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Completely Positive Invariant
Conjugate-Bilinear Maps in Partial *-Algebras
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Abstract. The notion of completely positive invariant conjugate-bilinear map in a
partial *-algebra is introduced and a generalized Stinespring theorem is proven. Appli-
cations to the existence of integrable extensions of *-representations of commutative,
locally convex quasi*-algebras are also discussed.
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1. Introduction

Completely positive linear maps on *-algebras play a relevant role in many ap-
plications such as quantum theory, quantum information, quantum probability
theory (see [5, 9], for overviews). In quantum physics, for instance, these maps
describe the passage from the dynamics of a system to that of its subsystems
and they act on the observable algebra of the system itself which is usually
taken to be a C*-algebra and then represented by bounded operators on some
Hilbert space.

It is now a long time that the C*-algebraic approach to quantum theory has
been shown to be a too rigid scheme to include in its framework all objects of
physical interest and several possible generalizations have been proposed: quasi
*-algebras, partial *-algebras and so on. It is then natural to try and extend the
notion of complete positivity to these different situations that become relevant
when unbounded operators occur.

From a mathematical point of view the most classical result on this topic
is the Stinespring dilation theorem, that essentially says that a linear map
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T : A 7→ B where A is a C*-algebra with unit and B is a C*-algebra of
bounded operators in Hilbert space H, is completely positive if and only if it
has the form

T (a) = V ∗π(a)V, a ∈ A

where π is a bounded representation of A in the Hilbert space K and V is a
bounded linear map of H into K.

A more general set-up was considered by Schmüdgen in [8, Ch.11] where
he considered completely positive maps from an arbitrary *-algebra A into a
vector space X and showed that a Stinespring-like representation holds for all
completely positive mappings of A into a vector space X. This result found
applications in the study of integrable extensions of *-representations of both
commutative *-algebras and enveloping algebras.

This paper is devoted to the possibility of extending Schmüdgen’s results
to the case where A is a partial *-algebra [2]. The lack of an everywhere defined
multiplication makes impossible to adapt the usual notion of complete positivity
for a linear map T , since in this case products of the form a∗b, a, b ∈ A need
not be defined. For this reason, we consider instead of linear maps, conjugate-
bilinear maps defined on a subspace of A × A. But, in the same fashion as
Antoine and two of us did in [1, 2] for generalizing the GNS costruction to
partial *-algebras, also in this case, in order to obtain what will be called a
Stinespring dilation of the given completely positive conjugate-bilinear map, we
need to suppose the existence of a subspace (the core) of the space of universal
right multipliers RA of A enjoying certain conditions of quasi-invariance.

The paper is organized as follows. After giving some preliminaries (Sec-
tion 2), we prove, in Section 3, a generalized Stinespring theorem for completely
positive, conjugate bilinear, quasi-invariant maps on a partial *-algebra A, with
values in a vector space X and we examine the relationships of the related rep-
resentations when different cores are considered. In Section 4 we consider com-
pletely positive invariant linear maps on partial O*-algebras that are the natural
framework were *-representations of abstract partial *-algebras are defined. In
Section 5, we discuss applications to the existence of integrable extensions of
*-representations of commutative, locally convex quasi*-algebras.

2. Preliminaries

In this Section we will collect some basic definitions needed in what follows.

A partial *-algebra is a complex vector space A, endowed with an involution
x 7→ x∗ (that is, a bijection such that x∗∗ = x) and a partial multiplication
defined by a set Γ ⊂ A× A (a binary relation) such that:

(i) (x, y) ∈ Γ implies (y∗, x∗) ∈ Γ;
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(ii) (x, y1), (x, y2) ∈ Γ implies (x, λy1 + µy2) ∈ Γ, for all λ, µ ∈ C;

(iii) for any (x, y) ∈ Γ, there is defined a product x·y ∈ A, which is distributive
w.r.t. the addition and satisfies the relation (x · y)∗ = y∗ · x∗.

We shall assume the partial *-algebra A contains a unit 1, i.e., 1 ∗=1 , (1 , x) ∈ Γ,
for all x ∈ A, and 1 ·x = x·1 = x, for all x ∈ A. (If A has no unit, it may always
be embedded into a larger partial *-algebra with unit, in the standard fashion.)
Given the defining set Γ, spaces of multipliers are defined in the obvious way:

(x, y) ∈ Γ ⇐⇒ x ∈ L(y) or x is a left multiplier of y

⇐⇒ y ∈ R(x) or y is a right multiplier of x.

A partial *-algebra A is said to be semi-associative if y ∈ R(x) implies y · z ∈
R(x) for every z ∈ RA and (x · y) · z = x · (y · z).

Let A[τ ] be a partial *-algebra, which is a locally convex space for the locally
convex topology τ . Then A[τ ] is called a locally convex partial *-algebra if the
following two conditions are satisfied:

(i) the involution x 7→ x* is τ -continuous;

(ii) the maps x 7→ ax and x 7→ xb are τ -continuous for all a ∈ LA and b ∈ RA.

A quasi *-algebra is a couple (A,A0), where A is a vector space with invo-
lution ∗, A0 is a *-algebra and a vector subspace of A and A is an A0-bimodule
whose module operations and involution extend those of A0 [8]. Of course, any
quasi *-algebra is a partial *-algebra.

A quasi *-algebra (A,A0) is said to be a locally convex quasi *-algebra if A

is endowed with a locally convex topology τ such that

(i) the involution x 7→ x* is τ -continuous;

(ii) the maps x 7→ ax and x 7→ xb are τ -continuous, for all a, b ∈ A0.

(iii) A0 is τ -dense in A.

Let H be a complex Hilbert space and D a dense subspace of H. We denote
by L†(D,H) the set of all (closable) linear operators X such that D(X) =
D, D(X*) ⊇ D. The set L†(D,H) is a partial *-algebra [2] with respect to
the following operations: the usual sum X1 + X2, the scalar multiplication
λX, the involution X 7→ X† = X*¹D and the (weak) partial multiplication
X1 ¤X2 = X1

†*X2, defined by

(X1, X2) ∈ Γ⇔ X2D ⊂ D(X†∗
1 ) and X

†
1D ⊂ D(X∗

2 )

(X1 ¤X2)ξ := X
†∗
1 X2ξ, ∀ξ ∈ D.

If (X1, X2) ∈ Γ, we say that X2 is a weak right multiplier of X1 or, equiva-
lently, that X1 is a weak left multiplier of X2 (we write X2 ∈ Rw(X1) or X1 ∈
Lw(X2)).

A †-invariant subset (resp. subspace) of L†(D,H) is said to be an O∗-family
(resp. O∗-vector space) on D.
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A partial O*-algebra on D is a *-subalgebra M of L†(D,H), that is, M is a
subspace of L†(D,H), containing the identity and such that X † ∈ M whenever
X ∈ M and X1 ¤X2 ∈ M for any X1, X2 ∈M such that X2 ∈ Rw(X1).

Let
L†(D) = {X ∈ L†(D,H) : XD ⊆ D, X†D ⊆ D}.

Then L†(D) is a *-algebra w.r.to ¤ and X1 ¤X2ξ = X1(X2ξ) for each ξ ∈ D.
A *-subalgebra of L†(D) is called an O*-algebra [8].

The following topologies on L†(D,H) will be used in this paper:

– the weak topology τDw : defined by the seminorms pξ,η, ξ, η ∈ D where
pξ,η(X) = | 〈Xξ |η 〉 |, X ∈ L†(D,H);

– the strong topology τDs : defined by the seminorms pξ, ξ ∈ D where
pξ(X) = ‖Xξ‖, X ∈ L†(D,H);

– the strong* topology τDs∗ : defined by the seminorms p∗ξ , ξ ∈ D where

p∗ξ(X) = max{‖Xξ‖, ‖X†ξ‖}, X ∈ L†(D,H).

A *-representation of a partial *-algebra A is a *-homomorphism of A into
L†(D,H), for some pair (D,H), D a dense subspace of H, that is, a linear map
π : A 7→ L†(D,H) such that:

(i) π(a*) = π(a)† for every a ∈ A;

(ii) If a, b ∈ A and a ∈ L(b) then π(a) ∈ Lw(π(b)) and π(a)¤π(b) = π(ab).

If (ii) holds only when a ∈ A and b ∈ RA, we say that π is a quasi *-
representation.

If π is a *-representation of the partial *-algebra A, then π(A) need not be
a partial O*-algebra, but, in general, it is only an O∗-vector space.

If M is an O*-family on D, the graph topology on D is the locally convex
topology defined by the family {‖·‖X ;X ∈ M} of seminorms: ‖ξ‖X ≡ ‖Xξ‖, ξ ∈

D and it is denoted by tM. We denote by D̃(M) the completion of the locally
convex space D[tM] and put

D̂(M) =
⋂

X∈M

D(X).

An O*-family M on D is said to be closed if D = D̃(M); and it is said to be

fully closed if D = D̂(M). Now, put

D∗(M) =
⋂

X∈M

D(X∗).

Then M is said to be selfadjoint if D = D∗(M). Finally, M is said to be
integrable if M is fully closed and each X ∈ M such that X = X † is essentially
selfadjoint. The set

M′
σ = {C ∈ L†(D,H) : 〈Xξ |C∗η 〉 =

〈
Cξ
∣∣X†η

〉
, ∀X ∈ M, ∀ξ, η ∈ D},

is called the weak unbounded commutant of M. Its bounded part M′
w is the

weak bounded commutant of M.
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A fully closed partial O*-algebra M on D is called a partial GW*-algebra if
M′

wD ⊂ D and M = M′′
wσ.

A *-representation π of a partial *-algebra A is called closed (respectively,
fully closed, self-adjoint, integrable) if π(A) is closed (respectively, fully closed,
self-adjoint, integrable).

3. Generalized Stinespring theorem

Let A be a partial *-algebra with identity 1 and X a vector space. We denote
by S(X) the involutive vector space of all sesquilinear forms on X × X with
involution ϕ→ ϕ+ where ϕ+(ξ, η) = ϕ(η, ξ), ξ, η ∈ X.

A map Φ : D(Φ)×D(Φ) 7→ S(X) is said to be conjugate-bilinear if

– D(Φ) is a subspace of A;

– Φ(x, y)+ = Φ(y, x), ∀x, y ∈ D(Φ);

– Φ(αx+ βy, z) = αΦ(x, z) + βΦ(y, z), ∀x, y, z ∈ D(Φ), ∀α, β ∈ C.

In particular, if D(Φ) = A, then Φ is said to be conjugate-bilinear map on A×A.
It is clear that Φ is a sesquilinear map, i.e.,

– Φ(x, αy + βz) = αΦ(x, y) + βΦ(x, z), ∀x, y, z ∈ D(Φ), ∀α, β ∈ C.

Definition 3.1. A conjugate-bilinear map Φ : D(Φ)×D(Φ) 7→ S(X) is said to
be quasi-invariant if there exists a subspace BΦ of D(Φ) such that

(I)1: BΦ ⊂ RA;

(I)2: ABΦ ⊂ D(Φ);

(I)3: Φ(ax, y) = Φ(x, a∗y), ∀a ∈ A, ∀x, y ∈ BΦ;

(I)4: BΦ satisfies the following density condition: for all x ∈ D(Φ), for all
ξ ∈ X, there exists a sequence {xn} ⊂ BΦ such that

lim
n→∞

Φ(xn − x, xn − x)(ξ, ξ) = 0.

Furthermore, if

(I)’3: Φ(a∗x, by) = Φ(x, (ab)y), ∀a, b ∈ A : a ∈ L(b), ∀x, y ∈ BΦ,

then Φ is said to be invariant.
A subspace BΦ satisfying the above requirements is called a core for Φ. If

RA is a core for Φ, then Φ is said to be totally invariant.

In analogy with [1, 3, 8], we give the following

Definition 3.2. A conjugate-bilinear map Φ : D(Φ) × D(Φ) 7→ S(X) is said
to be positive if Φ(x, x) ≥ 0 (i.e., Φ(x, x)(ξ, ξ) ≥ 0 for every ξ ∈ X) for each
x ∈ D(Φ); the map Φ is said to be completely positive if, for each n ∈ N,

n∑

k,l=1

Φ(xk, xl)(ξk, ξl) ≥ 0, ∀{x1, . . . , xn} ⊂ D(Φ), {ξ1, . . . , ξn} ⊂ X.
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We now give some examples of completely positive, invariant conjugate-
bilinear maps.

Example 3.3. Let A be a partial *-algebra and X a vector space. Let π be
a (quasi) *-representation of A on the domain D(π). Let V : X 7→ D(π) be a
linear map. We define a map Φ{π,V } of A× A into S(X) by

Φ{π,V }(a, b)(ξ, η) = 〈π(a)V ξ |π(b)V η 〉 , a, b ∈ A, ξ, η ∈ X.

Then Φ{π,V } is a completely positive conjugate-bilinear map on A×A. We put

B{π,V } = {x ∈ RA;π(x)V X ⊂ D(π)}.

If π(B{π,V }) is τDs -dense in π(A), then Φ{π,V } is (quasi-)invariant with core
B{π,V }.

Example 3.4. Let A be a partial *-algebra and π a *-representation of A. We
define a map Φπ of A× A into S(D(π)) by

Φπ(a, b)(ξ, η) = 〈π(a)ξ |π(b)η 〉 a, b ∈ A, ξ, η ∈ D(π).

Then Φπ is a completely positive conjugate-bilinear map on A× A. We put

Bπ = {x ∈ RA;π(x)D(π) ⊂ D(π)}.

If π(Bπ) is τDs -dense in π(A), then Φπ is invariant with core Bπ. Furthermore,
if π is selfadjoint, then Bπ = RA and Φπ is totally invariant.

Example 3.5. Let A be a partial *-algebra and π a (quasi) *-representation
of A. Let X be a vector space and A ⊗ X the algebraic tensor product of
A and X. A linear map λ defined on a subspace D(λ) of A ⊗ X into Hπ

is said to be a strongly cyclic vector representation of A ⊗ X for π if there
exists a subspace Bλ of Dλ := {x ∈ A;x ⊗ ξ ∈ D(λ), ∀ξ ∈ X} such that
ABλ ⊂ Dλ, π(a)λ(x ⊗ ξ) = λ(ax ⊗ ξ) for each a ∈ A, x ∈ Bλ and ξ ∈ X, and
λ(Bλ ⊗ X) is dense in D(π)[tπ]. We define a map Φ{π,λ} : Dλ ×Dλ 7→ S(X) by

Φ{π,λ}(x, y)(ξ, η) = 〈λ(x⊗ ξ) |λ(y ⊗ η)〉 , x, y ∈ Dλ, ξ, η ∈ X.

Then Φ{π,λ} is a completely positive conjugate-bilinear map on A×A such that

Φ{π,λ}(ax, by)(ξ, η) = 〈π(a)λ(x⊗ ξ) |π(b)λ(y ⊗ η)〉

for each a, b ∈ A, x, y ∈ Bλ, ξ, η ∈ X. Furthermore, if λ(Bλ ⊗ ξ) is dense in
λ(Dλ ⊗ ξ), for each ξ ∈ X, then Φ{π,λ} is (quasi-)invariant with core Bλ.
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Example 3.6. Let A[τ ] be a locally convex semi-associative partial *-algebra.
Then MA = LA ∩ RA is a *-algebra. Let Φ0 : MA 7→ S(X) be a completely
positive linear map on MA. We assume that S(X) is endowed with the topol-
ogy tS of simple convergence, defined by the seminorms pξ,η(ϕ) = |Φ0(ξ, η)|. We
assume that

– MA is dense in A[τ ];

– the map (x, y) ∈MA×MA 7→ Φ0(y
∗x) ∈ S(X) is continuous with respect

to the product topology defined by τ on MA and the topology tS of S(X).

For a, b ∈ A we define a map Φ of A× A into S(X) by

Φ(a, b)(ξ, η) = lim
α,β

Φ0(y
∗
βxα)(ξ, η), ξ, η ∈ X,

where {xα} and {yβ} are nets in MA that converge to a and b, respectively.
Then Φ is a completely positive quasi-invariant conjugate bilinear map on A×A

with core MA. In particular, if A is a locally convex quasi*-algebra over A0 (in
this case MA = A0), then Φ is a completely positive totally invariant conjugate
bilinear map on A× A with core A0.

Example 3.7. Let A0[‖ · ‖] be a unital C∗-algebra with C∗-norm ‖ · ‖ and τ

a locally convex topology on A0 which is finer than the C∗-norm ‖ · ‖-topology
such that A0[τ ] is a locally convex ∗-algebra. Let F0 be a completely positive
linear map of A0 into the ∗-algebra B(H) of all bounded linear operators on a
Hilbert space H.

(1) Suppose that the map : (x, y) ∈ A0[τ ] × A0[τ ] 7→ F0(y
∗x) ∈ B(H)[τDw ]

is continuous for some dense subspace D in H. Then we put

F (a, b)(ξ, η) = lim
α,β

〈
F0(y

∗
βxα)ξ |η

〉
, ξ, η ∈ D,

where {xα} and {yβ} are nets in A0 which converge to a and b w.r.t. the topol-
ogy τ , respectively. Then F is a completely positive totally invariant conjugate-
bilinear map of the locally convex quasi ∗-algebra Ã0[τ ] over A0 constructed from
the completion of A0[τ ] with core A0.

(2) Suppose that the map : x ∈ A0[τ ] → F0(x) ∈ B(H)[τDs∗ ] is continuous.
Then we put

F (a)ξ = lim
α

F0(xα)ξ, ξ ∈ D,

where {xα} is a net in A0 which converges to a w.r.t. τ .
(i) If the multiplication of A0[τ ] is jointly continuous, then F is a completely

positive linear map of the locally convex ∗-algebra Ã0[τ ] into L
†(D,H).

(ii) If the multiplication of A0[τ ] is not jointly continuous, then we can’t
even define the notion of complete positivity of F . In this case, the results of
Section 4 can be used.
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Example 3.8. The previous example suggests a possible physical application
concerning the time evolution of a quantum system. Let A0 be the C*-algebra
of local observables of some physical system, in the sense of [9]. Let αt be
the automorphisms group that describes the time evolution of the elements
of A0. Then the completion A of A0 w.r.t. the physical topology [6] is a locally
convex quasi *-algebra over A0, which needs to be introduced because it contains
physically relevant observables as well as their time evolutions. Then, if we
define

F0(x, y) = αt(y∗x), x, y ∈ A0,

F0 enjoys all conditions required in the previous example, so that the corre-
sponding F is a completely positive totally invariant conjugate-bilinear map.

We now show that Example 3.5 completely covers the general situation;
that is, for any completely positive (quasi) invariant conjugate bilinear map
Φ : D(Φ) × D(Φ) 7→ S(X) there exists a couple {π, λ} consisting of a *-re-
presentation π of A and of a strongly cyclic vector representation λ of A ⊗ X

for π such that Φ = Φ{π,λ}. This is a generalization of Stinespring’s theorem for
completely positive linear maps on von Neumann algebras [10]. Generalizations
of Stinespring’s theorem have been studied by Powers [7] and Schmüdgen [8] for
O*-algebras and by Ekhaguere and Odiobala [3] and Ekhaguere [4] for partial
*-algebras. This paper is aimed to generalize Schmüdgen’s results to partial
*-algebras. The outcome is also a generalization of the studies of Ekhaguere
and Odiobala.

Let A be a partial *-algebra with identity 1 , X a vector space and Φ a
completely positive invariant conjugate bilinear map of D(Φ)×D(Φ) into S(X).
By the complete positivity of Φ, a semidefinite inner product 〈 |〉 on the algebraic
tensor product D(Φ)⊗ X of D(Φ) and X can be defined by

〈
n∑

k=1

xk ⊗ ξk

∣∣∣∣∣

m∑

l=1

yl ⊗ ηl

〉
=

n∑

k=1

m∑

l=1

Φ(xk, yl)(ξk, ηl),

for {xk}, {yl} ⊂ D(Φ) and {ξk}, {ηl} ⊂ X. We define a subpace N of D(Φ)⊗X

by

N =

{
n∑

k=1

xk ⊗ ξk ∈ D(Φ)⊗ X;

〈
n∑

k=1

xk ⊗ ξk

∣∣∣∣∣

n∑

k=1

xk ⊗ ξk

〉
= 0

}

and the coset

λΦ

(
n∑

k=1

xk ⊗ ξk

)
=

n∑

k=1

xk ⊗ ξk +N

of
∑n

k=1 xk ⊗ ξk. Then the quotient space λΦ(D(Φ) ⊗ X) ≡ D(Φ) ⊗ N is a
pre-Hilbert space and its completion is denoted by HΦ. By condition (I4) of
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Definition 3.1 it is easily seen that λΦ(BΦ ⊗ ξ) is dense in λΦ(D(Φ) ⊗ ξ), for
each ξ ∈ X and λΦ(BΦ ⊗ X) is dense in HΦ. We put

π0(a)λΦ

(
n∑

k=1

xk ⊗ ξk

)
= λΦ

(
n∑

k=1

axk ⊗ ξk

)

for a ∈ A and
∑n

k=1 xk ⊗ ξk ∈ BΦ ⊗ X. Then π0 is a *-representation of A in
HΦ with D(π0) = λΦ(BΦ ⊗ X). Indeed, take arbitrary a, b ∈ A with a ∈ ÃL(b).
We have
〈
π0(a

∗)λΦ

(
n∑

k=1

xk ⊗ ξk

)∣∣∣∣∣ π0(b)λΦ
(

m∑

l=1

yl ⊗ ηl

)〉

=

〈
λΦ

(
n∑

k=1

a∗xk ⊗ ξk

)∣∣∣∣∣λΦ
(

m∑

l=1

byl ⊗ ηl

)〉

=
n∑

k=1

m∑

l=1

Φ(a∗xk, byl)(ξk, ηl)

=
n∑

k=1

m∑

l=1

Φ(xk, (ab)yl)(ξk, ηl)

=

〈(
n∑

k=1

xk ⊗ ξk

)∣∣∣∣∣π0(ab)λΦ
(

m∑

l=1

byl ⊗ ηl

)〉

for each
∑n

k=1 xk ⊗ ξk,
∑m

l=1 yl ⊗ ηl ∈ BΦ ⊗ X, which implies that π0 is well-
defined and that it is a *-representation of A. We denote by π its closure. Then
it is clear that λΦ is a strongly cyclic vector representation of A⊗X for π with
core BΦ and that Φ = Φ{π,λΦ}. In particular, suppose that BΦ 3 1 . We put

V : ξ ∈ X 7→ 1 ⊗ ξ ∈ BΦ ⊗ X.

Then V is a linear map of X into D(π) such that λΦ(BΦ ⊗ X) = π(BΦ)V X

and Φ equals the completely positive invariant conjugate bilinear map Φ{π,V }

of Example 3.3. The maps π and V above are denoted with πBφ and VΦ,
respectively, since they are determined, respectively, by the core BΦ and by Φ
only.

In the case that Φ is quasi-invariant, πBφ is a quasi *-representation of A

and λΦ and VΦ are defined in similar way as above.

Thus we have proved the following

Theorem 3.9. Let A be a partial *-algebra with identity 1 , X a vector space and
Φ a completely positive (quasi-) invariant conjugate bilinear map of D(Φ)⊗D(Φ)
into S(X). Then there exists a couple (πBΦ , λΦ) consisting of a closed (quasi-)
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*-representation πBΦ of A and a strongly cyclic vector representation λΦ of A⊗X

for πBΦ with core BΦ such that

Φ(ax, by)(ξ, η) = 〈πBΦ(a)λΦ(x⊗ ξ) |πBΦ(b)λΦ(y ⊗ η)〉

for every a, b ∈ A, x, y ∈ BΦ and ξ, η ∈ X. In particular, if BΦ 3 1 , then there
exist a linear map VΦ of X into D(πBΦ) such that πBΦ(BΦ)V X = λΦ(Bφ ⊗ X).

Corollary 3.10. Let Φ be a completely positive totally (quasi-) invariant conju-
gate-bilinear map of A × A into S(X). Then the couple (π, V ) of Theorem 3.9
is uniquely determined up to unitary equivalence.

Proof. Let (ρ,W ) be another couple consisting of a *-representation ρ of A and
a linear map W of X into D(ρ) such that

(i) Φ(a, b)(ξ, η) = 〈ρ(a)Wξ |ρ(b)Wη 〉 for every a, b ∈ A and ξ, η ∈ X;

(ii) ρ(RA)WX is dense in D(ρ)[tρ].

We put
Uπ(a)V ξ = ρ(a)Wξ, a ∈ A, ξ ∈ X.

Then U can be extended to a unitary operator of Hπ onto Hρ. We denote
this extension with the same symbol U . Since π(RA))V X and ρ(RA))WX are
dense in D(π)[tπ] and D(ρ)[tρ], respectively, it is easily shown that UV = W ,
UD(π) = D(ρ) and π(a) = U−1ρ(a)U , for each a ∈ A. This completes the
proof.

The couples (πBΦ , λΦ) and (πBΦ , VΦ) for a completely positive (quasi-) in-
variant conjugate-bilinear map Φ with core BΦ are called the Stinespring dila-
tions of Φ determined by the core BΦ.

In the case of a completely positive totally invariant conjugate-bilinear map
Φ, πRA is determined by Φ only and so we denote it by πΦ and (πΦ, VΦ) is called
the Stinespring dilation of Φ.

Let Φ be a a completely positive (quasi-) invariant conjugate-bilinear map
of D(Φ)×D(Φ) into S(X) and denote by BΦ the set of all cores for Φ. It may
happen that πBΦ = πB′

Φ
for BΦ 6= B′

Φ, BΦ, B
′
Φ ∈ BΦ. However the set of all

cores that yield the same representation has a maximal element. Indeed, we
have:

Proposition 3.11. Let Φ be a a completely positive (quasi-) invariant conju-
gate-bilinear map of D(Φ)×D(Φ) into S(X) with core BΦ. We put

BL
Φ =

{
x ∈ D(Φ) ∩RA;λΦ(x⊗ ξ) ∈ D(πBΦ), ∀ξ ∈ X; ax ∈ D(Φ),

λΦ(ax⊗ ξ) = πBΦ(a)λΦ(x⊗ ξ), ∀a ∈ A, ξ ∈ X
}
.

Then BL
Φ is the largest among all cores B ′

Φ for which πB′

Φ
= πBΦ.
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Proof. It is easily shown that BL
Φ is a core for Φ such that λΦ(BΦ ⊗ X) ⊂

λΦ(B
L
Φ⊗X) ⊂ D(πBΦ) and πBL

Φ

¹λΦ(BLΦ⊗X)= πBΦ ¹λΦ(BLΦ⊗X), which implies πBL
Φ

=
πBΦ . Take an arbitrary core B ′

Φ for Φ such that πB′

Φ
= πBΦ . By the definition

of BL
Φ we have BL

Φ ⊃ B′
Φ. Thus, B

L
Φ is the largest among the cores for Φ having

the mentioned properties. This completes the proof.

We put
BL
Φ = {BΦ ∈ BΦ;BΦ = BL

Φ}.

We obtain a unique characterization of a *-representation πBΦ in terms of a
core BΦ.

Proposition 3.12. Let Φ be a a completely positive (quasi-) invariant conju-
gate-bilinear map of D(Φ) × D(Φ) into S(X) and BΦ, B

′
Φ ∈ BΦ. Then the

following statements hold:

(1) πBΦ ⊂ πB′

Φ
if and only if BΦ ⊂ B′

Φ.

(2) πBΦ = πB′

Φ
if and only if BΦ = B′

Φ.

We now specialize the generalized Stinespring theorem that we have ob-
tained to some particular cases. The first one is the case where A is a locally
convex quasi *-algebra. The second is the case of completely positive totally
invariant conjugate-bilinear maps into partial O*-algebras.

Corollary 3.13. Let A be locally convex quasi*-algebra over A0. Let Φ be the
completely positive totally invariant conjugate-bilinear map of A×A into S(X)
defined in Example 3.6. Then the following statements hold:

(1) λΦ(A⊗ X) = πΦ(A0)VΦX is dense in D(πΦ)[tπΦ ].

(2) πΦ(A0) is an O*-algebra on D(πΦ) and πΦ ¹A0
is a *-representation of the

*-algebra A0 with D(πΦ ¹A0
) ⊂ D(πΦ) = D(π̃Φ ¹A0

).

(3) πΦ(A)′w = πΦ(A0)
′
w.

Let T be a conjugate-bilinear map of A× A into L†(D,H). If a, b ∈ A, we
define a sesquilinear form on D ×D by ΦT (a, b)(ξ, η) = 〈T (a, b)ξ |η 〉, ξ, η ∈ D.
Then T is said to completely positive if ΦT is completely positive. The notion
of (quasi-) invariance for T is defined in similar way.

If T is completely positive and totally invariant, then it determines a couple
(πΦT , VΦT ) as described in Theorem 3.9. For shortness, we put πΦT ≡ πT and
VΦT = VT .

Corollary 3.14. Let A be a partial *-algebra with identity 1 . Let D be a
dense subspace of Hilbert space H and T a completely positive totally invariant
conjugate-bilinear map of A× A into L†(D,H). Then:

(i) T (1 , 1 ) is a bounded operator if, and only if V T is a bounded linear oper-
ator of H into HπT .
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(ii) T (1 , 1 ) = I if, and only if V T is an isometry of H into HπT .

Moreover, T (a, 1 ) = V ∗
T πT (a)VT , for all a ∈ A.

Proof. By Theorem 3.9, we have

〈T (a, b)ξ |η 〉 = 〈πT (a)VT ξ |πT (b)VTη 〉 , ∀a, b ∈ A, ∀ξ, η ∈ D.

Hence ‖VT ξ‖
2 = 〈T (1 , 1 )ξ |ξ 〉 , ∀ξ ∈ D. It is then easily shown that (i) and

(ii) hold. Moreover

〈T (a, 1)ξ |η 〉 = 〈πT (a)VT ξ |VTη 〉 = 〈V
∗πT (a)VT ξ |η 〉 , ∀a ∈ A, ∀ξ, η ∈ D.

Hence T (a, 1 ) = V ∗
T πT (a)VT , for all a ∈ A.

4. Completely positive linear maps on partial O∗-algebras

In this section we define and investigate completely positive invariant linear
maps on partial O∗-algebras. Let M be a partial O∗-algebra on D in H with
identity operator I.

Definition 4.1. Let F be a linear map of M into L†(D,H). If there exists a

completely positive conjugate-bilinear map
◦

F of M ×M into S(D) such that
◦

F (A, I) = F (A) for all A ∈ M, then F is said to be completely positive. If
◦

F is
(totally) invariant, then F is said to be (totally) invariant.

By Theorem 3.9 and Corollary 3.14 we have the generalized Stinespring
theorem for completely positive invariant linear maps on partial O∗-algebras.

Theorem 4.2. Suppose that F is a completely positive totally invariant linear
map of M into L†(D,H) such that F (I) ∈ B(H) (resp. F (I) = I). Then
there exists a couple (πF , VF ) consisting of a closed ∗-representation πF of M

and a bounded linear map (resp. an isometry) VF of D into D(πF ) such that
F (A) = V ∗

FπF (A)VF for all A ∈ M.

We construct completely positive invariant linear maps on partial O∗-al-
gebras.

Proposition 4.3. Let M be a self-adjoint partial O∗-algebra on D in H with
identity operator I and F a linear map of M into L†(D,H). Suppose that

(i) M(M) ≡ Rw(M)† ∩Rw(M) is τDs∗-dense in M;

(ii) F is τDw -continuous;

(iii) the restriction F dM(M) of F to the O∗-algebra M(M) is completely posi-
tive.

Then F is a completely positive invariant linear map on M with core M(M).
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Proof. For any A,B ∈M we put
◦

F (A,B)(ξ, η) = lim
α,β

〈
F (Y †

βXα)ξ | η
〉
, ∀ξ, η ∈ D,

where {Xα} and {Yβ} are nets in M(M) which converge to A and B with

respect to the topology τDs∗ , respectively. Then it is shown that
◦

F is a completely
positive invariant conjugate-bilinear map on M×M with core M(M) such that
◦

F (A, I) = F (A) for all A ∈ M. Hence F is a completely positive invariant
linear map on M with core M(M).

Corollary 4.4. Let L†(D)b be the *-algebra of all bounded operators in L†(D),
and M0 a *-subalgebra of L

†(D)b with identity operator I. Suppose that M′
0D ⊂

D and M̃0[τ
D
s∗ ] is fully closed. Then every τD

w -continuous completely positive
linear map F0 of M0 into B(H) extends to a completely positive invariant linear

map F on the partial GW∗-algebra M̃0[τ
D
s∗ ] with core M0.

Proof. By [1, Corollary 2.5.13] M̃0[τ
D
s∗ ] is a partial GW∗-algebra over M′′

0 and

M0 ⊂ Rw(M̃0[τ
D
s∗ ])

† ∩ Rw(M̃0[τ
D
s∗ ]). Since F0 is τDw -continuous, it extends to a

τDw -continuous linear map F on M̃0[τ
D
s∗ ]. Thus M̃0[τ

D
s∗ ] and F satisfy conditions

(i)–(iii) in Proposition 4.3. Hence F is a completely positive invariant linear

map on M̃0[τ
D
s∗ ] with core M0.

Example 4.5. Let M0 be a von Neumann algebra on H. Let T be a positive
self-adjoint operator in H affiliated with M0 and D

∞(T ) ≡
⋂∞
n=1D(T

n). Every

τ
D∞(T )
w -continuous completely positive linear map F0 of M0 into B(H) extends

to a completely positive invariant linear map on M̃0

[
τ
D∞(T )
s∗

]
. Indeed, let T =∫∞

0
λdET (λ) be a spectral resolution of T and N0 a *-subalgebra generated

by I and {ET (m)XET (n);m,n ∈ N, X ∈ M0}. Then N0 is a *-subalgebra

of L†(D∞(T ))b such that N′
0 = M′

0, N′
0D

∞(T ) ⊂ D∞(T ) and Ñ0

[
τ
D∞(T )
s∗

]
=

M̃0

[
τ
D∞(T )
s∗

]
is fully closed. Hence it follows from Corollary 4.4 that F0 extends

to a completely positive invariant linear map on M̃0

[
τ
D∞(T )
s∗

]

In particular, every τ
D∞(T )
w -continuous completely positive linear map of

B(H) into B(H) extends to a completely positive invariant linear map on
L†(D∞(T ),H).

5. Integrable extensions of *-representations of
commutative locally convex quasi *-algebras

Let (A,A0) be a locally convex quasi *-algebras with unit 1 . Let τ be the
topology of A. Let also π be a closed *-representation of A0 which is continuous
from A0[τ ] to π(A0)[τ

D(π)
s∗ ]. Then, for any a ∈ A we put

π(a)ξ = lim
α

π(xα)ξ, ξ ∈ D(π),

where {xα} ⊂ A0 is a net τ -converging to a. Then we have the following
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Lemma 5.1. π is a closed *-representation of A with D(π) = D(π) such that:

(i) π(x) = π(x), ∀x ∈ A0;

(ii) π(A)′w = π(A0)
′
w.

Proof. First of all we observe that π is a *-representation of A and the closedness
of π implies the closedness of π.

(ii) In general we have π(A)′w ⊂ π(A0)
′
w = π(A0)

′
w. Viceversa, for all C ∈

π(A0)
′
w we have

〈Cπ(a)ξ |η 〉 = lim
α
〈Cπ(xα)ξ |η 〉 = lim

α
〈Cξ |π(x∗

α)η 〉 = 〈Cξ |π(a∗)η 〉 ,

for all a ∈ A and ξ, η ∈ D(π). Therefore C ∈ π(A)′w.

In this section we investigate under which conditions π has an integrable
extension, as an application of the results of the previous section. In other
words, we generalize Schmüdgen’s result ([8, Theorem 11.3.4]), originally given
for *-algebras, to the case of partial *-algebras.

We denote by Mn(C[x1, . . . , xm]) the set of all n × n-matrices
(Pkl(x1, . . . , xm)) of polynomials in the m variables x1, . . . , xm. An element (Pkl)
of Mn(C[x1, . . . , xm]) is said to be positive definite if, for any (λ1, λ2, . . . , λm) ∈
Rm, the matrix (Pkl(λ1, λ2, . . . , λm)) is positive semi-definite, that is∑n

k,l=1 Pkl(λ1, λ2, . . . , λm)αl αk ≥ 0, for every (α1, α2, . . . , αm) ∈ Cm. We now
put M(C[x1, . . . , xm]) =

⋃
n∈N

Mn(C[x1, . . . , xm]).

Definition 5.2. Let B0 = {bj; j ∈ J} be a subset of (A0)h = {x ∈ A0 : x
∗ = x}

such that B0 ∪ {1} generates A0. Let M(A0, int)+ be the set of all matrices in
M(A0)h of the form (Pkl(bj1, . . . , bjm)), where m ∈ N, (Pkl) is a positive definite
matrix of M(C[x1, . . . , xm]) and j1, . . . , jm ∈ J .

By [8, Lemma 11.3.2], M(A0, int)+ is independent of B0 and it is an m-
admissible cone in A0, that is:

– M(A0, int)+ +M(A0, int)+ ⊂M(A0, int)+;

– λM(A0, int)+ ⊂M(A0, int)+ for all λ ≥ 0;

– M(A0, int)+ ∩ (−M(A0, int)+) = {0};

– P(A0) ≡ {
∑n

k=1 *kx
∗xk; xk ∈ A0 (k = 1, . . . , n), n ∈ N} ⊂ M(A0, int)+

and x∗M(A0, int)+x ⊂M(A0, int)+, for all x ∈ A0.

Definition 5.3. A *-representation π of A0 is said to be completely positive
w.r.t. M(A0, int)+ if the sesquilinear form 〈π(x)· |· 〉 on D(π)×D(π) for x ∈ A0

is completely positive w.r.t. M(A0, int)+, that is if

〈
n∑

k,l=1

(π(Pkl(bj1, . . . , bjm))ξk |ξl

〉
≥ 0
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for each positive definite (Pkl(bj1, . . . , bjm))∈Mn(C[x1, . . . , xm]) and {ξ1, . . . , ξn}
⊂ D(π), for each n,m ∈ N.

Theorem 5.4. Let A = Ã0[τ ] be a commutative locally convex quasi *-algebra
with identity 1 and π a closed *-representation of the *-algebra A0 which is con-
tinuous from A0[τ ] to π(A0)

[
τ
D(π)
s∗

]
. Then the following statements are equiva-

lent:

(i) π is completely positive with respect to the cone M(A0, int)+.

(ii) There exists an integrable *-representation of A in a larger Hilbert space
which is an extention of π.

Proof. Theorem 11.3.4 of [8] ensures us of the existence of an integrable *-
representation π1 in a larger Hilbert space H1 such that:

(5.1) π ⊂ π1;

(5.2) (π1(A0)
′
w)

′ is a commutative von Neumann algebra, see [7];

(5.3) π1(A0)
′
wD(π) is dense in D(π1)[tπ1 ].

We put

ρ(a)Cξ = Cπ(a)ξ,

for a ∈ A, C ∈ π1(A0)
′
w and ξ ∈ D(π). By (5.2) and (5.3), Hρ, the norm closure

of π1(A0)
′
wD(π), equals Hπ1 .

First, we show that ρ is a *-representation of A in Hρ = Hπ1 . Indeed, we
have:

〈ρ(a)Cξ |C ′η 〉 = 〈Cξ |ρ(a∗)C ′η 〉 , ∀ a ∈ A, ∀C, C ′ ∈ π1(A0)
′
w, ∀ξ, η ∈ D(π).

This follows from the equalities

〈ρ(a)Cξ |C ′η 〉 = 〈C ′∗Cπ(a)ξ |η 〉

= lim
α
〈C ′∗Cπ1(xα)ξ |η 〉

= lim
α
〈C ′∗Cξ |π1(x

∗
α)η 〉

= 〈Cξ |C ′π(a∗)η 〉

= 〈Cξ |ρ(a∗)C ′η 〉

Moreover ρ(a) ∈ L†(D(ρ),Hρ) is well-defined, where D(ρ) = π1(A0)
′
wD(π).

If a ∈ L(b), then ρ(a)¤ ρ(b) = ρ(ab). Indeed, let C,C′ ∈ π1(A0)
′
w and

ξ, η ∈ D(π) and assume, for the moment, that a ∈ A0. Then, since π1 is
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integrable, we have

〈ρ(ab)Cξ |C ′η 〉 = 〈C ′∗Cπ(ab)ξ |η 〉

= 〈C ′∗Cπ(a∗)∗π(b)ξ |η 〉

= 〈C ′∗Cπ(a∗)∗π(b)ξ |η 〉

=
〈
C ′∗Cπ1(a)π(b)ξ | η

〉

= 〈C ′∗Cπ(b)ξ |π1(a
∗)η 〉

= 〈Cπ(b)ξ |C ′π1(a
∗)η 〉

= 〈ρ(b)Cξ |ρ(a∗)C ′η 〉 .

In the case where b ∈ A0 the proof is slightly different. In this case, since π(b)ξ
belongs to D(π) we have

〈ρ(ab)Cξ |C ′η 〉 = 〈C ′∗Cπ(a∗)∗π(b)ξ |η 〉

= 〈C ′∗Cπ(a)π(b)ξ |η 〉

= lim
α
〈C ′∗Cπ(xα)π(b)ξ |η 〉

= lim
α
〈C ′∗Cπ(b)ξ |π(x∗

α)η 〉

= 〈Cπ(b)ξ |C ′π(a∗)η 〉

= 〈ρ(b)Cξ |ρ(a∗)C ′η 〉 .

Let us now prove that ρ is integrable. Indeed, we can first prove that π1(A0)
′
w =

ρ(A)′w. Let, in fact, C ∈ π1(A0)
′
w. Then, for all a ∈ A, C1, C2 ∈ π1(A0)

′
w and

for all ξ, η ∈ D(π), we have

〈Cρ(a)C1ξ |C2η 〉 = 〈C C1π(a)ξ |C2η 〉

= lim
α
〈C C1π(xα)ξ |C2η 〉

= lim
α
〈C C1ξ |C2π(x

∗
α)η 〉

= 〈C C1 ξ |C2π(a
∗)η 〉

= 〈C C1ξ |ρ(a
∗)C2η 〉 .

Therefore π1(A0)
′
w ⊂ ρ(A)′w. Conversely, take an arbitrary K ∈ ρ(A)′w, C1, C2 ∈

π1(A0)
′
w, ξ1, ξ2 ∈ D(π) and a generic element x ∈ A0 we have:

〈Kπ1(x)C1ξ1 |C2ξ2 〉 = 〈K C1π1(x)ξ1 |C2ξ2 〉

= 〈K C1π(x)ξ1 |C2ξ2 〉

= 〈K ρ(x)C1ξ1 |C2ξ2 〉

= 〈K C1ξ1 |ρ(x
∗)C2ξ2 〉

= 〈K C1ξ1 |π1(x
∗)C2ξ2 〉 .
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Since (π1(A0)
′
w)

′D(π) ⊂ π1(A0)
′
wD(π) is dense in D(π1)[tπ1 ], it follows that

K ∈ π1(A0)
′
w. We finally show that the closure ρ̃ of ρ is integrable. Indeed, the

equality (ρ(A)′w)
′ = (π1(A0)

′
w)

′ implies that (ρ(A)′w)
′ is commutative and since

ρ(A)′wD(ρ) ⊂ D(ρ), by [2, Theorem 3.1.3] it follows that ρ̃ is integrable.

Let us now prove the converse implication: (ii) ⇒ (i). For this we consider
an integrable *-representation ρ of A in a larger Hilbert space which is an

extension of π. Since π ⊂ π, ρ̃ ¹ A0 is an integrable *-representation of A0

which is an extension of π, so that, by [8, Theorem 11.3.4], π is completely
positive w.r.t. M(A0, int)+. This completes the proof.

Let f0 be a positive linear functional on A0 such that the sesquilinear form

(x, y) ∈ (A0 × A0)−→f(y∗x) ∈ C

is continuous. We put

f(a, b) = lim
λ,µ

f0(y
∗
µxλ), a, b ∈ A.

Then f is a positive sesquilinear form on A× A, which is a completely positive
totally invariant conjugate-bilinear map on A × A into C. Then let (πf , λf )
be the GNS-construction relative to f , that is, the Stinespring dilation. By
Theorem 5.4, we get the following

Corollary 5.5. The following statements are equivalent:

(i) πf ¹ A0 is completely positive w.r.t. the cone M(A0, int)+.

(ii) There exists an integrable *-representation of A in a large Hilbert space
H which is an extension of πf .
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