) < 0}.

By using the similar method used in [12], we can show that

∫

πp

α1/p

0

S(θ)dθ =
1

α
2
p

2

p
B

(

2

p
,
1

q

)

∫

2πp
n

α1/p

S(θ)dθ =
1

β
2
p

2

p
B

(

2

p
,
1

q

)

.

From above equalities, we obtain the expressions of µ1(t) and λ1(t).

Next, we calculate the value λ1+σ. From (16) and the expression of S in (8),
we obtain

λ1+σ = −c+
∫

πp

α1/p

0

(

S(θ)
)τ
dθ − c−

∫

2πp
n

πp

α1/p

|S(τ)|τdθ

= −
(

c+

α
τ+1
p

+
c−

β
τ+1
p

)

∫ πp

0

(sinp θ)
τdθ
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and
∫ πp

0

(sinp θ)
τdθ = 2

∫

πp
2

0

(sinp θ)
τdθ =

2

p
B

(

τ + 1

p
,
1

q

)

,

which yields the expression of λ1+σ. Now the integration by parts yields µ0(t) =
−(p− 1)λ1(t).

Lemma 2. Assume the conditions of Theorem 2 hold, then we have

r1 = r0 + µ1(t0)r
−1
0 +O(r−2

0 )

t1 = t0 + 2πp + λ2(t0)r
−2
0 +O(r−3

0 ),
(17)

where

µ1(t) = −(p− 1)

∫ 2πp

0

S(θ)h′′(t+ θ)

∫ θ

0

S(τ)h(t+ τ)dτdθ

− 2(p− 1)

∫ 2πp

0

S2(θ)h(t+ θ)h(t+ θ)dθ

λ2(t) = (p− 2)

∫ 2πp

0

S(θ)h′(t+ θ)

∫ θ

0

S(τ)h(t+ τ)dτdθ

− (p− 2)

∫ 2πp

0

S2(θ)h2(t+ θ)dθ.

Moreover, we have (p− 2)µ1(t) = (p− 1)λ′2(t).

Proof. Substituting (15) into (13) and integrating over [0, θ] ⊂ [0, 2πp] we,
obtain

r(θ) = r0 + µ0(t0, θ) +O(r−1
0 )

t(θ) = t0 +
θ
n
+ λ1(t0, θ)r

−1
0 +O(r−2

0 )

r−1(θ) = r−1
0 − µ0(t0, θ)r

−2
0 +O(r−3

0 ),

(18)

where

µ0(t, θ) =
p− 1

n

∫ θ

0

S ′
(

τ
n

)

h
(

t+ τ
n

)

dτ

λ1(t, θ) =
1

n

∫ θ

0

S
(

τ
n

)

h
(

t+ τ
n

)

dτ.

(19)

Substituting (18)–(19) into (13) and integrating over [0, 2nπp], we get

r1 = r0 + µ0(t0) + µ1(t0)r
−1
0 +O(r−2

0 )

t1 = t0 + 2πp + λ1(t0)r
−1
0 + λ2(t0)r

−2
0 +O(r−3

0 ),
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where λ1(t) = λ1(t, 2nπp), µ0(t) = µ0(t, 2nπp),

µ1(t) =
p− 1

n

∫ 2nπp

0

S ′
(

θ
n

)

h′
(

t+ θ
n

)

λ1(t, θ)dθ

+
p− 1

n

∫ 2nπp

0

S
(

θ
n

)

S ′
(

θ
n

)

h2
(

t+ θ
n

)

dθ

= −(p− 1)

∫ 2πp

0

S(θ)h′′(t+ θ)

∫ θ

0

S(τ)h(t+ τ)dτdθ

− 2(p− 1)

∫ 2πp

0

S2(θ)h(t+ θ)h′(t+ θ)dθ − (p− 1)λ1(t)λ
′
1(t)

and

λ2(t) =
1

n

∫ 2nπp

0

S2
(

θ
n

)

h2
(

t+ θ
n

)

dθ − 1

n

∫ 2nπp

0

S
(

θ
n

)

h
(

t+ θ
n

)

µ0(t, θ)dθ

+
1

n

∫ 2nπp

0

S
(

θ
n

)

h′
(

t+ θ
n

)

λ1(t, θ)dθ

= (p− 2)

∫ 2πp

0

S(θ)h(t+ θ)

∫ θ

0

S(τ)h′(t+ τ)dτdθ

− (p− 2)

∫ 2πp

0

S2(θ)h2(t+ θ)dθ + λ1(t)λ
′
1(t).

From above equalities we obtain after some elementary calculation

(p− 2)µ1(t) = (p− 1)
[

λ′2(t)−
p

2

(

λ′1(t)
)2 − (p− 1)λ1(t)λ

′′
1(t)
]

,

which implies that, for λ1(t) ≡ 0, we have (p− 2)µ1(t) = (p− 1)λ′2(t).

Lemma 3. Assume that the conditions of Theorem 2 hold, and p = 2. Then

r1 = r0 + µ1(t0)r
−1
0 +O(r−2

0 )

t1 = t0 + 2π + λ3(t0)r
−3
0 +O(r−4

0 ),
(20)

where

µ1(t) = −
∫ 2π

0

S(θ)h′′(t+θ)

∫ θ

0

S(τ)h(t+τ)dτdθ−2
∫ 2π

0

S2(θ)h(t+θ)h′(t+θ)dθ

and λ3(t) is given as in Theorem 2.

Proof. Substituting (15) into (13) and integrating over [0, θ] ⊂ [0, 2nπ], we
obtain (18) with µ0, λ1 given by (19) with p = 2. Substituting (18) into (13)
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and integrating over [0, θ] ⊂ [0, 2nπ], we obtain

r(θ) = r0 + µ0(t0, θ) + µ1(t0, θ)r
−1
0 +O(r−2

0 )

t(θ) = t0 +
θ
n
+ λ1(t0, θ)r

−1
0 + λ2(t0, θ)r

−2
0 +O(r−3

0 )

r−1(θ) = r−1
0 − µ0(t0, θ)r

−2
0 + (µ2

0(t0, θ)− µ1(t0, θ))r
−3
0 +O(r−4

0 ),

(21)

where

µ1(t, θ) =
1

n

∫ θ

0

S ′
(

τ
n

)

h′
(

t+ τ
n

)

λ1(t, τ)dτ

+
1

n

∫ θ

0

S
(

τ
n

)

S ′
(

τ
n

)

h2
(

t+ τ
n

)

dτ

=
1

n2

∫ θ

0

S ′( τ
n
)h′(t+ τ

n
)

∫ τ

0

S
(

u/n
)

h
(

t+ u/n
)

dudτ

+
1

n

∫ θ

0

S
(

τ
n

)

S ′
(

τ
n

)

h2
(

t+ τ
n

)

dτ

(22)

and

λ2(t, θ) = −
1

n

∫ θ

0

S
(

τ
n

)

h
(

t+ τ
n

)

µ0(t, τ)dτ +
1

n

∫ θ

0

S2
(

τ
n

)

h2
(

t+ τ
n

)

dτ

+
1

n

∫ θ

0

S(τ)h(t+ τ)λ1(t, τ)dτ

=
1

n2

∫ θ

0

Sh

∫ τ

0

Sh′ du dτ +
1

n2

∫ θ

0

Sh′
∫ τ

0

Sh du dτ

=
1

n2

∫ θ

0

S
(

τ
n

)

h
(

t+ τ
n

)

dτ

∫ θ

0

S
(

τ
n

)

h′
(

t+ τ
n

)

dτ. (23)

Substituting (21)–(23) into (13) again and integrating over [0, 2nπ], we obtain

r1 = r0 + µ0(t0) + µ1(t0)r
−1
0 +O(r−2

0 )

t1 = t0 + 2π + λ1(t0)r
−1
0 + λ2(t0)r

−2
0 + λ3(t0)r

−3
0 +O(r−4

0 ),

where λk(t) = λk(t, 2nπ), k = 1, 2, µi(t) = µi(t, 2nπ), i = 0, 1, and

λ3(t) =
1

n

∫ 2nπ

0

S3h3dθ − 2

n

∫ 2nπ

0

S2h2µ0dθ +
2

n

∫ 2nπ

0

S2hh′λ1dθ

+
1

n

∫ 2nπ

0

Sh(µ2
0 − µ1)dθ −

1

n

∫ 2nπ

0

Sh′λ1µ0dθ (24)

+
1

n

∫ 2nπ

0

Sh′′λ2
1dθ +

1

n

∫ 2nπ

0

Sh′λ2dθ.
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Now, substituting the expressions of µ0, µ1, λ1 and λ2 into (24) and using
λ1(t) ≡ 0, we obtain from Lemma 2 that λ2(t) ≡ 0 and µ0(t) = −λ1(t) ≡ 0.
After some elementary calculation, we obtain the expression of λ3(t) given in
Theorem 2.

4. Proof of the theorems

Now, we are ready to prove the main results of this paper.

Proof of Theorem 1. Assume the conditions of Theorem 1 hold. If (I) is satis-
fied, then the Poincaré map P : (t0, r0) → (t1, r1) of the solutions of (13) has
the following form:

t1 = t0 + 2πp + λ1(t0)r
−1
0 +O(r−2

0 )

r1 = r0 + µ0(t0) +O(r−1
0 ),

(25)

with µ0(t) = −(p− 1)λ′1(t).

Now we introduce another action variable u and a positive parameter ε by
r = 1

uε
with u ∈ [1, 2]. Then r À 1 ⇔ ε ¿ 1. Under this transformation, (25)

is changed to the following form:

t1 = t0 + 2πp + λ1(t0)u0ε+O(ε2)

u1 = u0 − µ0(t0)u
2
0ε+O(ε2).

Let t1 = t0 + εR(t0, u0, ε), u1 = u0 + εW (t0, u0, ε), then R(t, u, ε) = λ1(t)u +
O(ε), W (t, u, ε) = −µ0(t)u

2
0 +O(ε), and for t ∈ [0, 2nπp], u ∈ [1, 2], we have

|R(t, u, ε)|+
∣

∣

∣

∣

∂R(t, u, ε)

∂t

∣

∣

∣

∣

+

∣

∣

∣

∣

∂R(t, u, ε)

∂u

∣

∣

∣

∣

≤ C1 (26)

and

|W (t, u, ε)|+
∣

∣

∣

∣

∂W (t, u, ε)

∂t

∣

∣

∣

∣

+

∣

∣

∣

∣

∂W (t, u, ε)

∂u

∣

∣

∣

∣

≤ C2 (27)

for some constants C1, C2. Moreover, if mint∈R λ1(t) = d0 > 0, we have for
ε¿ 1, t ∈ R, u ∈ [1, 2],

∂R(t, u, ε)

∂u
≥ d0

2
> 0

and if maxt∈S1 λ1(t) = −d1 < 0, we have

∂R(t, u, ε)

∂u
≤ −d1

2
< 0.
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In both cases, the Poincaré map of (25) is a monotone map. Going back to (13),
we know that the Poincaré map Q : (θ0, r0) → (θ1, r1) is also monotone if
r0 À 1. Using similar arguments as in [11, Section 4], we may construct a
map Q̄ which is a global monotone twist homeomorphism of the cylinder S1×R

and coincides with Q on S1 × [A0,+∞) with a fixed constant A0 À 1, where
S1 = R/2πpZ. Therefore, the existence of Mather sets Mω of Q̄ is guaranteed
by Aubry–Mather theory (see [11]). Moreover, for some small ε0 > 0, such
invariant sets with rotation ω ∈ (n, n + ε0) lie in the domain S1 × [A0,+∞).
Hence they are just the Aubry–Mather sets of the Poincaré map of Q. The
above discussion shows the existence of Mather sets, this implies that (1) has
a solution (xω(t), x

′
ω(t)) of Mather type. Moreover, if ω = m

k
is a rational, the

solutions (xω(t + 2iπp), x
′
ω(t + 2iπp)), 1 ≤ i ≤ k − 1, are mutually unlinked

periodic solutions of period 2kπp and limk→+∞mint∈R ‖(xω(t), x
′
ω(t))‖ = +∞.

If ω is irrational, the solution (xω(t), x
′
ω(t)) is either a usual quasi-periodic

solution or a generalized one.

In case (II), by Lemma 1, the Poincaré map of (13) has the form of (14),
under the same transformation r = 1

uε
, (14) is of the following form:

t1 = t0 + 2πp + εR1(t0, u0, ε)

u1 = u0 + εW1(t0, u0, ε),

where R1(t, u, ε)=λ1(t)u+λ1+σu
1+σεσ+O(ε1), andW1(t, u, ε)=−µ0(t)u

2+O(ε).
It is easy to see that R1 and W1 satisfy the similar inequalities as (26) and (27).
Moreover, for λ1(t) ≥ 0 and D0 < 0, we have for ε¿1, t ∈ R, u ∈ [1, 2], λ1+σ>0
and

∂R1(t, u, ε)

∂u
= λ1(t) + (1 + σ)λ1+σε

σ +O(ε1) ≥ λ1(t) +
1

2
(1 + σ)λ1+σε

σ > 0.

Similarly, for λ1(t) ≤ 0 and D0 > 0, we have λ1+σ < 0 and

∂R1(t, u, ε)

∂u
= λ1(t) + (1 + σ)λ1+σε

σ +O(ε1) ≤ λ1(t) +
1

2
(1 + σ)λ1+σε

σ < 0.

The rest proof is similar to that of case (I), so we omit it for simplicity.

Proof of Theorem 2 (a sketch). By Lemma 2 and Lemma 3, the Poincaré map
of (13) has the form of (17) or the form of (20). Under the transformation
r = 1

uε
, (17) and (20) have the forms

t1 = t0 + 2πp + λ2(t0)u
2
0ε

2 +O(ε3)

u1 = u0 − µ1(t0)u
3
0ε

2 +O(ε3),
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and

t1 = t0 + 2π + λ3(t0)u
3
0ε

3 +O(ε4)

u1 = u0 − µ1(t0)u
3
0ε

3 +O(ε4),

respectively. Let

t1 = t0 + 2πp + ε2R2(t, u, ε), u1 = u0 + ε2W2(t, u, ε) for p 6= 2

t1 = t0 + 2π + ε3R3(t, u, ε), u1 = u0 + ε3W3(t, u, ε) for p = 2,

respectively, then it is not difficult to verify that for 0 < ε¿ 1, ∂Rk(t,u,ε)
∂u

6= 0 if
λk(t) 6= 0, t ∈ R for k = 2, 3. The rest proofs are similar to that of Theorem 1,
so we omit them for simplicity.

Example 1. Consider equation (1) with α = β = n = 1, h(t) ≡ 1, g(x) =
arctanx + |x|−τ sgnx, where τ ∈ (0, 1). Then Theorem 1 implies that, for
all t ∈ R, λ1(t) = −2π

p
B(1

p
, 1
q
) < 0. Now (I) of Theorem 1 implies that the

conclusion of Theorem 1 holds.

Example 2. Consider the following equation

(p− 1)−1(φp(x
′))′ + φp(x) + |x|−τ sgnx− 2|x|−τ sgn x = 1, (28)

where p > 1, τ ∈ (0, 1). Then α = β = n = 1, c+ = 1, c− = −2, h(t) ≡ 1, and
it is easy to see that S(t) = sinp t, λ1(t) ≡ 0 and D0 = c+ + c− < 0. Now (II)
of Theorem 1 implies that there exists ε0 > 0 such that for any ω ∈ (n, n+ ε0),
(28) has a solution (xω(t), x

′
ω(t)) of Mather type with rotation number ω.

Example 3. Consider a special case of (1):

(p− 1)−1(φp(x
′))′ + φp(x) = 1. (29)

In this example, p 6= 2, α = β = n = 1, g(x) ≡ 0, h(t) = 1. Then it can

be verified that λ1(t) ≡ 0, λ2(t) = (2 − p)
∫ 2πp

0
sin2

p θdθ 6= 0. Now Theorem 2
implies that there exists ε0 > 0 such that for any ω ∈ (n, n + ε0), (29) has a
solution (xω(t), x

′
ω(t)) of Mather type with rotation number ω.

Example 4. Consider the following linear equation

x′′ + αx+ − βx− = h(t), (30)

where α 6= β satisfying (2) with p = 2, n = 1, and h is piecewise continuous
and 2π–periodic such that h(t) = 1, t ∈ [0, π√

α
]; h(t) = β

α
, t ∈ ( π√

α
, 2π]. Then it

follows from Theorem 2 that λ1(t) = λ2(t) ≡ 0 and λ3(t) ≡ λ3(0) = − 2
3α3 (α−β)

6= 0. Hence Theorem 2 implies that the conclusion of Theorem 2 holds.

Remark 1. Let p = 2, Theorem 1 reduces to [3, Theorem 1], moreover, our
assumption D0 6= 0 is weaker than the assumption c± 6= 0 and c+c− > 0. In case
g(x) ≡ 0 and λ1(t) ≡ 0, the result of [3] cannot be applied to equation (30), but
Theorem 2 gives partial results. Therefore, our results are natural generalization
and refinements of the result of [3].
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