© European Mathematical Society

Completely Positive Invariant Conjugate-Bilinear Maps in Partial *-Algebras

F. Bagarello, A. Inoue and C. Trapani

Abstract. The notion of completely positive invariant conjugate-bilinear map in a partial *-algebra is introduced and a generalized Stinespring theorem is proven. Applications to the existence of integrable extensions of *-representations of commutative, locally convex quasi*-algebras are also discussed.

Keywords. Completely positive maps, partial *-algebras, partial O*-algebras Mathematics Subject Classification (2000). 47L60, 08A55

1. Introduction

Completely positive linear maps on *-algebras play a relevant role in many applications such as quantum theory, quantum information, quantum probability theory (see [5, 9], for overviews). In quantum physics, for instance, these maps describe the passage from the dynamics of a system to that of its subsystems and they act on the observable algebra of the system itself which is usually taken to be a C*-algebra and then represented by bounded operators on some Hilbert space.

It is now a long time that the C*-algebraic approach to quantum theory has been shown to be a too rigid scheme to include in its framework all objects of physical interest and several possible generalizations have been proposed: quasi *-algebras, partial *-algebras and so on. It is then natural to try and extend the notion of complete positivity to these different situations that become relevant when unbounded operators occur.

From a mathematical point of view the most classical result on this topic is the Stinespring dilation theorem, that essentially says that a linear map

F. Bagarello: Dipartimento di Metodi e Modelli Matematici, Università di Palermo, I-90128 Palermo, Italy; bagarell@unipa.it

A. Inoue: Department of Applied Mathematics, Fukuoka University, Fukuoka 814-0180, Japan; a-inoue@fukuoka-u.ac.jp

C. Trapani: Dipartimento di Matematica ed Applicazioni, Università di Palermo, I-90123 Palermo, Italy; trapani@unipa.it

 $T : \mathfrak{A} \mapsto \mathfrak{B}$ where \mathfrak{A} is a C*-algebra with unit and \mathfrak{B} is a C*-algebra of bounded operators in Hilbert space \mathcal{H} , is completely positive if and only if it has the form

$$T(a) = V^* \pi(a) V, \quad a \in \mathfrak{A}$$

where π is a bounded representation of \mathfrak{A} in the Hilbert space \mathcal{K} and V is a bounded linear map of \mathcal{H} into \mathcal{K} .

A more general set-up was considered by Schmüdgen in [8, Ch.11] where he considered completely positive maps from an arbitrary *-algebra \mathfrak{A} into a vector space \mathfrak{X} and showed that a Stinespring-like representation holds for all completely positive mappings of \mathfrak{A} into a vector space \mathfrak{X} . This result found applications in the study of integrable extensions of *-representations of both commutative *-algebras and enveloping algebras.

This paper is devoted to the possibility of extending Schmüdgen's results to the case where \mathfrak{A} is a partial *-algebra [2]. The lack of an everywhere defined multiplication makes impossible to adapt the usual notion of complete positivity for a linear map T, since in this case products of the form a^*b , $a, b \in \mathfrak{A}$ need not be defined. For this reason, we consider instead of linear maps, *conjugatebilinear* maps defined on a subspace of $\mathfrak{A} \times \mathfrak{A}$. But, in the same fashion as Antoine and two of us did in [1, 2] for generalizing the GNS costruction to partial *-algebras, also in this case, in order to obtain what will be called a *Stinespring dilation* of the given completely positive conjugate-bilinear map, we need to suppose the existence of a subspace (the *core*) of the space of universal right multipliers $R\mathfrak{A}$ of \mathfrak{A} enjoying certain conditions of *quasi-invariance*.

The paper is organized as follows. After giving some preliminaries (Section 2), we prove, in Section 3, a generalized Stinespring theorem for completely positive, conjugate bilinear, quasi-invariant maps on a partial *-algebra \mathfrak{A} , with values in a vector space \mathfrak{X} and we examine the relationships of the related representations when different cores are considered. In Section 4 we consider completely positive invariant linear maps on partial O*-algebras that are the natural framework were *-representations of abstract partial *-algebras are defined. In Section 5, we discuss applications to the existence of integrable extensions of *-representations of commutative, locally convex quasi*-algebras.

2. Preliminaries

In this Section we will collect some basic definitions needed in what follows.

A partial *-algebra is a complex vector space \mathfrak{A} , endowed with an involution $x \mapsto x^*$ (that is, a bijection such that $x^{**} = x$) and a partial multiplication defined by a set $\Gamma \subset \mathfrak{A} \times \mathfrak{A}$ (a binary relation) such that:

(i) $(x, y) \in \Gamma$ implies $(y^*, x^*) \in \Gamma$;

- (ii) $(x, y_1), (x, y_2) \in \Gamma$ implies $(x, \lambda y_1 + \mu y_2) \in \Gamma$, for all $\lambda, \mu \in \mathbb{C}$;
- (iii) for any $(x, y) \in \Gamma$, there is defined a product $x \cdot y \in \mathfrak{A}$, which is distributive w.r.t. the addition and satisfies the relation $(x \cdot y)^* = y^* \cdot x^*$.

We shall assume the partial *-algebra \mathfrak{A} contains a unit 1, i.e., $1^* = 1$, $(1, x) \in \Gamma$, for all $x \in \mathfrak{A}$, and $1 \cdot x = x \cdot 1 = x$, for all $x \in \mathfrak{A}$. (If \mathfrak{A} has no unit, it may always be embedded into a larger partial *-algebra with unit, in the standard fashion.) Given the defining set Γ , spaces of multipliers are defined in the obvious way:

$$\begin{aligned} (x,y) \in \Gamma & \iff x \in L(y) \text{ or } x \text{ is a left multiplier of } y \\ & \iff y \in R(x) \text{ or } y \text{ is a right multiplier of } x. \end{aligned}$$

A partial *-algebra \mathfrak{A} is said to be *semi-associative* if $y \in R(x)$ implies $y \cdot z \in R(x)$ for every $z \in R\mathfrak{A}$ and $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.

Let $\mathfrak{A}[\tau]$ be a partial *-algebra, which is a locally convex space for the locally convex topology τ . Then $\mathfrak{A}[\tau]$ is called a *locally convex partial* *-algebra if the following two conditions are satisfied:

- (i) the involution $x \mapsto x^*$ is τ -continuous;
- (ii) the maps $x \mapsto ax$ and $x \mapsto xb$ are τ -continuous for all $a \in L\mathfrak{A}$ and $b \in R\mathfrak{A}$.

A quasi *-algebra is a couple $(\mathfrak{A}, \mathfrak{A}_0)$, where \mathfrak{A} is a vector space with involution *, \mathfrak{A}_0 is a *-algebra and a vector subspace of \mathfrak{A} and \mathfrak{A} is an \mathfrak{A}_0 -bimodule whose module operations and involution extend those of \mathfrak{A}_0 [8]. Of course, any quasi *-algebra is a partial *-algebra.

A quasi *-algebra $(\mathfrak{A}, \mathfrak{A}_0)$ is said to be a *locally convex quasi *-algebra* if \mathfrak{A} is endowed with a locally convex topology τ such that

- (i) the involution $x \mapsto x^*$ is τ -continuous;
- (ii) the maps $x \mapsto ax$ and $x \mapsto xb$ are τ -continuous, for all $a, b \in \mathfrak{A}_0$.
- (iii) \mathfrak{A}_0 is τ -dense in \mathfrak{A} .

Let \mathcal{H} be a complex Hilbert space and \mathcal{D} a dense subspace of \mathcal{H} . We denote by $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ the set of all (closable) linear operators X such that $\mathcal{D}(X) = \mathcal{D}, \ \mathcal{D}(X^*) \supseteq \mathcal{D}$. The set $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ is a *partial *-algebra* [2] with respect to the following operations: the usual sum $X_1 + X_2$, the scalar multiplication λX , the involution $X \mapsto X^{\dagger} = X^* \upharpoonright \mathcal{D}$ and the *(weak)* partial multiplication $X_1 \Box X_2 = X_1^{\dagger *} X_2$, defined by

$$(X_1, X_2) \in \Gamma \Leftrightarrow X_2 \mathcal{D} \subset D(X_1^{\dagger *}) \text{ and } X_1^{\dagger} \mathcal{D} \subset D(X_2^{*})$$
$$(X_1 \Box X_2)\xi := X_1^{\dagger *} X_2 \xi, \quad \forall \xi \in \mathcal{D}.$$

If $(X_1, X_2) \in \Gamma$, we say that X_2 is a weak right multiplier of X_1 or, equivalently, that X_1 is a weak left multiplier of X_2 (we write $X_2 \in R^{w}(X_1)$ or $X_1 \in L^{w}(X_2)$).

A †-invariant subset (resp. subspace) of $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ is said to be an O^* -family (resp. O^* -vector space) on \mathcal{D} .

A partial O*-algebra on \mathcal{D} is a *-subalgebra \mathfrak{M} of $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$, that is, \mathfrak{M} is a subspace of $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$, containing the identity and such that $X^{\dagger} \in \mathfrak{M}$ whenever $X \in \mathfrak{M}$ and $X_1 \square X_2 \in \mathfrak{M}$ for any $X_1, X_2 \in \mathfrak{M}$ such that $X_2 \in R^{\mathrm{w}}(X_1)$. Let

$$\mathcal{L}^{\dagger}(\mathcal{D}) = \{ X \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H}) : X\mathcal{D} \subseteq D, X^{\dagger}\mathcal{D} \subseteq D \}.$$

Then $\mathcal{L}^{\dagger}(\mathcal{D})$ is a *-algebra w.r.to \Box and $X_1 \Box X_2 \xi = X_1(X_2 \xi)$ for each $\xi \in \mathcal{D}$. A *-subalgebra of $\mathcal{L}^{\dagger}(\mathcal{D})$ is called an O*-algebra [8].

The following topologies on $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ will be used in this paper:

- the weak topology $\tau_{\mathbf{w}}^{\mathcal{D}}$: defined by the seminorms $p_{\xi,\eta}, \, \xi, \eta \in \mathcal{D}$ where $p_{\xi,\eta}(X) = |\langle X\xi | \eta \rangle |, \, X \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H});$
- the strong topology $\tau_s^{\mathcal{D}}$: defined by the seminorms $p_{\xi}, \xi \in \mathcal{D}$ where $p_{\xi}(X) = ||X\xi||, X \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H});$
- the strong* topology $\tau_{s^*}^{\mathcal{D}}$: defined by the seminorms $p_{\xi}^*, \xi \in \mathcal{D}$ where $p_{\xi}^*(X) = \max\{\|X\xi\|, \|X^{\dagger}\xi\|\}, X \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H}).$

A *-representation of a partial *-algebra \mathfrak{A} is a *-homomorphism of \mathfrak{A} into $\mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H})$, for some pair $(\mathcal{D},\mathcal{H})$, \mathcal{D} a dense subspace of \mathcal{H} , that is, a linear map $\pi: \mathfrak{A} \mapsto \mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H})$ such that:

- (i) $\pi(a^*) = \pi(a)^{\dagger}$ for every $a \in \mathfrak{A}$;
- (ii) If $a, b \in \mathfrak{A}$ and $a \in L(b)$ then $\pi(a) \in L^{w}(\pi(b))$ and $\pi(a) \Box \pi(b) = \pi(ab)$.

If (ii) holds only when $a \in \mathfrak{A}$ and $b \in R\mathfrak{A}$, we say that π is a quasi *-representation.

If π is a *-representation of the partial *-algebra \mathfrak{A} , then $\pi(\mathfrak{A})$ need not be a partial O*-algebra, but, in general, it is only an O*-vector space.

If \mathfrak{M} is an O*-family on \mathcal{D} , the graph topology on \mathcal{D} is the locally convex topology defined by the family $\{\|\cdot\|_X; X \in \mathfrak{M}\}$ of seminorms: $\|\xi\|_X \equiv \|X\xi\|, \xi \in \mathcal{D}$ and it is denoted by $t_{\mathfrak{M}}$. We denote by $\widetilde{\mathcal{D}}(\mathfrak{M})$ the completion of the locally convex space $\mathcal{D}[t_{\mathfrak{M}}]$ and put

$$\widehat{\mathcal{D}}(\mathfrak{M}) = \bigcap_{X \in \mathfrak{M}} \mathcal{D}(\overline{X}).$$

An O*-family \mathfrak{M} on \mathcal{D} is said to be *closed* if $\mathcal{D} = \widetilde{\mathcal{D}}(\mathfrak{M})$; and it is said to be *fully closed* if $\mathcal{D} = \widehat{\mathcal{D}}(\mathfrak{M})$. Now, put

$$\mathcal{D}^*(\mathfrak{M}) = \bigcap_{X \in \mathfrak{M}} \mathcal{D}(X^*).$$

Then \mathfrak{M} is said to be *selfadjoint* if $\mathcal{D} = \mathcal{D}^*(\mathfrak{M})$. Finally, \mathfrak{M} is said to be *integrable* if \mathfrak{M} is fully closed and each $X \in \mathfrak{M}$ such that $X = X^{\dagger}$ is essentially selfadjoint. The set

$$\mathfrak{M}'_{\sigma} = \{ C \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H}) : \langle X\xi | C^*\eta \rangle = \langle C\xi | X^{\dagger}\eta \rangle, \, \forall X \in \mathfrak{M}, \, \forall \xi, \eta \in \mathcal{D} \},$$

is called the weak unbounded commutant of \mathfrak{M} . Its bounded part \mathfrak{M}'_{w} is the weak bounded commutant of \mathfrak{M} .

A fully closed partial O*-algebra \mathfrak{M} on \mathcal{D} is called a *partial GW*-algebra* if $\mathfrak{M}'_{w}\mathcal{D} \subset \mathcal{D}$ and $\mathfrak{M} = \mathfrak{M}''_{w\sigma}$.

A *-representation π of a partial *-algebra \mathfrak{A} is called closed (respectively, fully closed, self-adjoint, integrable) if $\pi(\mathfrak{A})$ is closed (respectively, fully closed, self-adjoint, integrable).

3. Generalized Stinespring theorem

Let \mathfrak{A} be a partial *-algebra with identity 1 and \mathfrak{X} a vector space. We denote by $\mathfrak{S}(\mathfrak{X})$ the involutive vector space of all sesquilinear forms on $\mathfrak{X} \times \mathfrak{X}$ with involution $\varphi \to \varphi^+$ where $\varphi^+(\xi, \eta) = \overline{\varphi(\eta, \xi)}, \, \xi, \eta \in \mathfrak{X}$.

A map $\Phi : \mathcal{D}(\Phi) \times \mathcal{D}(\Phi) \mapsto \mathbb{S}(\mathfrak{X})$ is said to be *conjugate-bilinear* if

 $-\mathcal{D}(\Phi)$ is a subspace of \mathfrak{A} ;

 $- \Phi(x, y)^+ = \Phi(y, x), \quad \forall x, y \in \mathcal{D}(\Phi);$

$$-\Phi(\alpha x + \beta y, z) = \alpha \Phi(x, z) + \beta \Phi(y, z), \quad \forall x, y, z \in \mathcal{D}(\Phi), \, \forall \alpha, \beta \in \mathbb{C}.$$

In particular, if $\mathcal{D}(\Phi) = \mathfrak{A}$, then Φ is said to be *conjugate-bilinear map on* $\mathfrak{A} \times \mathfrak{A}$. It is clear that Φ is a sesquilinear map, i.e.,

$$-\Phi(x,\alpha y+\beta z)=\overline{\alpha}\Phi(x,y)+\overline{\beta}\Phi(x,z),\quad\forall x,y,z\in\mathcal{D}(\Phi),\,\forall\alpha,\beta\in\mathbb{C}.$$

Definition 3.1. A conjugate-bilinear map $\Phi : \mathcal{D}(\Phi) \times \mathcal{D}(\Phi) \mapsto \mathbb{S}(\mathfrak{X})$ is said to be *quasi-invariant* if there exists a subspace B_{Φ} of $\mathcal{D}(\Phi)$ such that

$$(\mathbf{I})_1: B_{\Phi} \subset R\mathfrak{A};$$

(I)₂: $\mathfrak{A}B_{\Phi} \subset \mathcal{D}(\Phi);$

(I)₃: $\Phi(ax, y) = \Phi(x, a^*y), \quad \forall a \in \mathfrak{A}, \, \forall x, y \in B_{\Phi};$

(I)₄: B_{Φ} satisfies the following density condition: for all $x \in D(\Phi)$, for all $\xi \in \mathfrak{X}$, there exists a sequence $\{x_n\} \subset B_{\Phi}$ such that

$$\lim_{n \to \infty} \Phi(x_n - x, x_n - x)(\xi, \xi) = 0$$

Furthermore, if

(I)'₃: $\Phi(a^*x, by) = \Phi(x, (ab)y), \quad \forall a, b \in \mathfrak{A} : a \in L(b), \forall x, y \in B_{\Phi},$ then Φ is said to be *invariant*.

A subspace B_{Φ} satisfying the above requirements is called a *core* for Φ . If $R\mathfrak{A}$ is a core for Φ , then Φ is said to be *totally invariant*.

In analogy with [1, 3, 8], we give the following

Definition 3.2. A conjugate-bilinear map $\Phi : \mathcal{D}(\Phi) \times \mathcal{D}(\Phi) \mapsto \mathbb{S}(\mathfrak{X})$ is said to be *positive* if $\Phi(x, x) \ge 0$ (i.e., $\Phi(x, x)(\xi, \xi) \ge 0$ for every $\xi \in \mathfrak{X}$) for each $x \in \mathcal{D}(\Phi)$; the map Φ is said to be *completely positive* if, for each $n \in \mathbb{N}$,

$$\sum_{k,l=1}^{n} \Phi(x_k, x_l)(\xi_k, \xi_l) \ge 0, \quad \forall \{x_1, \dots, x_n\} \subset \mathcal{D}(\Phi), \ \{\xi_1, \dots, \xi_n\} \subset \mathfrak{X}$$

We now give some examples of completely positive, invariant conjugatebilinear maps.

Example 3.3. Let \mathfrak{A} be a partial *-algebra and \mathfrak{X} a vector space. Let π be a (quasi) *-representation of \mathfrak{A} on the domain $\mathcal{D}(\pi)$. Let $V : \mathfrak{X} \mapsto \mathcal{D}(\pi)$ be a linear map. We define a map $\Phi_{\{\pi,V\}}$ of $\mathfrak{A} \times \mathfrak{A}$ into $\mathbb{S}(\mathfrak{X})$ by

$$\Phi_{\{\pi,V\}}(a,b)(\xi,\eta) = \langle \pi(a)V\xi | \pi(b)V\eta \rangle, \quad a,b \in \mathfrak{A}, \, \xi, \eta \in \mathfrak{X}.$$

Then $\Phi_{\{\pi,V\}}$ is a completely positive conjugate-bilinear map on $\mathfrak{A} \times \mathfrak{A}$. We put

$$B_{\{\pi,V\}} = \{ x \in R\mathfrak{A}; \pi(x)V\mathfrak{X} \subset \mathcal{D}(\pi) \}.$$

If $\pi(B_{\{\pi,V\}})$ is $\tau_s^{\mathcal{D}}$ -dense in $\pi(\mathfrak{A})$, then $\Phi_{\{\pi,V\}}$ is (quasi-)invariant with core $B_{\{\pi,V\}}$.

Example 3.4. Let \mathfrak{A} be a partial *-algebra and π a *-representation of \mathfrak{A} . We define a map Φ_{π} of $\mathfrak{A} \times \mathfrak{A}$ into $\mathbb{S}(\mathcal{D}(\pi))$ by

$$\Phi_{\pi}(a,b)(\xi,\eta) = \langle \pi(a)\xi | \pi(b)\eta \rangle \quad a,b \in \mathfrak{A}, \, \xi,\eta \in \mathcal{D}(\pi).$$

Then Φ_{π} is a completely positive conjugate-bilinear map on $\mathfrak{A} \times \mathfrak{A}$. We put

$$B_{\pi} = \{ x \in R\mathfrak{A}; \pi(x)\mathcal{D}(\pi) \subset \mathcal{D}(\pi) \}.$$

If $\pi(B_{\pi})$ is $\tau_s^{\mathcal{D}}$ -dense in $\pi(\mathfrak{A})$, then Φ_{π} is invariant with core B_{π} . Furthermore, if π is selfadjoint, then $B_{\pi} = R\mathfrak{A}$ and Φ_{π} is totally invariant.

Example 3.5. Let \mathfrak{A} be a partial *-algebra and π a (quasi) *-representation of \mathfrak{A} . Let \mathfrak{X} be a vector space and $\mathfrak{A} \otimes \mathfrak{X}$ the algebraic tensor product of \mathfrak{A} and \mathfrak{X} . A linear map λ defined on a subspace $\mathcal{D}(\lambda)$ of $\mathfrak{A} \otimes \mathfrak{X}$ into \mathcal{H}_{π} is said to be a *strongly cyclic vector representation* of $\mathfrak{A} \otimes \mathfrak{X}$ for π if there exists a subspace B_{λ} of $\mathcal{D}_{\lambda} := \{x \in \mathfrak{A}; x \otimes \xi \in \mathcal{D}(\lambda), \forall \xi \in \mathfrak{X}\}$ such that $\mathfrak{A}B_{\lambda} \subset \mathcal{D}_{\lambda}, \pi(a)\lambda(x \otimes \xi) = \lambda(ax \otimes \xi)$ for each $a \in \mathfrak{A}, x \in B_{\lambda}$ and $\xi \in \mathfrak{X}$, and $\lambda(B_{\lambda} \otimes \mathfrak{X})$ is dense in $\mathcal{D}(\pi)[t_{\pi}]$. We define a map $\Phi_{\{\pi,\lambda\}} : \mathcal{D}_{\lambda} \times \mathcal{D}_{\lambda} \mapsto \mathbb{S}(\mathfrak{X})$ by

$$\Phi_{\{\pi,\lambda\}}(x,y)(\xi,\eta) = \langle \lambda(x\otimes\xi) | \lambda(y\otimes\eta) \rangle, \quad x,y \in \mathcal{D}_{\lambda}, \, \xi,\eta \in \mathfrak{X}.$$

Then $\Phi_{\{\pi,\lambda\}}$ is a completely positive conjugate-bilinear map on $\mathfrak{A} \times \mathfrak{A}$ such that

$$\Phi_{\{\pi,\lambda\}}(ax,by)(\xi,\eta) = \langle \pi(a)\lambda(x\otimes\xi) | \pi(b)\lambda(y\otimes\eta) \rangle$$

for each $a, b \in \mathfrak{A}, x, y \in B_{\lambda}, \xi, \eta \in \mathfrak{X}$. Furthermore, if $\lambda(B_{\lambda} \otimes \xi)$ is dense in $\lambda(\mathcal{D}_{\lambda} \otimes \xi)$, for each $\xi \in \mathfrak{X}$, then $\Phi_{\{\pi,\lambda\}}$ is (quasi-)invariant with core B_{λ} .

Example 3.6. Let $\mathfrak{A}[\tau]$ be a locally convex semi-associative partial *-algebra. Then $M\mathfrak{A} = L\mathfrak{A} \cap R\mathfrak{A}$ is a *-algebra. Let $\Phi_0 : M\mathfrak{A} \mapsto \mathbb{S}(\mathfrak{X})$ be a completely positive *linear* map on $M\mathfrak{A}$. We assume that $\mathbb{S}(\mathfrak{X})$ is endowed with the topology $t_{\mathbb{S}}$ of simple convergence, defined by the seminorms $p_{\xi,\eta}(\varphi) = |\Phi_0(\xi,\eta)|$. We assume that

- $-M\mathfrak{A}$ is dense in $\mathfrak{A}[\tau];$
- the map $(x, y) \in M\mathfrak{A} \times M\mathfrak{A} \mapsto \Phi_0(y^*x) \in \mathbb{S}(\mathfrak{X})$ is continuous with respect to the product topology defined by τ on $M\mathfrak{A}$ and the topology t_S of $\mathbb{S}(\mathfrak{X})$.

For $a, b \in \mathfrak{A}$ we define a map Φ of $\mathfrak{A} \times \mathfrak{A}$ into $\mathbb{S}(\mathfrak{X})$ by

$$\Phi(a,b)(\xi,\eta) = \lim_{\alpha,\beta} \Phi_0(y^*_\beta x_\alpha)(\xi,\eta), \quad \xi,\eta \in \mathfrak{X},$$

where $\{x_{\alpha}\}$ and $\{y_{\beta}\}$ are nets in $M\mathfrak{A}$ that converge to a and b, respectively. Then Φ is a completely positive quasi-invariant conjugate bilinear map on $\mathfrak{A} \times \mathfrak{A}$ with core $M\mathfrak{A}$. In particular, if \mathfrak{A} is a locally convex quasi*-algebra over \mathfrak{A}_0 (in this case $M\mathfrak{A} = \mathfrak{A}_0$), then Φ is a completely positive totally invariant conjugate bilinear map on $\mathfrak{A} \times \mathfrak{A}$ with core \mathfrak{A}_0 .

Example 3.7. Let $\mathfrak{A}_0[\|\cdot\|]$ be a unital C*-algebra with C*-norm $\|\cdot\|$ and τ a locally convex topology on \mathfrak{A}_0 which is finer than the C*-norm $\|\cdot\|$ -topology such that $\mathfrak{A}_0[\tau]$ is a locally convex *-algebra. Let F_0 be a completely positive linear map of \mathfrak{A}_0 into the *-algebra $\mathfrak{B}(\mathcal{H})$ of all bounded linear operators on a Hilbert space \mathcal{H} .

(1) Suppose that the map : $(x, y) \in \mathfrak{A}_0[\tau] \times \mathfrak{A}_0[\tau] \mapsto F_0(y^*x) \in \mathfrak{B}(\mathcal{H})[\tau_w^{\mathcal{D}}]$ is continuous for some dense subspace \mathcal{D} in \mathcal{H} . Then we put

$$F(a,b)(\xi,\eta) = \lim_{\alpha,\beta} \left\langle F_0(y_\beta^* x_\alpha) \xi | \eta \right\rangle, \quad \xi,\eta \in \mathcal{D},$$

where $\{x_{\alpha}\}$ and $\{y_{\beta}\}$ are nets in \mathfrak{A}_0 which converge to a and b w.r.t. the topology τ , respectively. Then F is a completely positive totally invariant conjugatebilinear map of the locally convex quasi *-algebra $\widetilde{\mathfrak{A}}_0[\tau]$ over \mathfrak{A}_0 constructed from the completion of $\mathfrak{A}_0[\tau]$ with core \mathfrak{A}_0 .

(2) Suppose that the map : $x \in \mathfrak{A}_0[\tau] \to F_0(x) \in \mathfrak{B}(\mathcal{H})[\tau_{s^*}^{\mathcal{D}}]$ is continuous. Then we put

$$F(a)\xi = \lim_{\alpha} F_0(x_{\alpha})\xi, \quad \xi \in \mathcal{D},$$

where $\{x_{\alpha}\}$ is a net in \mathfrak{A}_0 which converges to a w.r.t. τ .

(i) If the multiplication of $\mathfrak{A}_0[\tau]$ is jointly continuous, then F is a completely positive linear map of the locally convex *-algebra $\widetilde{\mathfrak{A}}_0[\tau]$ into $\mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H})$.

(ii) If the multiplication of $\mathfrak{A}_0[\tau]$ is not jointly continuous, then we can't even define the notion of complete positivity of F. In this case, the results of Section 4 can be used.

Example 3.8. The previous example suggests a possible physical application concerning the time evolution of a quantum system. Let \mathfrak{A}_0 be the C*-algebra of local observables of some physical system, in the sense of [9]. Let α^t be the automorphisms group that describes the time evolution of the elements of \mathfrak{A}_0 . Then the completion \mathfrak{A} of \mathfrak{A}_0 w.r.t. the *physical* topology [6] is a locally convex quasi *-algebra over \mathfrak{A}_0 , which needs to be introduced because it contains physically relevant observables as well as their time evolutions. Then, if we define

$$F_0(x,y) = \alpha^t(y^*x), \quad x, y \in \mathfrak{A}_0,$$

 F_0 enjoys all conditions required in the previous example, so that the corresponding F is a completely positive totally invariant conjugate-bilinear map.

We now show that Example 3.5 completely covers the general situation; that is, for any completely positive (quasi) invariant conjugate bilinear map $\Phi : \mathcal{D}(\Phi) \times \mathcal{D}(\Phi) \mapsto \mathbb{S}(\mathfrak{X})$ there exists a couple $\{\pi, \lambda\}$ consisting of a *-representation π of \mathfrak{A} and of a strongly cyclic vector representation λ of $\mathfrak{A} \otimes \mathfrak{X}$ for π such that $\Phi = \Phi_{\{\pi,\lambda\}}$. This is a generalization of Stinespring's theorem for completely positive linear maps on von Neumann algebras [10]. Generalizations of Stinespring's theorem have been studied by Powers [7] and Schmüdgen [8] for O*-algebras and by Ekhaguere and Odiobala [3] and Ekhaguere [4] for partial *-algebras. This paper is aimed to generalize Schmüdgen's results to partial *-algebras. The outcome is also a generalization of the studies of Ekhaguere and Odiobala.

Let \mathfrak{A} be a partial *-algebra with identity 1, \mathfrak{X} a vector space and Φ a completely positive invariant conjugate bilinear map of $\mathcal{D}(\Phi) \times \mathcal{D}(\Phi)$ into $\mathbb{S}(\mathfrak{X})$. By the complete positivity of Φ , a semidefinite inner product $\langle | \rangle$ on the algebraic tensor product $\mathcal{D}(\Phi) \otimes \mathfrak{X}$ of $\mathcal{D}(\Phi)$ and \mathfrak{X} can be defined by

$$\left\langle \sum_{k=1}^{n} x_k \otimes \xi_k \left| \sum_{l=1}^{m} y_l \otimes \eta_l \right\rangle = \sum_{k=1}^{n} \sum_{l=1}^{m} \Phi(x_k, y_l)(\xi_k, \eta_l),\right.$$

for $\{x_k\}, \{y_l\} \subset \mathcal{D}(\Phi)$ and $\{\xi_k\}, \{\eta_l\} \subset \mathfrak{X}$. We define a subpace \mathcal{N} of $\mathcal{D}(\Phi) \otimes \mathfrak{X}$ by

$$\mathcal{N} = \left\{ \sum_{k=1}^{n} x_k \otimes \xi_k \in \mathcal{D}(\Phi) \otimes \mathfrak{X}; \left\langle \sum_{k=1}^{n} x_k \otimes \xi_k \left| \sum_{k=1}^{n} x_k \otimes \xi_k \right\rangle = 0 \right\}$$

and the coset

$$\lambda_{\Phi}\left(\sum_{k=1}^{n} x_k \otimes \xi_k\right) = \sum_{k=1}^{n} x_k \otimes \xi_k + \mathcal{N}$$

of $\sum_{k=1}^{n} x_k \otimes \xi_k$. Then the quotient space $\lambda_{\Phi}(\mathcal{D}(\Phi) \otimes \mathfrak{X}) \equiv \mathcal{D}(\Phi) \otimes \mathcal{N}$ is a pre-Hilbert space and its completion is denoted by \mathcal{H}_{Φ} . By condition (I₄) of

Definition 3.1 it is easily seen that $\lambda_{\Phi}(B_{\Phi} \otimes \xi)$ is dense in $\lambda_{\Phi}(\mathcal{D}(\Phi) \otimes \xi)$, for each $\xi \in \mathfrak{X}$ and $\lambda_{\Phi}(B_{\Phi} \otimes \mathfrak{X})$ is dense in \mathcal{H}_{Φ} . We put

$$\pi_0(a)\lambda_\Phi\left(\sum_{k=1}^n x_k\otimes\xi_k\right) = \lambda_\Phi\left(\sum_{k=1}^n ax_k\otimes\xi_k\right)$$

for $a \in \mathfrak{A}$ and $\sum_{k=1}^{n} x_k \otimes \xi_k \in B_{\Phi} \otimes \mathfrak{X}$. Then π_0 is a *-representation of \mathfrak{A} in \mathcal{H}_{Φ} with $\mathcal{D}(\pi_0) = \lambda_{\Phi}(B_{\Phi} \otimes \mathfrak{X})$. Indeed, take arbitrary $a, b \in \mathfrak{A}$ with $a \in \mathcal{L}(b)$. We have

$$\left\langle \pi_{0}(a^{*})\lambda_{\Phi}\left(\sum_{k=1}^{n}x_{k}\otimes\xi_{k}\right)\middle|\pi_{0}(b)\lambda_{\Phi}\left(\sum_{l=1}^{m}y_{l}\otimes\eta_{l}\right)\right\rangle$$

$$=\left\langle \lambda_{\Phi}\left(\sum_{k=1}^{n}a^{*}x_{k}\otimes\xi_{k}\right)\middle|\lambda_{\Phi}\left(\sum_{l=1}^{m}by_{l}\otimes\eta_{l}\right)\right\rangle$$

$$=\sum_{k=1}^{n}\sum_{l=1}^{m}\Phi(a^{*}x_{k},by_{l})(\xi_{k},\eta_{l})$$

$$=\sum_{k=1}^{n}\sum_{l=1}^{m}\Phi(x_{k},(ab)y_{l})(\xi_{k},\eta_{l})$$

$$=\left\langle \left(\sum_{k=1}^{n}x_{k}\otimes\xi_{k}\right)\middle|\pi_{0}(ab)\lambda_{\Phi}\left(\sum_{l=1}^{m}by_{l}\otimes\eta_{l}\right)\right\rangle$$

for each $\sum_{k=1}^{n} x_k \otimes \xi_k$, $\sum_{l=1}^{m} y_l \otimes \eta_l \in B_{\Phi} \otimes \mathfrak{X}$, which implies that π_0 is welldefined and that it is a *-representation of \mathfrak{A} . We denote by π its closure. Then it is clear that λ_{Φ} is a strongly cyclic vector representation of $\mathfrak{A} \otimes \mathfrak{X}$ for π with core B_{Φ} and that $\Phi = \Phi_{\{\pi, \lambda_{\Phi}\}}$. In particular, suppose that $B_{\Phi} \ni 1$. We put

$$V: \xi \in \mathfrak{X} \mapsto 1 \otimes \xi \in B_{\Phi} \otimes \mathfrak{X}.$$

Then V is a linear map of \mathfrak{X} into $\mathcal{D}(\pi)$ such that $\lambda_{\Phi}(B_{\Phi} \otimes \mathfrak{X}) = \pi(B_{\Phi})V\mathfrak{X}$ and Φ equals the completely positive invariant conjugate bilinear map $\Phi_{\{\pi,V\}}$ of Example 3.3. The maps π and V above are denoted with $\pi_{B_{\phi}}$ and V_{Φ} , respectively, since they are determined, respectively, by the core B_{Φ} and by Φ only.

In the case that Φ is quasi-invariant, $\pi_{B_{\phi}}$ is a quasi *-representation of \mathfrak{A} and λ_{Φ} and V_{Φ} are defined in similar way as above.

Thus we have proved the following

Theorem 3.9. Let \mathfrak{A} be a partial *-algebra with identity 1, \mathfrak{X} a vector space and Φ a completely positive (quasi-) invariant conjugate bilinear map of $\mathcal{D}(\Phi) \otimes \mathcal{D}(\Phi)$ into $\mathbb{S}(\mathfrak{X})$. Then there exists a couple $(\pi_{B_{\Phi}}, \lambda_{\Phi})$ consisting of a closed (quasi-)

*-representation $\pi_{B_{\Phi}}$ of \mathfrak{A} and a strongly cyclic vector representation λ_{Φ} of $\mathfrak{A} \otimes \mathfrak{X}$ for $\pi_{B_{\Phi}}$ with core B_{Φ} such that

$$\Phi(ax, by)(\xi, \eta) = \langle \pi_{B_{\Phi}}(a)\lambda_{\Phi}(x \otimes \xi) | \pi_{B_{\Phi}}(b)\lambda_{\Phi}(y \otimes \eta) \rangle$$

for every $a, b \in \mathfrak{A}$, $x, y \in B_{\Phi}$ and $\xi, \eta \in \mathfrak{X}$. In particular, if $B_{\Phi} \ni 1$, then there exist a linear map V_{Φ} of \mathfrak{X} into $\mathcal{D}(\pi_{B_{\Phi}})$ such that $\pi_{B_{\Phi}}(B_{\Phi})V\mathfrak{X} = \lambda_{\Phi}(B_{\phi} \otimes \mathfrak{X})$.

Corollary 3.10. Let Φ be a completely positive totally (quasi-) invariant conjugate-bilinear map of $\mathfrak{A} \times \mathfrak{A}$ into $\mathbb{S}(\mathfrak{X})$. Then the couple (π, V) of Theorem 3.9 is uniquely determined up to unitary equivalence.

Proof. Let (ρ, W) be another couple consisting of a *-representation ρ of \mathfrak{A} and a linear map W of \mathfrak{X} into $\mathcal{D}(\rho)$ such that

(i)
$$\Phi(a,b)(\xi,\eta) = \langle \rho(a)W\xi | \rho(b)W\eta \rangle$$
 for every $a, b \in \mathfrak{A}$ and $\xi, \eta \in \mathfrak{X}$;

(ii) $\rho(R\mathfrak{A})W\mathfrak{X}$ is dense in $\mathcal{D}(\rho)[t_{\rho}]$.

We put

$$U\pi(a)V\xi = \rho(a)W\xi, \quad a \in \mathfrak{A}, \xi \in \mathfrak{X}.$$

Then U can be extended to a unitary operator of \mathcal{H}_{π} onto \mathcal{H}_{ρ} . We denote this extension with the same symbol U. Since $\pi(R\mathfrak{A}) V\mathfrak{X}$ and $\rho(R\mathfrak{A}) W\mathfrak{X}$ are dense in $\mathcal{D}(\pi)[t_{\pi}]$ and $\mathcal{D}(\rho)[t_{\rho}]$, respectively, it is easily shown that UV = W, $U\mathcal{D}(\pi) = \mathcal{D}(\rho)$ and $\pi(a) = U^{-1}\rho(a)U$, for each $a \in \mathfrak{A}$. This completes the proof.

The couples $(\pi_{B_{\Phi}}, \lambda_{\Phi})$ and $(\pi_{B_{\Phi}}, V_{\Phi})$ for a completely positive (quasi-) invariant conjugate-bilinear map Φ with core B_{Φ} are called the *Stinespring dilations* of Φ determined by the core B_{Φ} .

In the case of a completely positive totally invariant conjugate-bilinear map Φ , $\pi_{R\mathfrak{A}}$ is determined by Φ only and so we denote it by π_{Φ} and (π_{Φ}, V_{Φ}) is called the *Stinespring dilation* of Φ .

Let Φ be a completely positive (quasi-) invariant conjugate-bilinear map of $\mathcal{D}(\Phi) \times \mathcal{D}(\Phi)$ into $\mathbb{S}(\mathfrak{X})$ and denote by \mathfrak{B}_{Φ} the set of all cores for Φ . It may happen that $\pi_{B_{\Phi}} = \pi_{B'_{\Phi}}$ for $B_{\Phi} \neq B'_{\Phi}$, $B_{\Phi}, B'_{\Phi} \in \mathfrak{B}_{\Phi}$. However the set of all cores that yield the same representation has a maximal element. Indeed, we have:

Proposition 3.11. Let Φ be a completely positive (quasi-) invariant conjugate-bilinear map of $\mathcal{D}(\Phi) \times \mathcal{D}(\Phi)$ into $\mathbb{S}(\mathfrak{X})$ with core B_{Φ} . We put

$$B_{\Phi}^{L} = \left\{ x \in \mathcal{D}(\Phi) \cap R\mathfrak{A}; \lambda_{\Phi}(x \otimes \xi) \in \mathcal{D}(\pi_{B_{\Phi}}), \forall \xi \in \mathfrak{X}; ax \in \mathcal{D}(\Phi), \\ \lambda_{\Phi}(ax \otimes \xi) = \pi_{B_{\Phi}}(a)\lambda_{\Phi}(x \otimes \xi), \forall a \in \mathfrak{A}, \xi \in \mathfrak{X} \right\}.$$

Then B_{Φ}^{L} is the largest among all cores B_{Φ}' for which $\pi_{B_{\Phi}'} = \pi_{B_{\Phi}}$.

Proof. It is easily shown that B_{Φ}^{L} is a core for Φ such that $\lambda_{\Phi}(B_{\Phi} \otimes \mathfrak{X}) \subset \lambda_{\Phi}(B_{\Phi}^{L} \otimes \mathfrak{X}) \subset \mathcal{D}(\pi_{B_{\Phi}})$ and $\pi_{B_{\Phi}^{L}} \upharpoonright_{\lambda_{\Phi}(B_{\Phi}^{L} \otimes \mathfrak{X})} = \pi_{B_{\Phi}} \upharpoonright_{\lambda_{\Phi}(B_{\Phi}^{L} \otimes \mathfrak{X})}$, which implies $\pi_{B_{\Phi}^{L}} = \pi_{B_{\Phi}}$. Take an arbitrary core B_{Φ}' for Φ such that $\pi_{B_{\Phi}'} = \pi_{B_{\Phi}}$. By the definition of B_{Φ}^{L} we have $B_{\Phi}^{L} \supset B_{\Phi}'$. Thus, B_{Φ}^{L} is the largest among the cores for Φ having the mentioned properties. This completes the proof.

We put

 $\mathfrak{B}_{\Phi}^{L} = \{ B_{\Phi} \in \mathfrak{B}_{\Phi}; B_{\Phi} = B_{\Phi}^{L} \}.$

We obtain a unique characterization of a *-representation $\pi_{B_{\Phi}}$ in terms of a core B_{Φ} .

Proposition 3.12. Let Φ be a completely positive (quasi-) invariant conjugate-bilinear map of $\mathcal{D}(\Phi) \times \mathcal{D}(\Phi)$ into $\mathbb{S}(\mathfrak{X})$ and $B_{\Phi}, B'_{\Phi} \in \mathfrak{B}_{\Phi}$. Then the following statements hold:

- (1) $\pi_{B_{\Phi}} \subset \pi_{B'_{\Phi}}$ if and only if $B_{\Phi} \subset B'_{\Phi}$.
- (2) $\pi_{B_{\Phi}} = \pi_{B'_{\Phi}}$ if and only if $B_{\Phi} = B'_{\Phi}$.

We now specialize the generalized Stinespring theorem that we have obtained to some particular cases. The first one is the case where \mathfrak{A} is a locally convex quasi *-algebra. The second is the case of completely positive totally invariant conjugate-bilinear maps into partial O*-algebras.

Corollary 3.13. Let \mathfrak{A} be locally convex quasi*-algebra over \mathfrak{A}_0 . Let Φ be the completely positive totally invariant conjugate-bilinear map of $\mathfrak{A} \times \mathfrak{A}$ into $\mathbb{S}(\mathfrak{X})$ defined in Example 3.6. Then the following statements hold:

- (1) $\lambda_{\Phi}(\mathfrak{A} \otimes \mathfrak{X}) = \pi_{\Phi}(\mathfrak{A}_0) V_{\Phi} \mathfrak{X}$ is dense in $\mathcal{D}(\pi_{\Phi})[t_{\pi_{\Phi}}].$
- (2) $\pi_{\Phi}(\mathfrak{A}_0)$ is an O*-algebra on $\mathcal{D}(\pi_{\Phi})$ and $\pi_{\Phi} \upharpoonright_{\mathfrak{A}_0}$ is a *-representation of the *-algebra \mathfrak{A}_0 with $\mathcal{D}(\pi_{\Phi} \upharpoonright_{\mathfrak{A}_0}) \subset \mathcal{D}(\pi_{\Phi}) = \mathcal{D}(\pi_{\Phi} \upharpoonright_{\mathfrak{A}_0}).$
- (3) $\pi_{\Phi}(\mathfrak{A})'_{w} = \pi_{\Phi}(\mathfrak{A}_{0})'_{w}.$

Let T be a conjugate-bilinear map of $\mathfrak{A} \times \mathfrak{A}$ into $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$. If $a, b \in \mathfrak{A}$, we define a sesquilinear form on $\mathcal{D} \times \mathcal{D}$ by $\Phi_T(a, b)(\xi, \eta) = \langle T(a, b)\xi | \eta \rangle, \xi, \eta \in \mathcal{D}$. Then T is said to completely positive if Φ_T is completely positive. The notion of (quasi-) invariance for T is defined in similar way.

If T is completely positive and totally invariant, then it determines a couple $(\pi_{\Phi_T}, V_{\Phi_T})$ as described in Theorem 3.9. For shortness, we put $\pi_{\Phi_T} \equiv \pi_T$ and $V_{\Phi_T} = V_T$.

Corollary 3.14. Let \mathfrak{A} be a partial *-algebra with identity 1. Let \mathcal{D} be a dense subspace of Hilbert space \mathcal{H} and T a completely positive totally invariant conjugate-bilinear map of $\mathfrak{A} \times \mathfrak{A}$ into $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$. Then:

(i) T(1, 1) is a bounded operator if, and only if \overline{V}_T is a bounded linear operator of \mathcal{H} into \mathcal{H}_{π_T} . (ii) T(1, 1) = I if, and only if \overline{V}_T is an isometry of \mathcal{H} into \mathcal{H}_{π_T} . Moreover, $T(a, 1) = V_T^* \pi_T(a) V_T$, for all $a \in \mathfrak{A}$.

Proof. By Theorem 3.9, we have

$$\langle T(a,b)\xi | \eta \rangle = \langle \pi_T(a)V_T\xi | \pi_T(b)V_T\eta \rangle, \quad \forall a,b \in \mathfrak{A}, \forall \xi,\eta \in \mathcal{D}.$$

Hence $||V_T\xi||^2 = \langle T(1,1)\xi |\xi \rangle$, $\forall \xi \in \mathcal{D}$. It is then easily shown that (i) and (ii) hold. Moreover

$$\langle T(a,1)\xi | \eta \rangle = \langle \pi_T(a)V_T\xi | V_T\eta \rangle = \langle V^*\pi_T(a)V_T\xi | \eta \rangle, \quad \forall a \in \mathfrak{A}, \, \forall \xi, \eta \in \mathcal{D}.$$

Hence $T(a, 1) = V_T^* \pi_T(a) V_T$, for all $a \in \mathfrak{A}$.

4. Completely positive linear maps on partial O^{*}-algebras

In this section we define and investigate completely positive invariant linear maps on partial O^{*}-algebras. Let \mathfrak{M} be a partial O^{*}-algebra on \mathcal{D} in \mathcal{H} with identity operator I.

Definition 4.1. Let F be a linear map of \mathfrak{M} into $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$. If there exists a completely positive conjugate-bilinear map $\overset{\circ}{F}$ of $\mathfrak{M} \times \mathfrak{M}$ into $\mathbb{S}(\mathcal{D})$ such that $\overset{\circ}{F}(A, I) = F(A)$ for all $A \in \mathfrak{M}$, then F is said to be *completely positive*. If $\overset{\circ}{F}$ is (totally) invariant, then F is said to be *(totally) invariant*.

By Theorem 3.9 and Corollary 3.14 we have the generalized Stinespring theorem for completely positive invariant linear maps on partial O^{*}-algebras.

Theorem 4.2. Suppose that F is a completely positive totally invariant linear map of \mathfrak{M} into $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ such that $F(I) \in \mathfrak{B}(\mathcal{H})$ (resp. F(I) = I). Then there exists a couple (π_F, V_F) consisting of a closed *-representation π_F of \mathfrak{M} and a bounded linear map (resp. an isometry) V_F of \mathcal{D} into $\mathcal{D}(\pi_F)$ such that $F(A) = V_F^* \pi_F(A) V_F$ for all $A \in \mathfrak{M}$.

We construct completely positive invariant linear maps on partial O*-algebras.

Proposition 4.3. Let \mathfrak{M} be a self-adjoint partial O^* -algebra on \mathcal{D} in \mathcal{H} with identity operator I and F a linear map of \mathfrak{M} into $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$. Suppose that

- (i) $M(\mathfrak{M}) \equiv R^{w}(\mathfrak{M})^{\dagger} \cap R^{w}(\mathfrak{M})$ is $\tau_{s^{*}}^{\mathcal{D}}$ -dense in \mathfrak{M} ;
- (ii) F is $\tau_{w}^{\mathcal{D}}$ -continuous;
- (iii) the restriction $F \lceil_{M(\mathfrak{M})}$ of F to the O^{*}-algebra $M(\mathfrak{M})$ is completely positive.

Then F is a completely positive invariant linear map on \mathfrak{M} with core $M(\mathfrak{M})$.

Proof. For any $A, B \in \mathfrak{M}$ we put

$$\overset{\circ}{F}(A,B)(\xi,\eta) = \lim_{\alpha,\beta} \left\langle F(Y_{\beta}^{\dagger}X_{\alpha})\xi \,|\,\eta\right\rangle, \quad \forall \xi,\eta \in \mathcal{D},$$

where $\{X_{\alpha}\}$ and $\{Y_{\beta}\}$ are nets in $M(\mathfrak{M})$ which converge to A and B with respect to the topology $\tau_{s^*}^{\mathcal{D}}$, respectively. Then it is shown that \mathring{F} is a completely positive invariant conjugate-bilinear map on $\mathfrak{M} \times \mathfrak{M}$ with core $M(\mathfrak{M})$ such that $\mathring{F}(A, I) = F(A)$ for all $A \in \mathfrak{M}$. Hence F is a completely positive invariant linear map on \mathfrak{M} with core $M(\mathfrak{M})$.

Corollary 4.4. Let $\mathcal{L}^{\dagger}(\mathcal{D})_{b}$ be the *-algebra of all bounded operators in $\mathcal{L}^{\dagger}(\mathcal{D})$, and \mathfrak{M}_{0} a *-subalgebra of $\mathcal{L}^{\dagger}(\mathcal{D})_{b}$ with identity operator I. Suppose that $\mathfrak{M}'_{0}\mathcal{D} \subset \mathcal{D}$ and $\widetilde{\mathfrak{M}_{0}}[\tau_{s^{*}}^{\mathcal{D}}]$ is fully closed. Then every $\tau_{w}^{\mathcal{D}}$ -continuous completely positive linear map F_{0} of \mathfrak{M}_{0} into $\mathfrak{B}(\mathcal{H})$ extends to a completely positive invariant linear map F on the partial GW^{*} -algebra $\widetilde{\mathfrak{M}_{0}}[\tau_{s^{*}}^{\mathcal{D}}]$ with core \mathfrak{M}_{0} .

Proof. By [1, Corollary 2.5.13] $\widetilde{\mathfrak{M}_0}[\tau_{s^*}^{\mathcal{D}}]$ is a partial GW*-algebra over \mathfrak{M}_0'' and $\mathfrak{M}_0 \subset R^w(\widetilde{\mathfrak{M}_0}[\tau_{s^*}^{\mathcal{D}}])^{\dagger} \cap R^w(\widetilde{\mathfrak{M}_0}[\tau_{s^*}^{\mathcal{D}}])$. Since F_0 is $\tau_w^{\mathcal{D}}$ -continuous, it extends to a $\tau_w^{\mathcal{D}}$ -continuous linear map F on $\widetilde{\mathfrak{M}_0}[\tau_{s^*}^{\mathcal{D}}]$. Thus $\widetilde{\mathfrak{M}_0}[\tau_{s^*}^{\mathcal{D}}]$ and F satisfy conditions (i)–(iii) in Proposition 4.3. Hence F is a completely positive invariant linear map on $\widetilde{\mathfrak{M}_0}[\tau_{s^*}^{\mathcal{D}}]$ with core \mathfrak{M}_0 .

Example 4.5. Let \mathfrak{M}_0 be a von Neumann algebra on \mathcal{H} . Let T be a positive self-adjoint operator in \mathcal{H} affiliated with \mathfrak{M}_0 and $\mathcal{D}^{\infty}(T) \equiv \bigcap_{n=1}^{\infty} \mathcal{D}(T^n)$. Every $\tau_{w}^{\mathcal{D}^{\infty}(T)}$ -continuous completely positive linear map F_0 of \mathfrak{M}_0 into $\mathfrak{B}(\mathcal{H})$ extends to a completely positive invariant linear map on $\widetilde{\mathfrak{M}}_0[\tau_{s^*}^{\mathcal{D}^{\infty}(T)}]$. Indeed, let $T = \int_0^{\infty} \lambda dE_T(\lambda)$ be a spectral resolution of T and \mathfrak{N}_0 a *-subalgebra generated by I and $\{E_T(m)XE_T(n); m, n \in \mathbb{N}, X \in \mathfrak{M}_0\}$. Then \mathfrak{N}_0 is a *-subalgebra of $\mathcal{L}^{\dagger}(\mathcal{D}^{\infty}(T))_b$ such that $\mathfrak{N}'_0 = \mathfrak{M}'_0, \mathfrak{N}'_0\mathcal{D}^{\infty}(T) \subset \mathcal{D}^{\infty}(T)$ and $\widetilde{\mathfrak{N}}_0[\tau_{s^*}^{\mathcal{D}^{\infty}(T)}] = \widetilde{\mathfrak{M}}_0[\tau_{s^*}^{\mathfrak{D}^{\infty}(T)}]$ is fully closed. Hence it follows from Corollary 4.4 that F_0 extends to a completely positive invariant linear map on $\widetilde{\mathfrak{M}}_0[\tau_{s^*}^{\mathcal{D}^{\infty}(T)}]$

In particular, every $\tau_{w}^{\mathcal{D}^{\infty}(T)}$ -continuous completely positive linear map of $\mathfrak{B}(\mathcal{H})$ into $\mathfrak{B}(\mathcal{H})$ extends to a completely positive invariant linear map on $\mathcal{L}^{\dagger}(\mathcal{D}^{\infty}(T), \mathcal{H}).$

5. Integrable extensions of *-representations of commutative locally convex quasi *-algebras

Let $(\mathfrak{A}, \mathfrak{A}_0)$ be a locally convex quasi *-algebras with unit 1. Let τ be the topology of \mathfrak{A} . Let also π be a closed *-representation of \mathfrak{A}_0 which is continuous from $\mathfrak{A}_0[\tau]$ to $\pi(\mathfrak{A}_0)[\tau_{s^*}^{\mathcal{D}(\pi)}]$. Then, for any $a \in \mathfrak{A}$ we put

$$\overline{\pi}(a)\xi = \lim \pi(x_{\alpha})\xi, \quad \xi \in \mathcal{D}(\pi),$$

where $\{x_{\alpha}\} \subset \mathfrak{A}_0$ is a net τ -converging to a. Then we have the following

Lemma 5.1. $\overline{\pi}$ is a closed *-representation of \mathfrak{A} with $\mathcal{D}(\overline{\pi}) = \mathcal{D}(\pi)$ such that: (i) $\overline{\pi}(x) = \pi(x), \quad \forall x \in \mathfrak{A}_0;$

(ii) $\overline{\pi}(\mathfrak{A})'_{w} = \overline{\pi}(\mathfrak{A}_{0})'_{w}.$

Proof. First of all we observe that $\overline{\pi}$ is a *-representation of \mathfrak{A} and the closedness of π implies the closedness of $\overline{\pi}$.

(ii) In general we have $\overline{\pi}(\mathfrak{A})'_{w} \subset \overline{\pi}(\mathfrak{A}_{0})'_{w} = \pi(\mathfrak{A}_{0})'_{w}$. Viceversa, for all $C \in \pi(\mathfrak{A}_{0})'_{w}$ we have

$$\left\langle C\overline{\pi}(a)\xi \left|\eta\right\rangle = \lim_{\alpha} \left\langle C\pi(x_{\alpha})\xi \left|\eta\right\rangle = \lim_{\alpha} \left\langle C\xi \left|\pi(x_{\alpha}^{*})\eta\right\rangle = \left\langle C\xi \left|\overline{\pi}(a^{*})\eta\right\rangle\right\rangle,$$

for all $a \in \mathfrak{A}$ and $\xi, \eta \in \mathcal{D}(\overline{\pi})$. Therefore $C \in \overline{\pi}(\mathfrak{A})'_{w}$.

In this section we investigate under which conditions $\overline{\pi}$ has an integrable extension, as an application of the results of the previous section. In other words, we generalize Schmüdgen's result ([8, Theorem 11.3.4]), originally given for *-algebras, to the case of partial *-algebras.

We denote by $M_n(\mathbb{C}[x_1,\ldots,x_m])$ the set of all $n \times n$ -matrices $(P_{kl}(x_1,\ldots,x_m))$ of polynomials in the *m* variables x_1,\ldots,x_m . An element (P_{kl}) of $M_n(\mathbb{C}[x_1,\ldots,x_m])$ is said to be *positive definite* if, for any $(\lambda_1,\lambda_2,\ldots,\lambda_m) \in \mathbb{R}^m$, the matrix $(P_{kl}(\lambda_1,\lambda_2,\ldots,\lambda_m))$ is positive semi-definite, that is $\sum_{k,l=1}^n P_{kl}(\lambda_1,\lambda_2,\ldots,\lambda_m)\alpha_l \overline{\alpha}_k \geq 0$, for every $(\alpha_1,\alpha_2,\ldots,\alpha_m) \in \mathbb{C}^m$. We now put $M(\mathbb{C}[x_1,\ldots,x_m]) = \bigcup_{n\in\mathbb{N}} M_n(\mathbb{C}[x_1,\ldots,x_m])$.

Definition 5.2. Let $\mathfrak{B}_0 = \{b_j; j \in J\}$ be a subset of $(\mathfrak{A}_0)_h = \{x \in \mathfrak{A}_0 : x^* = x\}$ such that $\mathfrak{B}_0 \cup \{1\}$ generates \mathfrak{A}_0 . Let $M(\mathfrak{A}_0, \operatorname{int})_+$ be the set of all matrices in $M(\mathfrak{A}_0)_h$ of the form $(P_{kl}(b_{j1}, \ldots, b_{jm}))$, where $m \in \mathbb{N}, (P_{kl})$ is a positive definite matrix of $M(\mathbb{C}[x_1, \ldots, x_m])$ and $j_1, \ldots, j_m \in J$.

By [8, Lemma 11.3.2], $M(\mathfrak{A}_0, \operatorname{int})_+$ is independent of \mathfrak{B}_0 and it is an *m*-admissible cone in \mathfrak{A}_0 , that is:

- $M(\mathfrak{A}_0, \operatorname{int})_+ + M(\mathfrak{A}_0, \operatorname{int})_+ \subset M(\mathfrak{A}_0, \operatorname{int})_+;$
- $-\lambda M(\mathfrak{A}_0, \operatorname{int})_+ \subset M(\mathfrak{A}_0, \operatorname{int})_+$ for all $\lambda \ge 0$;
- $M(\mathfrak{A}_0, \operatorname{int})_+ \cap (-M(\mathfrak{A}_0, \operatorname{int})_+) = \{0\};$
- $\mathfrak{P}(\mathfrak{A}_0) \equiv \{ \sum_{k=1}^n *_k x^* x_k; x_k \in \mathfrak{A}_0 \ (k = 1, \dots, n), n \in \mathbb{N} \} \subset M(\mathfrak{A}_0, \operatorname{int})_+$ and $x^* M(\mathfrak{A}_0, \operatorname{int})_+ x \subset M(\mathfrak{A}_0, \operatorname{int})_+, \text{ for all } x \in \mathfrak{A}_0.$

Definition 5.3. A *-representation π of \mathfrak{A}_0 is said to be completely positive w.r.t. $M(\mathfrak{A}_0, \operatorname{int})_+$ if the sesquilinear form $\langle \pi(x) \cdot | \cdot \rangle$ on $\mathcal{D}(\pi) \times \mathcal{D}(\pi)$ for $x \in \mathfrak{A}_0$ is completely positive w.r.t. $M(\mathfrak{A}_0, \operatorname{int})_+$, that is if

$$\left\langle \sum_{k,l=1}^{n} (\pi(P_{kl}(b_{j1},\ldots,b_{jm}))\xi_k |\xi_l \right\rangle \ge 0$$

for each positive definite $(P_{kl}(b_{j1},\ldots,b_{jm})) \in M_n(\mathbb{C}[x_1,\ldots,x_m])$ and $\{\xi_1,\ldots,\xi_n\} \subset \mathcal{D}(\pi)$, for each $n,m \in \mathbb{N}$.

Theorem 5.4. Let $\mathfrak{A} = \mathfrak{A}_0[\tau]$ be a commutative locally convex quasi *-algebra with identity 1 and π a closed *-representation of the *-algebra \mathfrak{A}_0 which is continuous from $\mathfrak{A}_0[\tau]$ to $\pi(\mathfrak{A}_0)[\tau_{s^*}^{\mathcal{D}(\pi)}]$. Then the following statements are equivalent:

- (i) π is completely positive with respect to the cone $M(\mathfrak{A}_0, int)_+$.
- (ii) There exists an integrable *-representation of \mathfrak{A} in a larger Hilbert space which is an extention of $\overline{\pi}$.

Proof. Theorem 11.3.4 of [8] ensures us of the existence of an integrable *-representation π_1 in a larger Hilbert space \mathcal{H}_1 such that:

(5.1) $\pi \subset \pi_1;$

- (5.2) $(\pi_1(\mathfrak{A}_0)'_w)'$ is a commutative von Neumann algebra, see [7];
- (5.3) $\pi_1(\mathfrak{A}_0)'_{\mathsf{w}}\mathcal{D}(\pi)$ is dense in $\mathcal{D}(\pi_1)[t_{\pi_1}]$.

We put

$$\rho(a)C\xi = C\overline{\pi}(a)\xi,$$

for $a \in \mathfrak{A}$, $C \in \pi_1(\mathfrak{A}_0)'_{w}$ and $\xi \in \mathcal{D}(\pi)$. By (5.2) and (5.3), \mathcal{H}_{ρ} , the norm closure of $\pi_1(\mathfrak{A}_0)'_w \mathcal{D}(\pi)$, equals \mathcal{H}_{π_1} .

First, we show that ρ is a *-representation of \mathfrak{A} in $\mathcal{H}_{\rho} = \mathcal{H}_{\pi_1}$. Indeed, we have:

$$\langle \rho(a)C\xi | C'\eta \rangle = \langle C\xi | \rho(a^*)C'\eta \rangle, \quad \forall a \in \mathfrak{A}, \forall C, C' \in \pi_1(\mathfrak{A}_0)'_{w}, \forall \xi, \eta \in \mathcal{D}(\pi).$$

This follows from the equalities

$$\langle \rho(a)C\xi | C'\eta \rangle = \langle C'^*C\overline{\pi}(a)\xi | \eta \rangle$$

=
$$\lim_{\alpha} \langle C'^*C\pi_1(x_{\alpha})\xi | \eta \rangle$$

=
$$\lim_{\alpha} \langle C'^*C\xi | \pi_1(x_{\alpha}^*)\eta \rangle$$

=
$$\langle C\xi | C'\overline{\pi}(a^*)\eta \rangle$$

=
$$\langle C\xi | \rho(a^*)C'\eta \rangle$$

Moreover $\rho(a) \in \mathcal{L}^{\dagger}(\mathcal{D}(\rho), \mathcal{H}_{\rho})$ is well-defined, where $\mathcal{D}(\rho) = \pi_1(\mathfrak{A}_0)'_{w}\mathcal{D}(\pi)$.

If $a \in L(b)$, then $\rho(a) \Box \rho(b) = \rho(ab)$. Indeed, let $C, C' \in \pi_1(\mathfrak{A}_0)'_w$ and $\xi, \eta \in \mathcal{D}(\pi)$ and assume, for the moment, that $a \in \mathfrak{A}_0$. Then, since π_1 is

integrable, we have

$$\begin{split} \langle \rho(ab)C\xi \, | C'\eta \rangle &= \langle C'^* C\overline{\pi}(ab)\xi \, | \eta \rangle \\ &= \langle C'^* C\overline{\pi}(a^*)^* \overline{\pi}(b)\xi \, | \eta \rangle \\ &= \langle C'^* C\pi(a^*)^* \overline{\pi}(b)\xi \, | \eta \rangle \\ &= \langle C'^* C\overline{\pi_1(a)} \, \overline{\pi}(b)\xi \, | \eta \rangle \\ &= \langle C'^* C\overline{\pi}(b)\xi \, | \pi_1(a^*)\eta \rangle \\ &= \langle C\overline{\pi}(b)\xi \, | C'\pi_1(a^*)\eta \rangle \\ &= \langle \rho(b)C\xi \, | \rho(a^*)C'\eta \rangle \,. \end{split}$$

In the case where $b \in \mathfrak{A}_0$ the proof is slightly different. In this case, since $\pi(b)\xi$ belongs to $\mathcal{D}(\pi)$ we have

$$\begin{split} \langle \rho(ab)C\xi \, | C'\eta \rangle &= \langle C'^*C\overline{\pi}(a^*)^*\overline{\pi}(b)\xi \, | \eta \rangle \\ &= \langle C'^*C\overline{\pi}(a)\pi(b)\xi \, | \eta \rangle \\ &= \lim_{\alpha} \langle C'^*C\overline{\pi}(x_{\alpha})\pi(b)\xi \, | \eta \rangle \\ &= \lim_{\alpha} \langle C'^*C\overline{\pi}(b)\xi \, | \pi(x^*_{\alpha})\eta \rangle \\ &= \langle C\overline{\pi}(b)\xi \, | C'\overline{\pi}(a^*)\eta \rangle \\ &= \langle \rho(b)C\xi \, | \rho(a^*)C'\eta \rangle \,. \end{split}$$

Let us now prove that ρ is integrable. Indeed, we can first prove that $\pi_1(\mathfrak{A}_0)'_{w} = \rho(\mathfrak{A})'_{w}$. Let, in fact, $C \in \pi_1(\mathfrak{A}_0)'_{w}$. Then, for all $a \in \mathfrak{A}$, $C_1, C_2 \in \pi_1(\mathfrak{A}_0)'_{w}$ and for all $\xi, \eta \in \mathcal{D}(\pi)$, we have

$$\langle C\rho(a)C_1\xi | C_2\eta \rangle = \langle C C_1\overline{\pi}(a)\xi | C_2\eta \rangle = \lim_{\alpha} \langle C C_1\pi(x_{\alpha})\xi | C_2\eta \rangle = \lim_{\alpha} \langle C C_1\xi | C_2\pi(x_{\alpha}^*)\eta \rangle = \langle C C_1\xi | C_2\overline{\pi}(a^*)\eta \rangle = \langle C C_1\xi | \rho(a^*)C_2\eta \rangle .$$

Therefore $\pi_1(\mathfrak{A}_0)'_{\mathrm{w}} \subset \rho(\mathfrak{A})'_{\mathrm{w}}$. Conversely, take an arbitrary $K \in \rho(\mathfrak{A})'_{\mathrm{w}}, C_1, C_2 \in \pi_1(\mathfrak{A}_0)'_{\mathrm{w}}, \xi_1, \xi_2 \in \mathcal{D}(\pi)$ and a generic element $x \in \mathfrak{A}_0$ we have:

$$\langle K\pi_1(x)C_1\xi_1 | C_2\xi_2 \rangle = \langle K C_1\pi_1(x)\xi_1 | C_2\xi_2 \rangle$$

= $\langle K C_1\overline{\pi}(x)\xi_1 | C_2\xi_2 \rangle$
= $\langle K \rho(x)C_1\xi_1 | C_2\xi_2 \rangle$
= $\langle K C_1\xi_1 | \rho(x^*)C_2\xi_2 \rangle$
= $\langle K C_1\xi_1 | \pi_1(x^*)C_2\xi_2 \rangle .$

Since $(\pi_1(\mathfrak{A}_0)'_w)'\mathcal{D}(\pi) \subset \pi_1(\mathfrak{A}_0)'_w\mathcal{D}(\pi)$ is dense in $\mathcal{D}(\pi_1)[t_{\pi_1}]$, it follows that $K \in \pi_1(\mathfrak{A}_0)'_w$. We finally show that the closure $\tilde{\rho}$ of ρ is integrable. Indeed, the equality $(\rho(\mathfrak{A})'_w)' = (\pi_1(\mathfrak{A}_0)'_w)'$ implies that $(\rho(\mathfrak{A})'_w)'$ is commutative and since $\rho(\mathfrak{A})'_w\mathcal{D}(\rho) \subset \mathcal{D}(\rho)$, by [2, Theorem 3.1.3] it follows that $\tilde{\rho}$ is integrable.

Let us now prove the converse implication: (ii) \Rightarrow (i). For this we consider an integrable *-representation ρ of \mathfrak{A} in a larger Hilbert space which is an extension of $\overline{\pi}$. Since $\pi \subset \overline{\pi}$, $\rho \upharpoonright \mathfrak{A}_0$ is an integrable *-representation of \mathfrak{A}_0 which is an extension of π , so that, by [8, Theorem 11.3.4], π is completely positive w.r.t. $M(\mathfrak{A}_0, \operatorname{int})_+$. This completes the proof.

Let f_0 be a positive linear functional on \mathfrak{A}_0 such that the sesquilinear form

$$(x,y) \in (\mathfrak{A}_0 \times \mathfrak{A}_0) \longrightarrow f(y^*x) \in \mathbb{C}$$

is continuous. We put

$$f(a,b) = \lim_{\lambda,\mu} f_0(y_\mu^* x_\lambda), \quad a, b \in \mathfrak{A}.$$

Then f is a positive sesquilinear form on $\mathfrak{A} \times \mathfrak{A}$, which is a completely positive totally invariant conjugate-bilinear map on $\mathfrak{A} \times \mathfrak{A}$ into \mathbb{C} . Then let (π_f, λ_f) be the GNS-construction relative to f, that is, the Stinespring dilation. By Theorem 5.4, we get the following

Corollary 5.5. The following statements are equivalent:

- (i) $\pi_f \upharpoonright \mathfrak{A}_0$ is completely positive w.r.t. the cone $M(\mathfrak{A}_0, \operatorname{int})_+$.
- (ii) There exists an integrable *-representation of \mathfrak{A} in a large Hilbert space \mathcal{H} which is an extension of π_f .

Acknowledgement. The authors acknowledge financial support of Fukuoka University and MIUR.

References

- Antoine, J.-P., Inoue, A. and Trapani, C., Biweights on partial *-algebras. J. Math. Anal. Appl. 242 (2000), 164 – 190.
- [2] Antoine, J.-P., Inoue, A. and Trapani, C., *Partial *-Algebras and Their Operator Realizations.* Dordrecht: Kluwer 2002.
- [3] Ekhaguere, G. O. S. and Odiobala, P. O., Completely positive conjugatebilinear maps on partial *-algebras. J. Math. Phys. 32 (1991), 2951 – 2958.
- [4] Ekhaguere, G. O. S., Representation of completely positive maps between partial *-algebras. *Internat. J. Theoret. Phys.* 35 (1996), 1571 – 1580.

- [5] Fagnola, F., Quantum Markov semigroups and quantum flows. Proyectiones 18 (1999), 1 – 144.
- [6] Lassner, G., Topological algebras and their applications in quantum statistics. Wiss. Z. Karl-Marx-Univ. Leipzig, Math.-Naturwiss. R. 30 (1981), 572 - 595.
- [7] Powers, R. T., Self-adjoint algebras of unbounded operators, II. Trans. Amer. Math. Soc. 187 (1974), 261 – 293.
- [8] Schmüdgen, K., Unbounded Operator Algebras and Representation Theory. Basel: Birkhäuser 1990.
- [9] Sewell, G. L., *Quantum Mechanics and Its Emergent Macrophysics*. Princeton: University Press 2002.
- [10] Stinespring, W. F., Positive functions on C*-algebras. Proc. Amer. Math. Soc. 6 (1955), 211 – 216.

Received November 22, 2005