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On Summands Properties and

Minkowski Subtraction

D. Borowska, H. Przybycień and R. Urbański

Abstract. In this paper we generalise the Sallee theorem from [J. Geom. 29 (1987)(1),
1–11, Theorem 4.3] into non-symmetric sets and give its proof in the terms of
Minkowski subtraction.
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1. Preliminaries

Let X = (X, τ) be a Hausdorff topological vector space and let B(X) be the
family of all closed bounded and convex subsets of X. Let K(X) be the family
of all compact members of B(X). For a subset A ⊂ X of a vector space X we
denote by

convA =

{

x =
k
∑

i=1

αiai : αi ≥ 0,
k
∑

i=1

αi = 1, ai ∈ A, k ∈ N

}

the convex hull of A and by

affA =

{

x =
k
∑

i=1

αiai : αi ∈ R,

k
∑

i=1

αi = 1, ai ∈ A, k ∈ N

}

.

the affine hull of A. The Minkowski sum for A, B ∈ K(X) is defined by

A+B = {a+ b : a ∈ A, b ∈ B}.

We also define for λ ∈ R the sets λA = {λa : a ∈ A} and A−B = A+ (−1)B.

We say that a set B ∈ K(X) is a summand of A ∈ K(X) if there exists a set
C ∈ K(X) such that B + C = A.
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We introduce an equivalence relation ”∼” on K2(X) = K(X)×K(X) by

(A,B) ∼ (C,D) ⇐⇒ A+D = B + C.

For a nonempty, compact, convex set A ∈ K(X) the support function
h(A, ·) : X∗→R is given by

h(A, x) = max
a∈A

〈a, x〉 ,

where 〈·, ·〉 is the dual pairing between X and X∗, X∗ is the dual space (see [4]).
Let

A −̇B = {x ∈ X : x+B ⊂ A}

be the Minkowski subtraction of A and B. The equality

A −̇B =
⋂

b∈B

(A− b)

holds true (see [2]). For A,B,C ∈ K(X) the following conditions hold:

(i) A+ (B −̇A) ⊂ B.

(ii) If A = B + C, then B = A −̇C.

(iii) If B ⊂ C, then A −̇C ⊂ A −̇B.

(iv) If α ∈ R, then α(A −̇B) = αA −̇αB.

(v) If α, β ∈ R, α ≥ β, then αA −̇ βA = (α− β)A.

(vi) If B + C ⊂ A, then B ⊂ A −̇C.

For more properties of Minkowski subtraction see [2].

If aff A ∩ aff B = {p}, then we write A⊕B instead A + B and we call it
a direct sum of A and B. If a1, . . . , an+1 are n+ 1 points affinelly independent,
then the set conv{a1, . . . , an+1} we call the n-simplex. By the cube in the R

n

we mean a cartesian product [a
1
, b1]× · · · × [an, bn] of intervals, where ak ≤ bk

for k = 1, . . . , n. Let f ∈ X∗, A ⊂ f−1(0) and B ⊂ f−1(0) + x for some x ∈ X,

then the set conv(A ∪ B) we call a frustum with the bases A and B. We call
the set A ∈ K(X) centrally symmetric if A = −A.

2. Introduction

In this paper we focus on the summands properties. We generalise the Sallee
theorem from [5, Theorem 4.3] into non-symmetric sets and give its proof in the
terms of Minkowski subtraction. We also introduce the operatorDn, prove some
of its basic properties and show its connections with the operator Ωn defined
by Sallee for symmetric sets in R

n ([5, Theorems 3.1 and 3.2]). We use this
connections to the modification of the proof of Theorem 4.3 given in [5]. By the
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way, we receive some new properties of Minkowski subtraction. Then, we give
some examples of members of the family F for which the implication

C −̇A = B and C −̇B = A ⇒ A+B = C

is not true. This problem was considered by Sallee in [5]. In the last chapter
we investigate the following problem: for which sets A ∈ K(X) the set A −̇B

is a summand of the set A. Although it is quite a complicated issue and we
do not receive a full characterisation of that family, now we are able to define
the family C whose each element has this property. That family is rather vast.
This problem was solved in the space R

2 (see [7]).

First let us define an operator

Dk : K(X)×K(X) → K(X)∪{∅}, k ∈ N

Dk(B,A) =

{

B −̇A for k = 1

D1(B,Dk−1(B,A)) for k > 1.

In [5] Sallee introduced the following operator:

Ωk : K(Rn)×K(Rn)→ K(Rn), k ∈ N

Ωk(B,A) =

{

B for k = 0
⋂

{x+A : x ∈ Ωk−1(B,A)} for k > 0,

where A is a centrally symmetric set in R
n.

3. The operators Dn and Ωn

In this section we give some basic properties of the operations Dn and Ωn.

Theorem 3.1. Let A,B ∈ K(X). Then D3(A,B) = D1(A,B).

Proof. For A,B,C,M,N ∈ K(X) the following implication is true:

M ⊂ N ⇒ A −̇N ⊂ A −̇M. (1)

Since B + (A −̇ B) ⊂ A we obtain

B ⊂ A −̇ (A −̇B). (2)

Replacing B by A −̇B in the above inclusion we get A −̇B ⊂ A −̇ (A −̇ (A −̇B))
which is equivalent to the following expression D1(A,B) ⊂ D3(A,B). On the
other hand, putting M = B, N = A −̇ (A −̇B) and applying the equalities
(2) and (1) we obtain A −̇ (A −̇ (A −̇B)) ⊂ A −̇B which proved D3(A,B) ⊂
D1(A,B).
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Theorem 3.2. Let A,B ∈ K(X) and B be a centrally symmetric set. Then

the following equation holds true:

Ωn(A,B)=Dn(B, (−1)nA) for n ∈N.

Proof. From the definition of Minkowski subtraction we have

Ω1(A, B) =
⋂

x∈A

(B − (−x)) =
⋂

y∈−A

(B − y) = B −̇ (−A) = D1(B, −A).

We shall prove the equality Ω1(A,B) = −(B −̇A). From the definition of the
subtraction we have −{y : y + A ⊂ B} = −{y : −y − A ⊂ −B} = −{y : −y −
A ⊂ B} = {−y : −y − A ⊂ B} = {y : y − A ⊂ B} = B −̇ (−A) =D1(B,−A).
Hence

Ω2(A,B) = Ω1(Ω1(A,B), B)= Ω1(D1(B,−A), B) = D1(B,−D1(B,−A)). (3)

It is easy to see that

D1(B, −A) = B −̇ (−A) = −(B −̇A) = −(B −̇A) = −D1(B, A). (4)

Using the equalities (3) and (4) we obtain Ω2(A, B) = D1(B, (D1(B, A))) =
D2(B, A). From the definition of Ωn we have Ω2(A, B) = Ω1(Ω1(A, B), B) =
B −̇ [−(B −̇ (−A))] = B −̇ (B −̇A).

In [5] was proved that Ω3(A, B) = Ω1(A, B) for A,B ⊂ R
n. Analogously

it can be proved that Ω3(A, B) = Ω1(A, B) for A,B ⊂ X. From the definition
of Ωn, Theorem 3.1 and the above we have Ω3(A, B) = Ω1(Ω2(A, B), B) =
Ω1(D2(A, B), B) = D1(B,−D2(B, A)) = −D1(B, D2(B, A)) = −D3(B, A)=
D3(B, −A) = −D1(B, A) = D1(B, −A) = Ω1(A, B).

Now, using the Theorem 3.1 we obtain that Ωn(A, B) = Dn(B, (−1)nA)
for n ∈ N.

Corollary 3.3. Let A,B ∈ K(X). Then

Dn(B, A) =

{

B −̇A for odd n

B −̇ (B −̇A) for even n.

Moreover, if B is a centrally symmetric set, then

Ωn(A, B) =

{

B −̇(−A) for odd n

B −̇ (B −̇A) for even n.

Definition 3.4. Let X be a topological vector space and let A,B,M ∈ K(X).
A pair (A,B) is called an M-pair if and only if A+B =M .
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Definition 3.5. Let X be a topological vector space. A pair of sets (A ,B) ∈
K2(X) is called the pair of sets of constant width relative to S or S-pair if
A−B = λ for some λ > 0, where S is a centrally symmetric subset of X.

Notice, that S-pair and M -pair are different.

Theorem 3.6. Let X be a locally convex topological vector space and let A,B ∈
K(X). If (A, B) is an S-pair and there exists (C, D) such that (A, B)∼ (C, D)
then C −D is centrally symmetric.

Proof. Using the quivalence

h(A, u) + h(B, −u) = λh(S, u) ⇐⇒ A−B = λS

and the equivalence relation

(A, B)∼ (C, D) ⇐⇒ A+D = B + C

we obtain

h(A, u) + h(D, u) = h(B, u) + h(C, u)

h(B,−u) + h(C,−u) = h(A,−u) + h(D,−u).

Hence from the above equality

λh(S, u) + h(D, u) + h(C,−u) = λh(S,−u) + h(C, u) + h(D,−u).

Therefore h(C, u) + h(D,−u) = h(D, u) + h(C,−u). It is easy to see that
h(D,−u) = max 〈D ,−u〉 = max 〈 − D , u〉 = h(−D , u), hence from the above
equality we obtain h(C, u) + h(−D, u) = h(D, u) + h(−C, u), h(C − D, u) =
h(D − C, u). Therefore C −D = D − C.

Definition 3.7. Let X be a normed space and A ∈ K(X). We call the set A
a set of constant width if A − A = λB,, where B is the unit ball.

Definition 3.8. Let X be a topological vector space and A ∈ K(X). We call
the set A a set of constant S-width if A − A = λS, where S is a centrally
symmetric subset of X.

Definition 3.9. Let X be a normed space. A pair (A, C) ∈ K2(X) is called
the pair of sets of constant width if A− C = λB, where B is a unit ball.

Theorem 3.10. Let X be a normed space and let A, B, M ∈ K(X). Then the
following statements are equivalent:

(i) A is a summand of M ;

(ii) (A,−D1(M, A)) is an M-pair.
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Proof. If A is a summand of M , then there exists B ∈ K(X) such that A +
B = M . Hence A + D1(M, A) = M, B = M −̇ A = D1(M, A). We have
−B = −D1(M, A).

Conversely, assume that (A, −D1(M, A)) is an M -pair. By the definition
of an M -pair, A is a summand of M .

For A, B ∈ K(X) we will use the notation A ∨ B = conv(A ∪ B). For
two elements a, b ∈ K(X) the interval with end points a and b will be denoted
by [a, b] = a ∨ b.

Example 3.11. Let K = a ∨ b ∨ c and K
′

= −2K, where K ⊂ R
2 is the

Reuleaux triangle (see [1],[6]). Then K and K
′

are the sets of constant width.
Notice that −2K −̇K is not a set of constant width (see Figure 1).

Figure 1: Reuleaux triangles

It is easy to observe that the set −2K −̇ K is not a triangle. Its boundary
is the union of three arcs with the vertices a

′′′

, b
′′′

, c
′′′

. The curvature of every of
those arcs is less than ‖a

′′′

−b
′′′

‖−1. So −2K −̇K is not a set of constant width.

Let K = a ∨ b ∨ c ∨ d ∨e be a pentagon of constant width and let α < −1.
Similary we can show that αK −̇K is not a set of constant width (see Figure 2).

Corollary 3.12. The Minkowski subtraction does not preserve the constant

width of sets.

Proposition 3.13. The result of Minkowski subtraction of two centrally sym-

metric sets is centrally symmetric set.

Proof. Let A =−A, B =−B. Then −(A −̇B) = (−1)A −̇ (−1)B = A −̇B.
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Figure 2: Reuleaux pentagons

If A, B, S ∈ K(X) and A + B = S, then S −̇A = B and S −̇B = A. We
define a class S of sets S ∈ K(X) such that S −̇A = B and S −̇B = A imply
A + B = S. Moreover let us define F = K(X) \ S. It is easy to observe that
S ∈ S if and only if the equality S −̇ (S −̇A) = A implies that A is a summand
of S.

Example 3.14. G. T. Sallee in [5] gives the following example (see Figure 3)
of the member of the family F.

Figure 3: Octahedron

Let M be the octahedron, B = b ∨ b
′

, A is the eight faceted set. Then
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A =M −̇B, B =M −̇A, A+B 6=M :

A = c∨ c
′

M = a∨ i∨ j ∨ c
′

∨ d
′

∨ e
′

∨ f
′

∨ g
′

∨ b
′

B = h∨ c∨ c
′

∨ d
′

∨ e
′

∨ k
′

∨ k ∨ e∨ d.

Let the polytope A be the convex union of a hexagonal pyramid, a hexagonal
prism and a wedge (see Figure 4). One of possible intersections A ∩ (A− x) is
the convex union B of four-sided pyramid and four-sided prism, which is not a
summand of A. From the construction of the above set we obtain a quite wide
class of subsets of R

3 which belongs to the family F.

Figure 4: A polytope

The problem can be formulated as follows: to find all the sets S, for which
the equality S −̇ (S −̇A) = A implies that A is a summand of S.

4. Some properties of Minkowski subtraction

In this section we give some properties of Minkowski subtraction and prove the
Sallee theorem in its terms.

Theorem 4.1. Let A, B ∈ K(X) and let L be a linear invertible transformation
in X. Then LA −̇LB = L(A −̇B).

Proof. Let y ∈ L(A −̇B). Then there exists x ∈ X such that y = Lx and
x + B ⊂ A. So y + LB = Lx + LB ⊂ LA. Hence y ∈ LA −̇LB and
L(A −̇B) ⊂ LA −̇LB. If L is invertible then using the above inclusion we
get L−1(LA −̇LB) ⊂ A −̇B. Therefore LA −̇LB ⊂ L(A −̇B).
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Example 4.2. Let L : R
2 → R

2, L(x, y) = (x, 0) and A = [0, 1] × [0, 1],
B = [0, 1]× [0, 2], then L(A −̇B = ∅ and LA −̇LB = {(0, 0)}. So the assump-
tion of invertibility of L is essential.

Corollary 4.3. Let L be a linear invertible transformation in X. If L(A) = A

and L(B) = B, then L(A −̇B) = A −̇B.

Corollary 4.4. If L is a linear invertible transformation in X, L : X → X

and S ∈ S, then L(S) ∈ S.

Proof. Assume that L(S) −̇ (L(S) −̇A) = A. Then

L−1(L(S) −̇ (L(S) −̇A)) = L−1(A).

Now by the linearity of L and L−1 we have L−1(L(S) −̇L−1(L(S) −̇A)) =
L−1(A). Hence we obtain S −̇ (L−1(L(S)) −̇L−1(A)) = L−1(A) and S −̇
(S −̇L−1(A)) = L−1(A). Putting L−1(A) = B we have S −̇ (S −̇B) = B. Since
S ∈ S so B is a summand of S. Therefore by the definition of the summand
there exists a set C ∈ K(X) such that B + C = S. Putting L−1(A) + C = S

and from properties of the operator L we obtain

LL−1(A) + L(C) = L(S),

hence A+ L(C) = L(S). Then A is a summand of L(S) and L(S) ∈ S.

Lemma 4.5. Let A,B,C ∈ K(X) and aff A = aff B. Let moreover C ⊂ W ,

where W is a linear space, such that W ∩ aff A = {p}. Then

(A⊕C)∩ (B⊕C) = (A∩B)⊕C

(A⊕C) +B = (A+B)⊕C.

Proof. We assume V = aff A = aff B and W is a linear space with W ∩ V =
{p}. Let U = V ⊕W . Let us immerse isomorphicaly the space V ⊕W into
V ×W vV ⊕W →V ×W . We denote

v

A = {(x, 0) : x∈A}⊂V ×W
v

B = {(y, 0) : y ∈B}⊂V ×W
v

C = {(z, 0) : z ∈C}⊂V ×W.

We have (
v

A +
v

C) ∩ (
v

B +
v

C) = {(x, z) : x ∈ A, z ∈ C ∩ {(y, z) : y ∈ B,

z ∈ C} = {(u, z) : u ∈ A ∩ B, z ∈ C} =
v

A ∩
v

B +
v

C since the isomorphic
immersion is 1-1. So we have (A ⊕ C) ∩ (B ⊕ C) = A ∩ B ⊕ C. To prove the
second equality let us observe that aff (A+B) ⊂ aff A+aff B = 2aff A. Hence
aff (A+B)∩ aff C ⊂ 2 aff A∩ affW = 2aff A∩ 2W = 2(aff A∩W ) = 2{p}.
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Corollary 4.6. Let At, At1 , At2 , C ⊂ X for t, t1, t2 ∈ T and aff At1 = aff At2 .

Moreover let C⊂W , whereW is an affine subspace of X, such thatW∩ aff At =
{p}. Then

⋂

t∈T

(At⊕C) =
⋂

t∈T

At⊕C.

Lemma 4.7. Let A ∈ K(X) and let x, y ∈ X. Then aff (A − x) = aff A − x.

Moreover, if x, y ∈ aff A, then aff A− x = aff A− y.

Proof. We prove that aff (A−x) = aff A−x. If u ∈ aff (A−x), then there exist
α1, . . . , αn ∈ R, and α1 + · · ·+ αn = 1, a1, . . . , an ∈ A such that

u =
n
∑

i=1

αi(ai − x) =
n
∑

i=1

αiai − x

n
∑

i=1

αi =
n
∑

i=1

αiai − x ∈ aff A− x.

Moreover, let W be an affine space and let p, q, w ∈ W . Then W − p = W − q.
Let x ∈ W − p so x = w − p + q − q ∈ W − q, hence W − p ⊂ W − q. In a
similar way, we obtain W − q ⊂ W − p. Hence W − q = W − p what ends the
proof.

Lemma 4.8. Let {As}s∈S, {Bt}t∈T are two families of subsets of X such that

(i) aff As1 = aff As2, s1, s2 ∈ S

(ii) aff As ∩ aff Bt = {p}, s ∈ S, t ∈ T .

Then
⋂

s∈S,t∈T

(As⊕Bt) =
⋂

s∈S

As⊕
⋂

t∈T

Bt.

Proof. Let t ∈ T . Using the Corollary 4.6 for the Bt and As sets we have

⋂

s∈S

(Bt + As) =
⋂

s∈S

As +Bt. (5)

Since aff (
⋂

s∈S As) ⊂
⋂

s∈S aff As = aff As, then using the previous collorary
again for Bt and C =

⋂

s∈S As sets we have
⋂

t∈T (Bt + C) =
⋂

t∈T Bt + C.
By (5) we have

⋂

t∈T

⋂

s∈S(Bt + As) =
⋂

t∈T (
⋂

s∈S As + Bt) =
⋂

t∈T (C + Bt) =
⋂

t∈T Bt + C =
⋂

t∈T Bt +
⋂

s∈S As.

Lemma 4.9. Let S1, S2 ⊂ X be convex sets and aff S1∩aff S2 = {p}. Moreover
let A ⊂ aff S1 ⊕ aff S2 and let S = S1 ⊕ S2. Then

S −̇A = (S1 −̇A1)⊕ (S2 −̇A2),

where Ai = π(A, aff Si), i = 0, 1, is a parallel projection onto the subspace aff Si.
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Proof. Using the definition S −̇A =
⋂

a∈A(S −̇ a) of Minkowski subtraction we
have

S −̇A =
⋂

x∈A1,y∈A2

(S1⊕S2 − x⊕ y) =
⋂

x∈A1,y∈A2

(

(S1 − x)⊕ (S2 − y)
)

. (6)

PuttingAx = S1−x, x ∈ A1 andBy = S2−y, y ∈ A2 we have aff Ax = aff (S1−x)
and from the previous lemma, aff (S1−x) = aff S1−x = aff S1−y = aff (S1−y) =
aff Ay, x, y ∈ A1. Similary aff Bx = aff By for every x, y ∈ A2. Moreover because
p ∈ aff S1∩aff S2 so aff Ax = aff (S1−x) = aff S1−p, x ∈ A1, aff By = aff S2−p,
x ∈ A2. We have aff Ax ∩ aff By = (aff S1 − p) ∩ (aff S2 − p) = {0}. Now, using
the Lemma 4.8 and equality (6) we get

⋂

x∈A1,y∈A2
((S1 − x)⊕ (S2 − y)) =

⋂

x∈A1,y∈A2
(Ax⊕Ay) =

⋂

x∈A1
Ax⊕

⋂

y∈A2
Ay =

⋂

x∈A1
(S1 − x)⊕

⋂

y∈A2
(S2 −

y) = (S1 −̇A1)⊕ (S2 −̇A2).

Corollary 4.10. Under the assumptions of the above lemma we have

S −̇ (S −̇A) = (S1 −̇ (S1 −̇A1))⊕ (S2 −̇ (S2 −̇A2)).

Proof. We have S − 2p = (S1 − p) ⊕ (S2 − p) ⊂ aff (S1 − p)⊕ aff (S2 − p) and
S −̇A = (S1 −̇A1) ⊕ (S2 −̇A2), S1 −̇A1 ⊂ aff (S1 − p), S2 −̇A2 ⊂ aff (S2 − p),
hence

S −̇A = (S1 −̇A1)⊕ (S2 −̇A2)⊂ aff (S1− p)⊕ aff (S2− p).

Using Lemma 4.9 we obtain S −̇ (S −̇A) − 2p = (S − 2p) −̇ (S −̇A) =
[(S1 − p)⊕ (S2 − p)] −̇ (S −̇A) = [(S1 − p) −̇ π(S −̇A, aff (S1 − p))]⊕ [(S2 −
p) −̇ π(S −̇A, aff (S2 − p))] = [(S1 − p) −̇ (S1 −̇A1)]⊕ [(S1 − p) −̇ (S1 −̇A1)] =
[S1 −̇ (S1 −̇A1)]⊕ [S1 −̇ (S1 −̇A1)]− 2p. Therefore

S −̇ (S −̇A) = (S1 −̇ (S1 −̇A1))⊕ (S2 −̇ (S2 −̇A2)).

Theorem 4.11. If S1, S2 ∈ S and aff S1 ∩ aff S2 = {p}, then S1⊕S2 ∈ S.

Proof. Let A = (S1⊕S2) −̇ (S1⊕S2 −̇A). Denote B1 = S1 −̇ (S1 −̇A1) and
B2 = S2 −̇ (S2 −̇A2). From previous lemma we know that A = B1⊕B2, where
Ai = π(A, aff Si). Hence B1 = A1, B2 = A2. Because S1, S2 ∈ S so from
condition S1 −̇ (S1 −̇A1) = A1 there exists T1 such that S1 = T1+B1. Similary
S2 = T2+B2. So S1⊕S2 = (B1+T1)⊕ (B2+T2) = (B1⊕B2)+(T1+T2) = A+
(T1+T2). Hence A is a summand of the set S1⊕S2. Therefore S1⊕S2 ∈ S.

5. Some properties of a class C of sets

Now let us define a class C ⊂ K(X) by the following condition: A ∈ C if and
only if its intersection with any summand of A is still a summand of A.

Lemma 5.1. Let A ∈ C. Then the intersection of any finite number of trans-

lates of A is a summand of A.
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Proof. Let n = 2, hence (A − x1) ∩ (A − x2) = (A − x1 + x2) ∩ A − x2. We
denote

C = (A− x1 + x2) ∩ A and D = C − x2.

Since C is a summand of A so D is a summand of A. Let the lemma holds
true for k translates, i.e., (A − x1) ∩ (A − x2) ∩ · · · ∩ (A − xk) ∩ (A − xk+1) =
[(A− x1) ∩ (A− x2) ∩ · · · ∩ (A− xk) + xk+1] ∩ A− xk+1. We denote

E = [(A− x1) ∩ (A− x2) ∩ · · · ∩ (A− xk) + xk+1] ∩ A and F = E − xk+1.

Hence the sets E and F are summands of A.

Lemma 5.2. Let X be a topological vector space and let A, Aλ ∈ K(X) for
λ ∈ Λ. Suppose that the family {Aλ}λ∈Λ is a chain of summands of the set A,
then the set

⋂

λ∈ΛAλ is also a summand of the set A.

Proof. It can be proved (see [4, p. 49, Lemma 4.11]) that, if C, Dλ ∈ K(X),
and {Dλ}λ∈Λ is a chain, then

C +
⋂

λ∈Λ

Dλ =
⋂

λ∈Λ

(C +Dλ). (7)

Let A,Aλ ∈ K(X) for λ ∈ Λ and let the family {Aλ}λ∈Λ be a chain of summands
of the set A. Then there exists Bλ ∈ K(X), such that A = Aλ + Bλ for
λ ∈ Λ. Since Bλ = A −̇Aλ ⊂ A −̇ (

⋂

λ∈ΛAλ), we deduce that the set
⋃

λ∈ΛBλ

is compact, and since the family {Bλ}λ∈Λ is a chain it is convex. Using the
equality (7) we obtain

A ⊂
⋂

λ∈Λ

(

Aλ +
⋃

λ∈Λ

Bλ

)

=
⋂

λ∈Λ

Aλ +
⋃

λ∈Λ

Bλ.

On the other hand
⋂

λ∈Λ

Aλ +
⋃

λ∈Λ

Bλ ⊂
⋂

λ∈Λ

Aλ +
⋃

λ∈Λ

Bλ ⊂
⋃

λ∈Λ

(Aλ +Bλ) = A = A.

Therefore A =
⋂

λ∈ΛAλ +
⋃

λ∈ΛBλ and the set
⋂

λ∈ΛAλ is a summand of the
set A.

Example 5.3. Let X = c0 be the real Banach space of all sequences convergent
to 0 with the supremum norm, ‖x‖ = supk |xk|. Let A = {x ∈ c0 : ‖x‖≤1} be
the unit ball, Am= {x ∈ A : x1 = · · · = xm = 1}, Cm= {x ∈ A : xk = 0 for
k > m}, bm = (−1, . . . ,−1, 0, . . .), where the first m components equals −1.
Let Bm = bm + Cm for m ∈ N. Then A, Am, Bm ∈ B(X), Am + Bm = A and
Am+1 ⊂ Am for m ∈ N. Hence the family {Am}m∈N is a chain of summands of
the set A, but the set

⋂

m∈NAm is empty and is obviously not a summand of A.
This example shows that the assumption A ∈ K(X) in Lemma 5.2 is essential.
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Lemma 5.4. Let X be a normed vector space, B ∈ B(X) and let {bn} ⊂ B be

a dense set in B. Then
⋂

x∈B(A− x) =
⋂

∞

n=1(A− bn) for any A ∈ B(X).

Proof. It is enough to show that
⋂

∞

n=1(A − bn) ⊂
⋂

x∈B(A − x). Let z ∈
⋂

∞

n=1(A − bn) and let x0 ∈ B. Then there exists a subsequence of (bn), which
we denote by (bnk

) such that bnk
→ x0. We have z = ank

− bnk
, ank

∈ A. The
closedness of A and the equality limk→∞ ank

= z+x0 ∈ A imply z ∈ A−x0.

Theorem 5.5. Let A be a convex, compact subset of a normed, separable space

X and let A ∈ C. Then for any set B ∈ K(X) set A −̇B is a summand of A.

Proof. From Lemma 5.4 we have A −̇B =
⋂

∞

n=1(A−bn), where {bn} = B. Now
from Lemmas 5.2 and 5.4 and equality

⋂

∞

n=1(A − bn) =
⋂

∞

k=1(
⋂

∞

n=1(A − bn)),
we obtain that A −̇B is a summand of A.

Proposition 5.6. The cubes and simplexes belong to the family C.

Proof. Let C,D ∈ K(X) and C+D = [a1, b1]×· · ·×[an, bn]. Let pi : R
n → R and

pi(x) = xi. Then pk(C +D) = [ak, bk] and hence pk(C) + pk(D) = [ak, bk]. Let
C1 = p1(C)×· · ·×pn(C) and D1 = p1(D)× · · ·×pn(D). Then C ⊂ C1, D ⊂ D1.
We have

C +D1 ⊂ C1 +D1 ⊂ [a1, b1]× · · · × [an, bn] = C +D ,

and by the cancellation law we obtain D1 ⊂ D. Similary C1 ⊂ C. Therefore
C = C1, D = D1. We just proved that every summand of cube is still a cube.
Hence the intersection of cube with any summand of cube is still a summand
of cube. Therefore, cubes belongs to C.

From the indecomposability of a simplex it follows that any summand of
a simplex S is a simplex homothetic to S. Hence the intersection S with any
summand of S is still a summand of S. Therefore, simplexes belongs to C.

There is still the open question how to characterise the class C for the space
R
n (n ≥ 2) .
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