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Existence Results for Strongly Nonlinear

Elliptic Equations of Infinite Order
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Abstract. In this work, generalized Sobolev spaces and Sobolev spaces of infinite
order are considered. Existence of solutions for strongly nonlinear equation of infinite
order of the form Au + g(x, u) = f is established. Here A is an elliptic operator
from a functional space of Sobolev type to its dual and g(x, s) is a lower order term
satisfying a sign condition on s.
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1. Introduction

This paper is devoted to the study of the following strongly nonlinear elliptic
equation:

Au+ g(x, u) = f, x ∈ Ω, (1.1)

with boundary condition of Dirichlet type. Here Ω is a bounded domain in R
N

and A is a nonlinear elliptic operator satisfying some growth and coercive-
ness conditions, the nonlinear term g has to fulfil a sign condition. If A is a
Leray–Lions operator, let us mention that several studies have been devoted
to the investigation of related problems and a lot of papers have appeared
(cf. [2, 3, 5, 12]). In particular, Webb [12] has studied the isotropic case for the
problem (1.1) and proved the existence of at least one solution u in the Sobolev
space Wm,p

0 (Ω) (m ≥ 1, 1 < p < ∞). Note that for our case, by establishing
sufficient conditions, we obtain existence results for a general class of nonlinear
elliptic equations, which includes as a special case problems involving Leray–
Lions operators in the usual sense. We will separately consider a generalized
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problem and another one of infinite order to give an extension and complement
the results stated in [5] and [12]. For problems of infinite order, let us point
out that in this direction Dubinskij [7] proved, under hypothesis (A1−A4) (see
Section 3) and certain monotonicity conditions, the existence of solutions for
the Dirichlet problem associated with the equation Au = f in some functional
Sobolev spaces of infinite order. Our purpose is to prove the same result for
strongly nonlinear equations of infinite order of the form (1.1), more precisely,
we will assume more less restrictions on the operator A (no monotonicity con-
dition) to show existence of solutions.

To treat problem (1.1), we will define in Section 2 a functional space of
Sobolev type, the so-called generalized Sobolev space (or anisotropic Sobolev
space), that is Wm,~p(Ω). We will define also the Sobolev space of infinite order
denoted by W∞(aα, pα)(Ω). In Section 3, we assume that the operator A satisfy
the monotonicity condition, this allows us the study of (1.1) in the generalized
Sobolev space Wm,~p(Ω). And finally, we will consider the strongly nonlinear
equation (1.1) with infinite order, where A is assumed to be a nonlinear elliptic
operator of type

A(u) =
∞
∑

|α|=0

(−1)|α|Dα(Aα(x,D
γu)), |γ| ≤ |α|,

without a monotonicity condition. The real functions Aα(x, ξ) are required to
have polynomial growth in ξ. The term g(x, u) is strongly nonlinear in that
no such growth restriction is imposed, but it is supposed that g satisfies the
sign condition g(x, u)u ≥ 0. Here aα, pα are numbers and ~p is a vector of real
numbers.

2. Preliminaries

Let Ω be a bounded domain in R
N . Further aα ≥ 0, pα > 1 are real numbers for

all multi-indices α, and ‖ · ‖pα is the usual norm in the Lebesgue space Lpα(Ω).
For a positive integer m, we define the following vector of real numbers:

~p = {pα, |α| ≤ m},

and denote p
¯
= min{pα, |α| ≤ m}.

Now, let us consider the generalized functional Sobolev space

Wm,~p(Ω) = {u ∈ Lp0(Ω), Dαu ∈ Lpα(Ω), |α| ≤ m}

equipped with the norm

‖u‖ =
m
∑

|α|=0

‖Dαu‖pα . (2.1)
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We define the space Wm,~p
0 (Ω) as the closure of C∞0 (Ω) in Wm,~p(Ω) with respect

to the norm (2.1). Note that C∞0 (Ω) is dense in W
m,~p
0 (Ω). Both of Wm,~p(Ω)

and W
m,~p
0 (Ω) are reflexive, separable Banach spaces, pα > 1 for all |α| ≤ m

(the proof of this is an adaptation from Adams [1]). W−m,~p′(Ω) designs its dual
where ~p′ is the conjugate of ~p, i.e., p′α = pα

pα−1
for all |α| ≤ m.

The Sobolev space of infinite order is the functional space defined by

W∞(aα, pα)(Ω) =

{

u ∈ C∞(Ω) : ρ(u) =
∞
∑

|α|=0

aα‖D
α(u)‖pαpα <∞

}

.

We denote by C∞0 (Ω) the space of all functions with compact support in Ω with
continuous derivatives of arbitrary order.

Since we shall deal with the Dirichlet problem, we shall use the functional
space W∞

0 (aα, pα)(Ω) defined by

W∞
0 (aα, pα)(Ω) =

{

u ∈ C∞0 (Ω) : ρ(u) =
∞
∑

|α|=0

aα‖D
αu‖pαpα <∞

}

.

We say thatW∞
0 (aα, pα)(Ω) is a nontrivial space if it contains at least a nonzero

function. The dual space of W∞
0 (aα, pα)(Ω) is defined as follows:

W−∞(aα, p
′
α)(Ω) =

{

h : h =
∞
∑

|α|=0

(−1)|α|Dαhα, ρ
′

(h) =
∞
∑

|α|=0

aα‖hα‖
p′α
p′α

<∞

}

,

where hα ∈ Lp′α(Ω) and p′α is the conjugate of pα, i.e., p
′
α = pα

pα−1
(for more

details about these spaces, see [6, 7, 8, 9]).

We need the anisotropic Sobolev embeddings result.

Lemma 2.1. Let Ω be a bounded open subset of R
N .

If m · p < N , then W
m,~p
0 (Ω) ⊂ Lq(Ω) for all q ∈ [p, p∗[ with 1

p∗
= 1

p
− m

N
.

If m · p = N , then W
m,~p
0 (Ω) ⊂ Lq(Ω) for all q ∈ [p,+∞[.

If m · p > N , then W
m,~p
0 (Ω) ⊂ L∞(Ω) ∩ Ck(Ω) where k = E(m− N

p
).

Moreover, the embeddings are compacts.

The proof follows immediately from the corresponding embedding theorems
in the isotropic case by using the fact that Wm,~p(Ω) ⊂ Wm,p(Ω).
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3. Main results

In this section we formulate and prove the main result of the paper.

3.1. Strongly nonlinear equation of finite order. Let A be the nonlinear
operator of order 2m defined as

A(u) =
m
∑

|α|=0

(−1)|α|DαAα(x,D
γu), |γ| ≤ |α| ,

where Aα : Ω × R
λα 7→ R is a real function and λα is the number of multi-

indices γ such that |γ| ≤ |α|. Consider the following strongly nonlinear problem
with Dirichlet conditions:

Au+ g(x, u) = f in Ω.

Here, the function g : Ω×R 7→ R is measurable and f ∈ W−m,~p′(Ω). Note that
to deal with the Dirichlet problem, we use the space Wm,~p

0 (Ω).

In the following we apply the theory of pseudo-monotone operators.

Definition 3.1 ([4]). Let Y be a reflexive Banach space. A bounded mapping B
from Y to Y ∗ is called pseudo-monotone if for any sequence un ∈ Y with un ⇀ u

weakly in Y and lim supn−→∞〈Bun, un − v〉 ≤ 0, one has

lim inf
n−→∞

〈Bun, un − v〉 ≥ 〈Bu, u− v〉 for all v ∈ Y.

We start by stating the following assumptions:

(A0) A : Wm,~p
0 (Ω) 7→ W−m,~p′(Ω) is a bounded operator, pseudo-monotone and

coercive, i.e.,

lim
‖u‖m,~p→+∞

〈Au, u〉

‖u‖m,~p

= +∞,

pα > 1, for all |α| ≤ m.

(G0) g : Ω × R 7→ R satisfies the Carathéodory conditions, that is, it is mea-
surable in x for each fixed u ∈ R and continuous in u for almost all x ∈ Ω
such that

sup
|u|<s

|g(x, u)| ≤ hs(x),

for a.e. x ∈ Ω, all s > 0 and some function hs ∈ L1(Ω). We assume also
the ”sign condition” g(x, u)u ≥ 0, for a.e. x ∈ Ω and for all u ∈ R.
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Theorem 3.2. Let m ∈ N
∗ such that mp > N. Suppose (A0) and (G0) are

satisfied. Then for all f ∈ W−m,~p′(Ω), there exists u ∈Wm,~p
0 (Ω) such that







g(x, u) ∈ L1(Ω), g(x, u)u ∈ L1(Ω)

〈Au, v〉+

∫

Ω

g(x, u)v dx = 〈f, v〉, ∀v ∈Wm,~p
0 (Ω).

Proof. Let ϕ ∈ C∞0 (Ω) such that 0 < ϕ(x) < 1 and ϕ(x) = 1 for x close to 0.
Set

gk(x, u) = ϕ
(x

k

)

Pkg(x, u) with Pkξ =

{

ξ, if |ξ| ≤ k
kξ

|ξ|
, if |ξ| > k.

Thanks to this truncation and as in Webb [12], we prove that there exists a
uk ∈ W

m,~p
0 (Ω), which is the solution of the problem

Auk + gk(x, uk) = f,

or in its variational formulation,

〈Auk, v〉+

∫

Ω

gk(x, uk)v dx = 〈f, v〉, ∀v ∈Wm,~p
0 (Ω).

Further we have uk ⇀ u weakly in W
m,~p
0 (Ω), Auk ⇀ χ weakly in W−m,~p′(Ω),

gk(x, uk)→ g(x, u) in L1(Ω) and g(x, u)u ∈ L1(Ω). Consequently, we obtain

〈χ, v〉+

∫

Ω

g(x, u)v dx = 〈f, v〉 ∀v ∈Wm,~p
0 (Ω) ∩ L∞(Ω).

In view of Lemma 2.1, the last equality holds true for v = u since Wm,~p
0 (Ω) ⊂

L∞(Ω) with mp > N. Hence

〈χ, v〉+

∫

Ω

g(x, u)v dx = 〈f, v〉, ∀v ∈ Wm,~p
0 (Ω).

Now, we show that χ = Au. Indeed, the Fatou lemma implies

lim sup
k→+∞

〈Auk, uk〉 ≤ 〈f, u〉 −

∫

Ω

g(x, u)u dx = 〈χ, u〉.

Hence we have lim supk→+∞〈Auk, uk〉 ≤ 〈χ, u〉. Since A is pseudo-monotone, we
get χ = Au. ¤

3.2. Strongly nonlinear equation of infinite order. We denote by λα the
number of multi-indices γ such that |γ| ≤ |α|. Let A be an operator of infinite
order defined by

A(u) =
∞
∑

|α|=0

(−1)|α|DαAα(x,D
γu), |γ| ≤ |α|,

with Aα : Ω × R
λα 7→ R is a real function. The function g : Ω × R 7→ R is

measurable and f ∈W−∞(aα, p
′

α)(Ω).
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Let us now formulate the assumptions:

(A1) Aα(x, ξα) is a Carathéodory function for all α, |γ| ≤ |α|.

(A2) For a.e. x ∈ Ω, all m ∈ N
∗, all ξγ , ηα, |γ| ≤ |α| and some constant c0 > 0,

we assume that
∣

∣

∣

∣

m
∑

|α|=0

Aα(x, ξγ)ηα

∣

∣

∣

∣

≤ c0

m
∑

|α|=0

aα|ξα|
pα−1|ηα|,

where aα ≥ 0, pα > 1 are reals numbers for all multi-indices α, and for all
bounded sequence (pα)α.

(A3) There exist constants c1 > 0, c2 ≥ 0 such that for all m ∈ N
∗, for all

ξγ, ξα; |γ| ≤ |α|, we have

m
∑

|α|=0

Aα(x, ξγ) · ξα ≥ c1

m
∑

|α|=0

aα|ξα|
pα − c2.

(A4) The space W∞
0 (aα, pα)(Ω) is nontrivial.

(G1) The function g : Ω × R 7→ R is of Carathéodory type such that, for all
δ > 0,

sup
|u|<δ

|g(x, u)| ≤ hδ(x) ∈ L
1(Ω).

(G2) We assume the ”sign condition” g(x, u)u ≥ 0, for a.e. x ∈ Ω and all
u ∈ R.

Theorem 3.3. Let us assume the conditions (A1)− (A4), (G1) and (G2). Then
for all f ∈W−∞(aα, p

′

α)(Ω), there exists u∈W
∞
0 (aα, pα)(Ω) such that







g(x, u) ∈ L1(Ω), g(x, u)u ∈ L1(Ω)

〈Au, v〉+

∫

Ω

g(x, u)v dx = 〈f, v〉, for all v ∈ W∞
0 (aα, pα)(Ω).

Proof. In order to get our result, we will deal with the following steps:

1. We prove the existence of approximate solutions um.

2. We establish the a priori estimates.

3. We prove that um converges to an element u ∈ W∞
0 (aα, pα)(Ω) and we

finally show that u is the solution of our problem.

Step (1): The approximate problem.
Define the operator of order 2m+ 2 by

A2m+2(u) =
∑

|α|=m+1

(−1)m+1cαD
2αu+

m
∑

|α|=0

(−1)|α|DαAα(x,D
γu), |γ| ≤ m,

where cα are constants small enough such that they fulfil the conditions of the
following lemma introduced in [6].



Existence Results 309

Lemma 3.4 (cf. [6]). For all nontrivial space W∞
0 (aα, pα)(Ω), there exists a

nontrivial space W∞
0 (cα, 2)(Ω) such that W∞

0 (aα, pα)(Ω) ⊂ W∞
0 (cα, 2)(Ω).

The operator A2m+2 is clearly monotone since the term of higher order of
derivation is linear and satisfies the monotonicity condition, this follows from the
result of [11]. Moreover from assumptions (A1), (A2) and (A3), we deduce that
A2m+2 satisfies the growth, the coerciveness and the monotonicity conditions.
Hence by Theorem 3.1, there exists an approximate solution um of the following
problem:

(Pbm)







g(x, um) ∈L
1(Ω), g(x, um)um ∈L

1(Ω)

〈A2m+2(um), v〉+

∫

Ω

g(x, um)v dx = 〈fm, v〉, v ∈ Wm+1,~p
0 (Ω)

with fm =
∑m

|α|=0(−1)
|α|aαD

αfα, fα ∈L
p
′

α(Ω).

Step (2): A priori estimate.
Set v = um and using (A3), (G2) and the Hölder inequality, we deduce the
estimates

∑

|α|=m+1

cα‖D
αum‖

2
2 +

m
∑

|α|=0

aα‖D
αum‖

pα
pα
≤ K (3.1)

and ∫

Ω

g(x, um)um dx ≤ K (3.2)

for some constant K = K(f) > 0. The estimate (3.1) is equivalent to

m+1
∑

|α|=0

aα‖D
αum‖

pα
pα
≤ K (3.3)

with aα = cα and pα = 2 for |α| = m+ 1. Consequently, we have

‖um‖Wm+1,~p ≤ K. (3.4)

Then via a diagonalization process, there exists a subsequence still, denoted
by um, which converges uniformly to an element u ∈C∞0 (Ω), also for all deriva-
tives there holds Dαum → Dαu (for more details we refer to [6]).

Step (3): Convergence of problem (Pbm).
There exists a solution um of problem (Pbm), m = 1, 2, . . .. Then, by passing
to the limit, we have

lim
m→+∞

〈A2m+2(um), v〉+ lim
m→+∞

∫

Ω

g(x, um)v dx = lim
m→+∞

〈fm, v〉,

for v ∈ W∞
0 (aα, pα)(Ω). It is clear that limm→+∞〈fm, v〉 = 〈f, v〉 for all v ∈

W∞
0 (aα, pα)(Ω).
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Now, we shall prove that

lim
m→+∞

〈A2m+2(um), v〉 = 〈Au, v〉, for all v∈W∞
0 (aα, pα)(Ω).

In fact, let m0 be a fix number sufficiently large (m > m0) and let v ∈
W∞
0 (aα, pα)(Ω). Set 〈A(u)− A2m+2(um), v〉 = I1 + I2 − I3, where

I1 =

m0
∑

|α|=0

〈Aα(x,D
γu)− Aα(x,D

γum), D
αv〉

I2 =
∞
∑

|α|=m0+1

〈Aα(x,D
γu), Dαv〉

I3 = −
m
∑

|α|=m0+1

〈Aα(x,D
γum), D

αv〉 −
∑

|α|=m+1

cα〈D
αu,Dαv〉,

or in another form,

I3 = −
m+1
∑

|α|=m0+1

〈Aα(x,D
γum), D

αv〉

with Aα(x, ξγ) = cαξα and cα ≥ 0 for |α| = m+ 1.

The aim is to prove that I1, I2 and I3 tend to 0. On the one hand, since
Aα(x, ξγ) is of Carathéodory type, I1 → 0, and the term I2 is the remainder of
a convergent series, hence I2 → 0. On the other hand, for all ε > 0, there holds
k(ε) > 0 (see [4, p. 56]) such that

∣

∣

∣

∣

m+1
∑

|α|=m0+1

〈Aα(x,D
γum), D

αv〉

∣

∣

∣

∣

≤

m+1
∑

|α|=m0+1

|〈Aα(x,D
γum), D

αv〉|

≤ c0

m+1
∑

|α|=m0+1

aα

∫

Ω

|Dαum|
pα−1|Dαv| dx

≤ c0

m+1
∑

|α|=m0+1

aα‖D
αum‖

pα−1
pα

‖Dαv‖pα

≤ εc0

m+1
∑

|α|=m0+1

aα‖D
αum‖

pα
pα

+ c0k(ε)
m+1
∑

|α|=m0+1

aα‖D
αv‖pαpα

≤ εc0K + c0k(ε)
∞
∑

|α|=m0+1

aα‖D
αv‖pαpα ,

where K is the constant given in the estimate (3.1). Since the sequence (pα) is
bounded, this implies that

∑∞
|α|=m0+1

aα‖D
αv‖pαpα is the remainder of a convergent



Existence Results 311

series, therefore I3 → 0 holds. Hence 〈A2m+2(um), v〉 → 〈A(u), v〉 as m→ +∞
for all v ∈ W∞

0 (aα, pα)(Ω).

Now we prove that

lim
m→+∞

∫

Ω

g(x, um)v dx =

∫

Ω

g(x, u)v dx.

Indeed, we have um → u uniformly in Ω, hence g(x, um) → g(x, u) for a.e.
x ∈ Ω. In view of the Fatou lemma and (3.2), we obtain

∫

Ω

g(x, u)u dx ≤ lim
m→+∞

∫

Ω

g(x, um)um dx ≤ K,

this implies g(x, u)u ∈L1(Ω). On the other hand, for all δ > 0 we have

|g(x, um)| ≤ sup
|t|≤δ

|g(x, t)|+ δ−1|g(x, um)um| ≤ hδ(x) + δ−1|g(x, um)um|.

If E is a measurable subset of Ω and ε > 0, we have
∫

E

|g(x, um)| dx ≤

∫

E

hδ(x) dx+ δ−1K,

where K is the constant of (3.2) which is independent of m. For |E| sufficiently
small and δ = 2K

ε
, we obtain

∫

E
|g(x, um)| dx ≤ ε. Using Vitali’s theorem we get

g(x, um)→ g(x, u) in L1(Ω). Hence it follows that g(x, u) ∈ L1(Ω).

By passing to the limit, we obtain

〈Au, v〉+

∫

Ω

g(x, u)v dx = 〈f, v〉, for all v ∈W∞
0 (aα, pα)(Ω).

Finally, we conclude that







g(x, u) ∈ L1(Ω), g(x, u)u ∈ L1(Ω)

〈Au, v〉+

∫

Ω

g(x, u)v dx = 〈f, v〉, for all v ∈ W∞
0 (aα, pα)(Ω).

This completes the proof. ¤

4. Examples

1. Let Ω be a bounded open set in R
N , N ≥ 2, with Lipschitz boundary ∂Ω.

Let m = 1 and consider the Carathéodory functions

Ai(x, s, ξ) = |ξi|
pi−1sgn(ξi), for i = 1, . . . , N.

It is easy to show that Ai(x, s, ξ) are Carathéodory functions satisfying the
condition (A0).
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2. The following example of an operator of infinite order is closely inspired
from the one used in [7]. Let us consider the operator

Au =
∞
∑

|α|=0

(−1)|α|Dα
(

aα|D
αu|pα−2Dαu

)

,

aα ≥ 0 and pα > 1 are real numbers such that the space W∞
0 (aα, pα)(Ω) is

nontrivial (for example, if aα = [(2α)!]−p, p > 1 and dimΩ = 1), then the
conditions (A1), (A2) and (A3) are satisfied.

3. An explicit example of a function g that satisfies the conditions (G0),
(G1) and (G2) is g(x, t) = t|t|rh(x) with r > 0, where h ∈ L1(Ω), h(x) ≥ 0 a.e.
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