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Abstract. The notion of completely positive invariant conjugate-bilinear map in a
partial *-algebra is introduced and a generalized Stinespring theorem is proven. Appli-
cations to the existence of integrable extensions of *-representations of commutative,
locally convex quasi*-algebras are also discussed.
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1. Introduction

Completely positive linear maps on *-algebras play a relevant role in many ap-
plications such as quantum theory, quantum information, quantum probability
theory (see [5, 9], for overviews). In quantum physics, for instance, these maps
describe the passage from the dynamics of a system to that of its subsystems
and they act on the observable algebra of the system itself which is usually
taken to be a C*-algebra and then represented by bounded operators on some
Hilbert space.

It is now a long time that the C*-algebraic approach to quantum theory has
been shown to be a too rigid scheme to include in its framework all objects of
physical interest and several possible generalizations have been proposed: quasi
*_algebras, partial *-algebras and so on. It is then natural to try and extend the
notion of complete positivity to these different situations that become relevant
when unbounded operators occur.

From a mathematical point of view the most classical result on this topic
is the Stinespring dilation theorem, that essentially says that a linear map
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T : A — B where 2 is a C*-algebra with unit and B is a C*-algebra of
bounded operators in Hilbert space H, is completely positive if and only if it
has the form

T(a)=V*'r(a)V, acd

where 7 is a bounded representation of 2l in the Hilbert space K and V is a
bounded linear map of H into /.

A more general set-up was considered by Schmiidgen in [8, Ch.11] where
he considered completely positive maps from an arbitrary *-algebra 2( into a
vector space X and showed that a Stinespring-like representation holds for all
completely positive mappings of 2 into a vector space X. This result found
applications in the study of integrable extensions of *-representations of both
commutative *-algebras and enveloping algebras.

This paper is devoted to the possibility of extending Schmiidgen’s results
to the case where 20 is a partial *-algebra [2]. The lack of an everywhere defined
multiplication makes impossible to adapt the usual notion of complete positivity
for a linear map T, since in this case products of the form a*b, a,b € 2 need
not be defined. For this reason, we consider instead of linear maps, conjugate-
bilinear maps defined on a subspace of 2 x 2. But, in the same fashion as
Antoine and two of us did in [1, 2] for generalizing the GNS costruction to
partial *-algebras, also in this case, in order to obtain what will be called a
Stinespring dilation of the given completely positive conjugate-bilinear map, we
need to suppose the existence of a subspace (the core) of the space of universal
right multipliers R of 2 enjoying certain conditions of quasi-invariance.

The paper is organized as follows. After giving some preliminaries (Sec-
tion 2), we prove, in Section 3, a generalized Stinespring theorem for completely
positive, conjugate bilinear, quasi-invariant maps on a partial *-algebra 2, with
values in a vector space X and we examine the relationships of the related rep-
resentations when different cores are considered. In Section 4 we consider com-
pletely positive invariant linear maps on partial O*-algebras that are the natural
framework were *-representations of abstract partial *-algebras are defined. In
Section 5, we discuss applications to the existence of integrable extensions of
*_representations of commutative, locally convex quasi*-algebras.

2. Preliminaries

In this Section we will collect some basic definitions needed in what follows.

A partial *-algebra is a complex vector space 2, endowed with an involution
x — x* (that is, a bijection such that z** = x) and a partial multiplication
defined by a set I' C 20 x 2 (a binary relation) such that:

(i) (z,y) € I' implies (y*,2*) € I;



Completely Positive Maps 315

(i) (z,v1), (z,y2) € T implies (z, A\y1 + pyo) € T, for all A\, u € C;
(iii) for any (x,y) € I, there is defined a product z-y € 2, which is distributive
w.r.t. the addition and satisfies the relation (x - y)* = y* - x*.

We shall assume the partial *-algebra 2 contains a unit 1, i.e., 1*=1,(1,x) € T,
forallz € A, and -z =x-1 =z, for all z € 2. (If A has no unit, it may always
be embedded into a larger partial *-algebra with unit, in the standard fashion.)
Given the defining set I', spaces of multipliers are defined in the obvious way:

(x,y) €' <= =z € L(y) or x is a left multiplier of y
<= y € R(z) or y is a right multiplier of .

A partial *-algebra 2l is said to be semi-associative if y € R(x) implies y - z €
R(z) for every z € R> and (x-y) -z =2 (y- 2).

Let 2([7] be a partial *-algebra, which is a locally convex space for the locally
convex topology 7. Then 2[7] is called a locally convex partial *-algebra if the
following two conditions are satisfied:

(i) the involution x — z* is 7-continuous;
(ii) the maps x — ax and x — xb are T-continuous for all a € L2 and b € R.

A quasi *-algebra is a couple (A, 2A,), where 2l is a vector space with invo-
lution *, R, is a *-algebra and a vector subspace of 2 and 2 is an 2,-bimodule
whose module operations and involution extend those of 2, [8]. Of course, any
quasi *-algebra is a partial *-algebra.

A quasi *-algebra (2, 2,) is said to be a locally convezr quasi *-algebra if A
is endowed with a locally convex topology 7 such that

(i) the involution x +— z* is T-continuous;
(ii) the maps = +— ax and = — zb are T-continuous, for all a,b € .
(iii) 2, is 7-dense in A.

Let 'H be a complex Hilbert space and D a dense subspace of H. We denote
by L1(D,H) the set of all (closable) linear operators X such that D(X) =
D, D(X*) 2 D. The set LI(D,H) is a partial *-algebra [2] with respect to
the following operations: the usual sum X; + X,, the scalar multiplication
AX, the involution X +— XT = X*[D and the (weak) partial multiplication
X, 0X, = X;™X,, defined by

(X1,X,) el & X,D C D(X*) and XI'D c D(X3)
(X10X)¢6 = X["Xa¢, VEeED.

If (X1, X5) €T, we say that X is a weak right multiplier of X or, equiva-
lently, that X; is a weak left multiplier of X, (we write Xy € RV(X;) or X; €
L7 (Xy)).

A f-invariant subset (resp. subspace) of LT(D,H) is said to be an O*-family
(resp. O*-vector space) on D.
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A partial O*-algebra on D is a *-subalgebra 90T of LT(D,H), that is, M is a
subspace of LT(D,H), containing the identity and such that XT € 9 whenever
X €M and X;0X, € M for any X;, Xy € M such that X, € RY(X7).

Let

LY(D)={X € LI(D,H): XD C D, XD C D}.
Then L£T(D) is a *-algebra w.r.to 0 and X; 0 Xof = X;(X5€) for each £ € D.
A *-subalgebra of LT(D) is called an O*-algebra [8].
The following topologies on L£T(D,H) will be used in this paper:
— the weak topology TZ: defined by the seminorms pe,, {,7 € D where
Pen(X) = [(XEn) |, X € LI(D, H);

— the strong topology TP : defined by the seminorms pg, & € D where

pﬁ(X) = ||X£||’ X e ET(D7H);

— the strong* topology TE: defined by the seminorms P, & € D where

pe(X) = max{||X¢|, | X[}, X € L1(D, H).

A *-representation of a partial *-algebra 2l is a *-homomorphism of 2 into
LT(D,H), for some pair (D, H), D a dense subspace of H, that is, a linear map
7 : A LT(D,H) such that:

(i) m(a*) = m(a)! for every a € ;

(ii) If a,b € A and a € L(b) then w(a) € LY (7 (b)) and 7(a) O7w(b) = w(ab).
If (ii) holds only when ¢ € A and b € R, we say that 7 is a quasi *-
representation.

If 7 is a *-representation of the partial *-algebra 2, then 7(2() need not be
a partial O*-algebra, but, in general, it is only an O*-vector space.

If 9% is an O*-family on D, the graph topology on D is the locally convex
topology defined by the family {||-|| x; X € 9} of seminorms: [|£||x = || X¢]|,€ €
D and it is denoted by tgn. We denote by 15(931) the completion of the locally
convex space Dl[tgy| and put

Xem

An O*-family 90 on D is said to be closed if D = D(9M); and it is said to be
fully closed if D = D(9M). Now, put
D(M) = (] D(X7).
Xem
Then 9 is said to be selfadjoint if D = D*(9M). Finally, M is said to be

integrable if 9N is fully closed and each X € M such that X = X1 is essentially
selfadjoint. The set

M, ={C e LI(D,H) : (XE|C*n) = (CE|XTn), VX € M, V¢, n € D},

is called the weak unbounded commutant of M. Its bounded part M is the
weak bounded commutant of IN.
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A fully closed partial O*-algebra 9t on D is called a partial GW*-algebra if
M. D C D and M =M _.

A *-representation 7 of a partial *-algebra 2 is called closed (respectively,
fully closed, self-adjoint, integrable) if 7(2() is closed (respectively, fully closed,
self-adjoint, integrable).

3. Generalized Stinespring theorem

Let A be a partial *-algebra with identity I and X a vector space. We denote
by S(X) the involutive vector space of all sesquilinear forms on X x X with
involution ¢ — ¢ where 1 (£, 1) = ¢(n,§), &,n € X.

A map & : D(P) x D(P) — S(X) is said to be conjugate-bilinear if

— D(®) is a subspace of ;

= O(z,y)" =@y, x), Vr,y € D(P);

- ®(ax + Py, 2) = a®(z, 2) + BP(y, 2), Vz,y,z € D(P), Va,p € C.

In particular, if D(®) = 2, then & is said to be conjugate-bilinear map on A xA.
It is clear that ® is a sesquilinear map, i.e.,

— ®(z,ay + B2) = ad®(x,y) + BP(z,2), Vr,y,z€ D(®), Va, € C.
Definition 3.1. A conjugate-bilinear map ® : D(®) x D(P) — S(X) is said to
be quasi-invariant if there exists a subspace Bg of D(®) such that

(I)li Bg C RQ«[,

(D)g: ABy C D(P);
(Ds: @(az,y) = ®(z,a"y), Va €A Va,y € By;
(I)4: Bg satisfies the following density condition: for all z € D(®), for all

¢ € X, there exists a sequence {x,} C Bg such that
lim ®(z, — z,z, —x)(£, &) = 0.

n—oo

Furthermore, if
(I)'s: ®(a*z,by) = (z, (ab)y), Va,beA:aec L(b), Vr,y € By,
then ® is said to be invariant.

A subspace Bg satisfying the above requirements is called a core for ®. If
R is a core for @, then ® is said to be totally invariant.

In analogy with [1, 3, 8], we give the following

Definition 3.2. A conjugate-bilinear map ® : D(P) x D(P) — S(X) is said
to be positive if ®(z,xz) > 0 (i.e., ®(z,2)(&,&) > 0 for every £ € X) for each
x € D(®); the map ® is said to be completely positive if, for each n € N,

> (wpw) (G &) 20, V{z1,.... 20} CD(®), {&,.... &} C X

k=1
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We now give some examples of completely positive, invariant conjugate-
bilinear maps.

Example 3.3. Let 2 be a partial *-algebra and X a vector space. Let 7 be
a (quasi) *-representation of 2 on the domain D(w). Let V : X + D(m) be a
linear map. We define a map @y, 1y of A x A into S(X) by

Dy (@, 0)(&n) = (m(@)VE|m(O)Vn), abeA &neX.

Then ;1 is a completely positive conjugate-bilinear map on 2 x 2. We put
B{W’V} = {x € R, W(x)VSE C D(W)}

If 7(Bryy) is 7P-dense in 7(2A), then @,y is (quasi-)invariant with core
B{ﬂ',v}‘

Example 3.4. Let 2 be a partial *-algebra and 7 a *-representation of 2. We
define a map @, of A x 2A into S(D(7)) by

Or(a,b)(&n) = (w(a)¢[x(b)n) a,b e, §neD(m).

Then &, is a completely positive conjugate-bilinear map on 24 x 2A. We put
B, = {x € RA;w(x)D(m) C D(n)}.

If 7(B,) is 7P-dense in (), then ®, is invariant with core B,. Furthermore,
if 7 is selfadjoint, then B, = R and &, is totally invariant.

Example 3.5. Let 2 be a partial *-algebra and 7 a (quasi) *-representation
of . Let X be a vector space and 2 ® X the algebraic tensor product of
20 and X. A linear map A defined on a subspace D(\) of A ® X into H,
is said to be a strongly cyclic vector representation of A ® X for m if there
exists a subspace By of Dy = {z € Ajx ® & € D(N), V¢ € X} such that
AB\ C Dy, m(a)A(z @ &) = Maz ® &) for each a € A, x € B, and £ € X, and
A(B) ® X) is dense in D(r)[t]. We define a map @\ : Dy x Dy — S(X) by

(I){n,A}(Ly)(gﬂ?) = <>\(£L‘ ® 6) |)‘(y X 7])> ’ x,y € D/\? 5777 € X.
Then @ )y is a completely positive conjugate-bilinear map on 20 x 2 such that
P ay(az, by)(€,m) = (w(a)A(z @ &) [r(b)A(y @ n))

for each a,b € A, z,y € By, {,n € X. Furthermore, if \(B) ® &) is dense in
A(Dy ® &), for each £ € X, then @y, 5y is (quasi-)invariant with core B).
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Example 3.6. Let [7] be a locally convex semi-associative partial *-algebra.
Then M2 = LA N RA is a *-algebra. Let &5 : MA — S(X) be a completely
positive linear map on M2. We assume that S(X) is endowed with the topol-
ogy tg of simple convergence, defined by the seminorms pe , (¢) = [®(&,n)|. We
assume that

— M2 is dense in 2A[7];

— the map (z,y) € MAX MU — Oy(y*z) € S(X) is continuous with respect
to the product topology defined by 7 on M2 and the topology ts of S(X).

For a,b € A we define a map ® of A x A into S(X) by

®(a,b)(&;m) = lgg Do(ypra)(&,m), & nEX,

where {z,} and {ys} are nets in M2 that converge to a and b, respectively.
Then @ is a completely positive quasi-invariant conjugate bilinear map on 24 x
with core M. In particular, if 2 is a locally convex quasi*-algebra over 2, (in
this case M2 = 2y), then ® is a completely positive totally invariant conjugate
bilinear map on 2 x A with core 2.

Example 3.7. Let 2[|| - ||] be a unital C*-algebra with C*-norm || - || and 7
a locally convex topology on 2y which is finer than the C*-norm || - ||-topology
such that [7] is a locally convex x-algebra. Let Fy be a completely positive
linear map of 2y into the x-algebra B(H) of all bounded linear operators on a
Hilbert space H.

(1) Suppose that the map : (z,y) € Ap[1] x Ao[7] — Fo(y*x) € B(H)[rP]
is continuous for some dense subspace D in H. Then we put

F(a,b)(n) = lim (Fo(ysaza)ln), & mneD,

where {z,} and {ys} are nets in 2, which converge to a and b w.r.t. the topol-
ogy T, respectively. Then F'is a completely positive totally invariant conjugate-
bilinear map of the locally convex quasi x-algebra 2,[7] over 2, constructed from
the completion of 2,[7] with core .
(2) Suppose that the map : z € Ay[7] — Fo(z) € B(H)[rE] is continuous.
Then we put
F(a)§ = lim Fy(z.)¢, € €D,

where {z,} is a net in 2, which converges to a w.r.t. 7.

(i) If the multiplication of 2, [7] is jointly continuous, then F'is a completely
positive linear map of the locally convex x-algebra 2,[7] into £T(D, H).

(ii) If the multiplication of 2,[7] is not jointly continuous, then we can’t
even define the notion of complete positivity of F'. In this case, the results of
Section 4 can be used.
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Example 3.8. The previous example suggests a possible physical application
concerning the time evolution of a quantum system. Let 2, be the C*-algebra
of local observables of some physical system, in the sense of [9]. Let o' be
the automorphisms group that describes the time evolution of the elements
of A,. Then the completion 2 of 2, w.r.t. the physical topology [6] is a locally
convex quasi *-algebra over 2, which needs to be introduced because it contains
physically relevant observables as well as their time evolutions. Then, if we
define
Fo(z,y) = o' (y*z), =,y €U,

Fy enjoys all conditions required in the previous example, so that the corre-
sponding F'is a completely positive totally invariant conjugate-bilinear map.

We now show that Example 3.5 completely covers the general situation;
that is, for any completely positive (quasi) invariant conjugate bilinear map
O : D(P) x D(P) — S(X) there exists a couple {m, A\} consisting of a *-re-
presentation m of 2l and of a strongly cyclic vector representation A of A ® X
for 7 such that ® = @, yy. This is a generalization of Stinespring’s theorem for
completely positive linear maps on von Neumann algebras [10]. Generalizations
of Stinespring’s theorem have been studied by Powers [7] and Schmiidgen [8] for
O*-algebras and by Ekhaguere and Odiobala [3] and Ekhaguere [4] for partial
*_algebras. This paper is aimed to generalize Schmiidgen’s results to partial
*_algebras. The outcome is also a generalization of the studies of Ekhaguere

and Odiobala.
Let 20 be a partial *-algebra with identity 7, X a vector space and ® a
completely positive invariant conjugate bilinear map of D(®) x D(P) into S(X).

By the complete positivity of ®, a semidefinite inner product ( |) on the algebraic
tensor product D(®) ® X of D(P) and X can be defined by

<Zxk®§k Zyl®m> ZZ@ (ks y1) (&),
k=1 =1 1 =1

for {x},{ui} € D(®) and {&}, {m} C X. We define a subpace N of D(®) ® X
by

{Zzpk®§keD ®%<Zxk®§k

and the coset

ka®§k> _0}

Ap (Zl“k ®5k> = Zxk R &+ N
k=1 k=1

of Y, ) @ &. Then the quotient space Ao(D(P) @ X) = D(P) @ N is a
pre-Hilbert space and its completion is denoted by He. By condition (1) of
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Definition 3.1 it is easily seen that Ae(Be ® ) is dense in Ao (D(P) ® &), for
each £ € X and A\g(Be ® X) is dense in He. We put

Ao <Z T ® &) =" (Z azy, ® gk)
k=1

k=1

for a € A and )", ), ® & € Bp ® X. Then m; is a *-representation of 2 in
He with D(my) = A\e(Bs ® X). Indeed, take arbitrary a,b € 2 with a € L(b).

We have
b) Ao (Z e 771) >

= ZZ a*zx, byr) €k, m)

mo(ab)\p (Z by ® Ul) >

for each Y7, ox ® &k, Yooy Uy @ M € Be ® X, which implies that m is well-
defined and that it is a *-representation of 2(. We denote by 7 its closure. Then
it is clear that \g is a strongly cyclic vector representation of A ® X for m with
core By and that ® = @, y,y. In particular, suppose that By > 1. We put

|
e
KH
—
&
>
—~
Q
S
N—
<
N—
—~
Iy
Bl
=
N~—

VifeX—10E€Bs® X

Then V' is a linear map of X into D(w) such that \o(Be @ X) = 7(Bg)VX
and @ equals the completely positive invariant conjugate bilinear map v
of Example 3.3. The maps m and V' above are denoted with mp, and Vs,
respectively, since they are determined, respectively, by the core B¢ and by ®
only.

In the case that ® is quasi-invariant, mp, is a quasi *-representation of 2
and A\g and Vg are defined in similar way as above.

Thus we have proved the following

Theorem 3.9. Let A be a partial *-algebra with identity 1, X a vector space and
® a completely positive (quasi-) invariant conjugate bilinear map of D(®)QRD(P)
into S(X). Then there ezists a couple (wp,,\s) consisting of a closed (quasi-)
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*-representation mg, of A and a strongly cyclic vector representation \g of ARX
for mp, with core By such that

(I)(GZL', by)(§7 77) = <7TB<I> ((l)/\@(l‘ ® f) |7TB<1> (b)/\Q(y & 77)>

for every a,b € A, x,y € By and {,n € X. In particular, if Bs > 1, then there
exist a linear map Vo of X into D(mp,) such that np,(Be)VX = Ae(By @ X).

Corollary 3.10. Let ® be a completely positive totally (quasi-) invariant conju-
gate-bilinear map of A x A into S(X). Then the couple (w,V') of Theorem 3.9
15 uniquely determined up to unitary equivalence.

Proof. Let (p, W) be another couple consisting of a *-representation p of 2 and
a linear map W of X into D(p) such that
(i) ®(a,b)(& n) = (p(a)WE|p(b)Wn) for every a,b € A and &,n € X;
(i) p(RA)WX is dense in D(p)]t,).
We put
Urn(a)VE=pla)W¢, acAEeX.

Then U can be extended to a unitary operator of H, onto H,. We denote
this extension with the same symbol U. Since 7(RA))VX and p(RA))WX are
dense in D(7)[t,] and D(p)[t,], respectively, it is easily shown that UV = W,
UD(r) = D(p) and 7w(a) = U 'p(a)U, for each a € 2. This completes the
proof. O

The couples (7p,, A\o) and (7p,, Vo) for a completely positive (quasi-) in-
variant conjugate-bilinear map ® with core Bg are called the Stinespring dila-
tions of ® determined by the core Bg.

In the case of a completely positive totally invariant conjugate-bilinear map
O, TRy is determined by ® only and so we denote it by m¢ and (74, Vs) is called
the Stinespring dilation of ®.

Let ® be a a completely positive (quasi-) invariant conjugate-bilinear map
of D(®) x D(P) into S(X) and denote by B4 the set of all cores for ®. It may
happen that 7p, = B, for By # By, Be, By € Bs. However the set of all
cores that yield the same representation has a maximal element. Indeed, we
have:

Proposition 3.11. Let ® be a a completely positive (quasi-) invariant conju-
gate-bilinear map of D(P®) x D(®) into S(X) with core By. We put

By = {2 € D(®) N RA; \o(z ® &) € D(p,), V€ € X; ax € D(P),
Ao(az ® &) = g, (a)Aa(z @ E), Va € A, € € X}

Then BE is the largest among all cores Bl for which TR, = ThBg-
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Proof. Tt is easily shown that BL is a core for ® such that \s(Be ® X) C
\o(BE®X) C D(rp,) and TBE [rp(BLex)= TBs |ae(BLwx), Which implies mpr =
Tp,- Take an arbitrary core By for ® such that 7p, = mp,. By the definition
of BE we have B D Bj. Thus, B% is the largest among the cores for ® having
the mentioned properties. This completes the proof. O

We put
%é = {Bq; S %.:D;Bq) = Bé}

We obtain a unique characterization of a *-representation mp, in terms of a
core Bg.

Proposition 3.12. Let ® be a a completely positive (quasi-) invariant conju-
gate-bilinear map of D(®) x D(P) into S(X) and Be, By € Be. Then the
following statements hold:

(1) 7B, C 7y, if and only if Bs C By,

(2) 7B, = 7y if and only if Bs = By.

We now specialize the generalized Stinespring theorem that we have ob-
tained to some particular cases. The first one is the case where 2 is a locally
convex quasi *-algebra. The second is the case of completely positive totally
invariant conjugate-bilinear maps into partial O*-algebras.

Corollary 3.13. Let 2 be locally convex quasi*-algebra over Ay. Let ® be the
completely positive totally invariant conjugate-bilinear map of A x A into S(X)
defined in Example 3.6. Then the following statements hold:
(1) Mo(A®X) = 7me(™Ao)VaX is dense in D(me)[try]-
(2) mo(p) is an O*-algebra on D(me) and e a, is a *-representation of the
*algebra Ay with D(me 9,) C D(7e) = D(;;[;O).
(3) mo(A)y = mo(Ao)sy-

Let T be a conjugate-bilinear map of % x A into LT(D, H). If a,b € A, we
define a sesquilinear form on D x D by ®1(a,b)(&,n) = (T(a,b)¢|n), &,n € D.
Then T is said to completely positive if &7 is completely positive. The notion
of (quasi-) invariance for 7" is defined in similar way.

If T" is completely positive and totally invariant, then it determines a couple

(o, Vo) as described in Theorem 3.9. For shortness, we put ¢, = 7 and
chT - VT-

Corollary 3.14. Let 2 be a partial *-algebra with identity 1. Let D be a
dense subspace of Hilbert space H and T a completely positive totally invariant
conjugate-bilinear map of A x A into LT (D, H). Then:
(i) T(1,1) is a bounded operator if, and only if V is a bounded linear oper-
ator of H into Hn,.
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(ii) T(1,1) = I if, and only if V is an isometry of H into Hy.,.
Moreover, T'(a, 1) = Vimr(a)Vr, for all a € A.

Proof. By Theorem 3.9, we have
(T(a,b)¢ n) = (7r(a)Vr& |mr(b)Vrn),  Va,b e A, V¢ n e D.

Hence ||[V7€||? = (T(1,1)E]€), VE € D. Tt is then easily shown that (i) and
(ii) hold. Moreover

(T'(a, )€ |n) = (mr(a)Ve§ [Ven) = (Vimr(a)Vegn), Va2, ¥En €D,

Hence T'(a, 1) = Vjimr(a)Vr, for all a € 2. O

4. Completely positive linear maps on partial O*-algebras

In this section we define and investigate completely positive invariant linear
maps on partial O*-algebras. Let 91 be a partial O*-algebra on D in H with
identity operator I.

Definition 4.1. Let F' be a linear map of 9 into L1(D,H). If there exists a
%ompletely positive conjugate-bilinear map F' of 90t x 9 into S(D) such tohat

F(A, I)= F(A) for all A € M, then F is said to be completely positive. If F' is
(totally) invariant, then F is said to be (totally) invariant.

By Theorem 3.9 and Corollary 3.14 we have the generalized Stinespring
theorem for completely positive invariant linear maps on partial O*-algebras.

Theorem 4.2. Suppose that F' is a completely positive totally invariant linear
map of M into LT(D,H) such that F(I) € B(H) (resp. F(I) = I). Then
there exists a couple (mp, Vi) consisting of a closed x-representation mp of M

and a bounded linear map (resp. an isometry) Vg of D into D(ng) such that
F(A) = Virp(A)VE for all A € M.

We construct completely positive invariant linear maps on partial O*-al-
gebras.

Proposition 4.3. Let M be a self-adjoint partial O*-algebra on D in H with
identity operator I and F a linear map of 9 into LT(D, H). Suppose that
(i) M (M) = R¥(OM)T N RY(IM) is 7E-dense in M;
(i) F is TP-continuous;
(iii) the restriction F'[pom of F to the O*-algebra M(IMN) is completely posi-
tive.

Then F' is a completely positive invariant linear map on M with core M (9M).
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Proof. For any A, B € 9 we put
F(A, B)(&n) = lim (F(Y]Xa)¢|n), V&n €D,

where {X.} and {Yj} are nets in M (M) which converge to A and B with

respect to the topology 72, respectively. Then it is shown that F is a completely
positive invariant conjugate-bilinear map on 901 x 9 with core M (907) such that

F(A,I) = F(A) for all A € 9. Hence F is a completely positive invariant
linear map on M with core M (IN).

Corollary 4.4. Let L1(D), be the *-algebra of all bounded operators in LT(D),
and My a *-subalgebra of LT(D), with identity operator I. Suppose that M,D C
D and %[Tg] is fully closed. Then every TP -continuous completely positive
linear map Fy of My into B(H) extends to a completely positive invariant linear
map F' on the partial GW*-algebra %[TSD*] with core My.

Proof. By [1, Corollary 2.5.13] %[TSD*] is a partial GW*-algebra over I and
Mo C R™(Mo[r2)) N RY(Mo[7E)]). Since Fy is 7P-continuous, it extends to a
7P_continuous linear map F on Mo[r2]. Thus Mo[r2] and F satisfy conditions
(i)—(iii) in Proposition 4.3. Hence F' is a completely positive invariant linear

map on /95(/0[7'3 | with core 9.

Example 4.5. Let 9, be a von Neumann algebra on H. Let 1" be a positive
self-adjoint operator in H affiliated with My and D>(T) =\ —, D(T™). Every

727 _continuous completely positive linear map Fy of My into B(H) extends

to a completely positive invariant linear map on %[Tgwm] Indeed, let T' =
J.Z AMEr(X) be a spectral resolution of T and My a *-subalgebra generated
by I and {Er(m)XEr(n);m,n € N X € 9MMy}. Then Ny is a *-subalgebra
of LI(D>(T)), such that 9 = 9y, MDX(T) € D=(T) and Mo[r. ] =
Mo [TD (T)] is fully closed. Hence it follows from Corollary 4.4 that F|, extends

S*
to a completely positive invariant linear map on 9, [7’5 (T)]
. D> (T) . S
In particular, every 7y -continuous completely positive linear map of

B(H) into B(H) extends to a completely positive invariant linear map on

LHD>(T), H).

5. Integrable extensions of *-representations of
commutative locally convex quasi *-algebras

Let (2,2(,) be a locally convex quasi *-algebras with unit 7. Let 7 be the
topology of 2. Let also 7 be a closed *-representation of 2(, which is continuous
from A, [7] to w(ﬂo)[rﬁ(”)]. Then, for any a € A we put

7(a)E = limr(za)é, €€ D(x),

where {z,} C %, is a net T-converging to a. Then we have the following
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Lemma 5.1. T is a closed *-representation of A with D(T) = D(w) such that:
(i) T(z) = n(z), Ve,
(i) m(2A)5 =7 (2o );

w w*

Proof. First of all we observe that 7 is a *-representation of 2 and the closedness
of m implies the closedness of 7.

(ii) In general we have T(),, C T(A,):, = 7(™Ao). Viceversa, for all C' €
(), we have

(CT(a)€ ) = Timn (Cm(wa)€ ) = lim (CE|m(x2)n) = (CE [w(aIn)

for all a € A and &, € D(7). Therefore C' € w(A).,. O

In this section we investigate under which conditions 7 has an integrable
extension, as an application of the results of the previous section. In other
words, we generalize Schmiidgen’s result ([8, Theorem 11.3.4]), originally given
for *-algebras, to the case of partial *-algebras.

We denote by M,(Clxy,...,2,]) the set of all n X mn-matrices
(Pri(z1, . .., zm)) of polynomials in the m variables x1, . . ., x,,. An element (Py)
of M,,(Clxy,...,z,)) is said to be positive definite if, for any (A1, Ag, ..., Ap) €
R™  the matrix (Pg(A,Ae,...,\pn)) is positive semi-definite, that is
zz,l:1 Po (A1, gy ooy A @ > 0, for every (o, g, ..., ) € C™. We now
put M(Clzy, ..., 2n]) = Upeny Ma(Cla, ..., 20)).

Definition 5.2. Let B, = {b;; j € J} be asubset of (%), = {x € A, : 2* =z}
such that B, U {1} generates 2,. Let M (2,,int); be the set of all matrices in
M (2,)p, of the form (Py(bj1,...,bjm)), where m € N, (Py) is a positive definite
matrix of M(Clzy,...,zy]) and ji, ..., jm € J.

By [8, Lemma 11.3.2], M(2,,int) is independent of B, and it is an m-
admissible cone in 2,, that is:
— M (2, int) + M (2, int); C M (2, int),;
~ AM(,,int), C M(2,,int), for all A > 0;
— M(2,,int), N (=M (2, int);) = {0};
- P = O Kt €A (k=1,...,n),n e N} € M(A,int);
and x*M (2, int) L& C M (,,int),, for all z € A,.

Definition 5.3. A *-representation 7 of 2, is said to be completely positive
w.r.t. M (2, int), if the sesquilinear form (7 (x)-|-) on D(w) x D(r) for z € A,
is completely positive w.r.t. M (2,,int),, that is if

<Z(7T(Pkl(bjh <y bjm) )&k \€z> >0

k=1
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for each positive definite (Py(bj1, . .., bjm)) € My (Clzy, ..., xp)) and {&, ..., &}
C D(n), for each n,m € N.

Theorem 5.4. Let A = 5[;[7'] be a commutative locally conver quasi *-algebra
with identity 1 and 7 a closed *-representation of the *-algebra A, which is con-
tinuous from A,[T] to m(As,) [TSD*(W)}. Then the following statements are equiva-
lent:

(i) 7 is completely positive with respect to the cone M(2,,int) .

(ii) There exists an integrable *-representation of A in a larger Hilbert space
which is an extention of 7.

Proof. Theorem 11.3.4 of [8] ensures us of the existence of an integrable *-
representation m; in a larger Hilbert space H; such that:
(5.1) ™ C my;
(5.2) (m1(™A,),,)" is a commutative von Neumann algebra, see [7];
(5.3) (), D(m) is dense in D(my)[tr,]-
We put
p(a)CE = CT(a)é,

fora e A, C € m(A,);, and & € D(7). By (5.2) and (5.3), H,, the norm closure
of m ()., D(), equals H,.

w

First, we show that p is a *-representation of 2 in H, = H,,. Indeed, we
have:

(p(a)CE|C ) = (CE|p(a®)C ), Va e, VT, C" € m(A)y, V€ n € D().

This follows from the equalities

(p(a)CE|Cn) = (C™*CT(a) |n)
= lim (C"*Cmy(2a)€ 1)
= lim (C"*C¢ |m1 (a})1)
= (CE|CT(a™)n)
= (C¢|p(a")C'n)

Moreover p(a) € LT(D(p), H,) is well-defined, where D(p) = m1(,),, D ().

w

If a € L(b), then p(a)ap(b) = p(ab). Indeed, let C,C" € m(A,),, and

&,n € D(m) and assume, for the moment, that a € 2,. Then, since 7 is
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integrable, we have

(p(ab)CE&|Cy) = (C™C7(ab)

= (C™*CT(a")"

= (C"Cr(a)

= (C"Cmi(a)T(D)E [ n)
= {

=

= {

C*CT(b)E |71 (a™)n)
CT(b)¢|C'mi(a™)n)
p(b)CE|p(a™)Cn) .

In the case where b € 2, the proof is slightly different. In this case, since 7(b)§
belongs to D(7) we have

(p(ab)CE|C") = (CCT () T(B)E |n)
= (C"CT(a)m (D)€ |n)
= lim (C"* O (za)m(b)¢ 1)
= lim (C"CT(b)¢ (i )n)

= (CT(b)¢|C'7(a )>
= (p(b)CE |p(a™)C'n) -

Let us now prove that p is integrable. Indeed, we can first prove that m ()., =
p()L. Let, in fact, C' € m (). Then, for all a € A, Cy, Cy € ()%, and
for all &, n € D(m), we have

(Cp(a)Ci&|Con) = (C Cy7(a) |Can)
= lim (C' Cy7(x4)€ | Can)
= lim (C' 1€ |Com(2)n)
= (CC €|Cym(a™)n)
= (C Ci& |p(a*)Con) .

Therefore m (A,);, C p(A)%,. Conversely, take an arbitrary K € p(A),, C1, Cy €
1 (Ao)ls &1, & € D(m) and a generic element x € A, we have:

(K (2)Ci&1 |Ca2) = (K Cimi ()61 |Caéa)
= (K 17 ()61 [C262)
= (K p(2)C1&1 |Caa)
= (K Ci& |p(z7)Ca&2)
=

K C1&y |mi(a7)Caba) .
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Since (m1(Ao)%)D(m) C m(™Ao),,D(m) is dense in D(my)[ts,], it follows that
K € m(2,).,. We finally show that the closure p of p is integrable. Indeed, the
equality (p(A)5,) = (m(,),,)" implies that (p(A)%,)" is commutative and since
p().D(p) C D(p), by [2, Theorem 3.1.3] it follows that p is integrable.

Let us now prove the converse implication: (ii) = (i). For this we consider

an integrable *-representation p of 2 in a larger Hilbert space which is an

P

extension of 7. Since m C T, p [ 2, is an integrable *-representation of 2,
which is an extension of 7, so that, by [8, Theorem 11.3.4], 7 is completely
positive w.r.t. M(2(,,int),. This completes the proof. O

Let fy be a positive linear functional on 2, such that the sesquilinear form
(z,y) € (Ao x Ag)—f(y"z) € C
is continuous. We put

f(a,b) =1lim fo(y,zy), a,beA
A

Then f is a positive sesquilinear form on 2 x 2, which is a completely positive
totally invariant conjugate-bilinear map on A x A into C. Then let (mf, Af)
be the GNS-construction relative to f, that is, the Stinespring dilation. By
Theorem 5.4, we get the following

Corollary 5.5. The following statements are equivalent:

(i) m [ A, is completely positive w.r.t. the cone M (2,,int),.
(ii) There exists an integrable *-representation of A in a large Hilbert space
H which is an extension of .
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