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Metric and w∗-Differentiability
of Pointwise Lipschitz Mappings
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Abstract. We study the metric and w∗-differentiability of pointwise Lipschitz map-
pings. First, we prove several theorems about metric and w∗-differentiability of point-
wise Lipschitz mappings between R

n and a Banach space X (which extend results
due to Ambrosio, Kirchheim and others), then apply these to functions satisfying
the spherical Rado–Reichelderfer condition, and to absolutely continuous functions
of several variables with values in a Banach space. We also establish the area formula
for pointwise Lipschitz functions, and for (n, λ)-absolutely continuous functions with
values in Banach spaces. In the second part of this paper, we prove two theorems con-
cerning metric and w∗-differentiability of pointwise Lipschitz mappings f : X 7→ Y

where X,Y are Banach spaces with X being separable (resp. X separable and Y = G∗

with G separable).
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1. Introduction

Let X,Y be Banach spaces, L > 0. We say that f : A ⊂ X 7→ Y is L-Lipschitz
provided ‖f(x)−f(y)‖ ≤ L ‖x−y‖ for all x, y ∈ A. We say that f : A ⊂ X 7→ Y

is Lipschitz if there exists an L > 0 such that f is L-Lipschitz. Let Ω ⊂ X be
open. We say that f : Ω 7→ Y is Gâteaux differentiable at x ∈ Ω, provided the
limit

D(f, x)(v) = lim
t→0

f(x+ tv)− f(x)

t

exists for all v ∈ X, and D(f, x)(·) is a bounded linear operator. We say
that f : Ω 7→ Y is Fréchet differentiable at x ∈ Ω, provided f is Gâteaux
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differentiable at x and

lim
h→0

f(x+ h)− f(x)−D(f, x)(h)

‖h‖
= 0.

If f is Fréchet differentiable at x, we define f ′(x) := D(f, x)(·). Fréchet differen-
tiability obviously implies Gâteaux differentiability. If X is finite-dimensional,
and f is Lipschitz, then the notions of Fréchet and Gâteaux differentiability
coincide (see, e.g., [4, Proposition 4.3]).

The classical theorem of Rademacher [21], which says that every Lipschitz
mapping f : R

n 7→ R
m is Fréchet differentiable almost everywhere, was gen-

eralized to Lipschitz mappings f : X 7→ Y , where X is a separable Banach
space, and Y has the RNP (Radon–Nikodým property; see e.g. [4] for a defini-
tion). The general theorem claims that such a mapping is Gâteaux differentiable
outside of a “null” set. This was obtained by Aronszajn [3], Christensen [6],
Mankiewicz [19], and Phelps [20]. Each of these authors introduced a different
notion of null sets in a separable Banach space: Aronszajn null sets, Haar null
sets, cube-null sets, and Gaussian null sets. In a remarkable paper [7], it was
proved by Csörnyei that the first, third, and fourth definitions give the same
notion. It is well known (see, e.g., [4]) that there exists a Haar null set (say
in `2), which is not Aronszajn null.

We say that f : X 7→ Y is pointwise Lipschitz at x, provided

lip(f, x) = lim sup
y→x

‖f(x)− f(y)‖

‖x− y‖
<∞. (1.1)

If (1.1) holds for each x ∈ X, we say that f is pointwise Lipschitz.

Stepanoff’s theorem (see [23, 24]) was an extension of Rademacher’s theorem
in a different direction: it says that a pointwise Lipschitz mapping f : R

n 7→ R
m

is almost everywhere Fréchet differentiable. This was generalized by Bon-
giorno [5] to mappings f : X 7→ Y , where X is a separable Banach space
and Y has the RNP, using the Aronszajn null sets (see definition below). She
proved that for every mapping f : X 7→ Y , there exists an Aronszajn null set E

so that f is Gâteaux differentiable at all points of X \ E where f is pointwise
Lipschitz.

Let X,Y be (real) Banach spaces. For f : X 7→ Y we shall denote

MD(f, x)(u) = lim
r→0

‖f(x+ ru)− f(x)‖

|r|
for x, u ∈ X.

It was defined in [16]. If MD(f, x)(u) exists for all u ∈ X, we say that f

is directionally metrically differentiable at x. We will say that f is metrically
Gâteaux differentiable at x provided f is directionally metrically differentiable
at x, and MD(f, x)(·) is a continuous seminorm. We say that f is metrically
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Fréchet differentiable1 at x provided f is metrically Gâteaux differentiable at x,
and

‖f(y)− f(x)‖ −MD(f, x)(y − x) = o(‖y − x‖), (y → x). (1.2)

We say that f is metrically differentiable at x, provided f is metrically Gâteaux
differentiable, and

‖f(z)−f(y)‖−MD(f, x)(z−y) = o(‖z−x‖+‖y−x‖), ((y, z)→ (x, x)). (1.3)

Note that metric differentiability implies metric Fréchet differentiability,
which in turn implies metric Gâteaux differentiability. It is easy to see that if
X is finite-dimensional and f Lipschitz, then metric Gâteaux differentiability
implies metric Fréchet differentiability. If f is Gâteaux differentiable at x, then
it is metrically Gâteaux differentiable at x, and MD(f, x)(·) = ‖D(f, x)(·)‖.
Our goal is to extend the following theorem about metric differentiability due
to Kirchheim [16] (see also [17]; for the case n = 1, see [1]; for the case of
bi-Lipschitz maps, see [9]; for a different proof of a slightly different statement
via w∗-differentiability, see the proof of Theorem 1.2 in [2]).

Theorem 1.1 ([16], Theorem 2). Let f : R
n 7→ (X, ‖ · ‖) be Lipschitz. Then,

for almost each x ∈ R
n, we have that f is metrically differentiable at x.

As a tool, we will use the notion w∗-Gâteaux derivatives. It goes back
to [13]. Let X,Y be separable Banach spaces, f : X 7→ Y ∗ be a mapping. For
v ∈ X we say that wd(f, x)(v) exists provided

wd(f, x)(v) = w∗ − lim
t→0

f(x+ tv)− f(x)

t

exists. We say that f is w∗-Gâteaux differentiable at x provided wd(f, x)(v)
exists for all v ∈ X, and wd(f, x)(·) is a bounded linear map. We say that f is
w∗-Fréchet differentiable at x provided f is w∗-Gâteaux differentiable at x, and

w∗ − lim
y→x

f(y)− f(x)− wd(f, x)(y − x)

‖y − x‖
= 0. (1.4)

The w∗-derivatives were used in [2] to give a proof of a theorem about Fréchet
metric differentiability related to [16, Theorem 2].

Theorem 1.2 ([2], Theorem 3.5). Let Y = G∗, with G separable. Any Lipschitz
f : R

n 7→ Y is w∗-Fréchet differentiable at x, metrically Fréchet differentiable
at x, and fulfills

MD(f, x)(v) = ‖wd(f, x)(v)‖ for all v ∈ R
n,

for almost all x ∈ R
n.

1Our definition of “metric Fréchet differentiability” corresponds to “metric differentiabil-
ity” defined in [2]. However, “metric differentiability” as defined in [16] corresponds to our
definition of “metric differentiability”.
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We will now describe the structure of the paper. In Section 2, we extend
Theorems 1.1 and 1.2; first we prove that the same statements hold if we con-
sider pointwise Lipschitz mappings. For details see Theorems 2.5, 2.6, and
Corollary 2.7. As a corollary (see Corollary 2.8), we obtain the same results
for functions satisfying the spherical Rado–Reichelderfer condition (see (2.13)).
Malý [18] used a similar condition as a sufficient condition for absolute con-
tinuity (in the sense of [18]). Csörnyei [8] proved that the absolute continu-
ity in the sense of [18] is actually equivalent to such a condition. Theorem 1
in [5] implies that functions satisfying the spherical condition of Rado and Re-
ichelderfer with values in a Banach space with the Radon–Nikodým property
are almost everywhere Fréchet differentiable; see Corollary 2.10. Another corol-
lary of our approach is an area formula for pointwise Lipschitz mappings (see
Theorem 2.11 and Corollary 2.12), which generalizes Kirchheim’s results for
Lipschitz mappings from [16]. In Section 3, we extend the definition of (n, λ)-
absolutely continuous functions to functions with values in a Banach space
(we also discuss the auxiliary notion of BVn

λ functions as a tool). In the case
X = R

m, the (n, 1)-absolutely continuous functions (and BVn
1 functions) were

introduced by Malý [18], and (n, λ)-absolutely continuous functions (and BVn
λ

functions) were introduced by Hencl [14] (after a private communication with
L. Zaj́ıček). We obtain a version of Theorem 1.1 for such functions; see Re-
mark 3.3. Theorem 1 in [5] can be used to obtain almost everywhere differen-
tiability of (n, λ)-absolutely continuous functions with values in a space that
has the Radon–Nikodým property; see Corollary 3.4. We also prove an area
formula for Banach space-valued (n, λ)-absolutely continuous mappings. This
is the content of Theorem 3.5. Our proof is a modification of the proof of [14,
Theorem 3.4].

Section 4 contains auxiliary results for the proofs of Theorems 5.3 and 5.4,
which are contained in Section 5; we also prove an infinite-dimensional ver-
sion of [2, Theorem 3.5]; see Theorem 4.3. Prior to establishing Theorems 5.3
and 5.4, there are two examples showing why we can only prove a weaker state-
ment, when considering mappings between Banach spaces. Theorem 5.3 is a
generalization of Theorem 1.2 to pointwise Lipschitz mappings with infinite-
dimensional domains. Finally, Theorem 5.4 is a generalization of Theorem 1.1
to mappings between Banach spaces, with the domain being separable. The
main ingredients are the use of w∗-differentiability (as introduced by Ambrosio
and Kirchheim in [2]) and an idea to use the differentiability of the distance
function as a replacement for density considerations; in Bongiorno [5] this idea
was used to prove the infinite-dimensional version of Stepanoff’s theorem. We
conclude the paper by two possible applications of metric derivatives.
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2. Metric and w∗-differentiability of mappings
with finite-dimensional domains

All Banach spaces are assumed to be real. Let X be a Banach space. By 〈x∗, x〉
we will denote the usual duality pairing between x ∈ X, and x∗ ∈ X∗. By
B(x, r) we denote the closed ball with center x and radius r > 0. By Ln we will
denote the n-dimensional Lebesgue measure on R

n. We will often use the well-
known fact that for every Lebesgue measurable set A ⊂ R

n, almost all points
of A are points of density, i.e., limr→0+

Ln(A∩B(x,r))
Ln(B(x,r))

= 1, for a.a. x ∈ A. By

Hn(·) we will denote the n-dimensional Hausdorff measure (as defined in [16]).
Let X,Y be Banach spaces, f : A ⊂ X 7→ Y . By OscB f we will denote
diam(f(B)) = supx,y∈B ‖f(x)− f(y)‖.

We will need the following lemma, which is an analogue of [12, Lemma 3.1.5]
for “metric differentials”.

Lemma 2.1. Let X be a Banach space, C ⊂ B ⊂ R
n, a ∈ C, f, g : B 7→ X,

f(x) = g(x) for all x ∈ C, 0 < η, 0 < M <∞,

‖f(x)− f(z)‖ ≤M‖x− z‖ for z ∈ C and all x ∈ B(z, η). (2.1)

Let the function g be Lipschitz, and suppose that the set R
n\C has Ln-density 0

at a. Then

(i) If g is metrically Fréchet differentiable at a, then f is directionally met-
rically differentiable, and MD(f, a)(v) = MD(g, a)(v) for all v ∈ R

n.

(ii) If g is metrically differentiable at a, then f is metrically differentiable at a.

Proof. Without any loss of generality, we can (and do) assume that g is
M -Lipschitz (by possibly enlarging M), a = 0, f(a) = g(a) = 0, and M = 1
(by rescaling). We shall prove (i) first. For a contradiction, suppose that

∣

∣‖f(tmu)‖ −MD(g, 0)(tmu)
∣

∣ > εtm, (2.2)

for some ε > 0, tm → 0+, and ‖u‖ = 1. For a large enough m we obtain (by
the density of C at 0, by (2.1), and by the fact that g is metrically Fréchet
differentiable at a) that

Ln(B(0, 2tm) \ C) <
(

ε
16

)n
Ln(B(0, 2tm)), (2.3)

B(0, 2tm) ⊂ B(0, η), and
∣

∣‖g(w)‖−MD(g, 0)(w)
∣

∣ ≤ ( ε
8
) ‖w‖, for all ‖w‖ ≤ 2tm.

Thus by (2.3) there exists v ∈ C ∩ B(0, 2tm) with ‖v − tmu‖ ≤ ( ε
8
)tm. Now

estimate
∣

∣‖f(tmu)‖ −MD(g, 0)(tmu)
∣

∣ ≤ ‖f(tmu)− f(v)‖+
∣

∣‖f(v)‖ −MD(g, 0)(v)
∣

∣

+MD(g, 0)(v − tmu)

≤ ε
8
tm + ε

8
‖v‖+ ‖v − tmu‖

≤ ε
8
tm + ε

4
tm + ε

8
tm = ε

2
tm,
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and that is a contradiction with (2.2). Thus MD(f, a)(u) exists and is equal to
MD(g, a)(u) for all u ∈ R

n.

To prove (ii), by (i) we have that f is directionally metrically differentiable
at a. Note that MD(f, a)(·) is a seminorm (as it is equal to MD(g, a)(·)). For
a contradiction, suppose that f fails the condition (1.3) at a. Then there are
ε > 0, um, vm ∈ R

n with ‖um‖ > 0, ‖vm‖ > 0, limm um = limm vm = 0, and
∣

∣‖f(um)− f(vm)‖ −MD(f, 0)(um − vm)
∣

∣ > ε(‖um‖+ ‖vm‖). (2.4)

For a large enough m we obtain (by the density of C at 0 and by (1.3) for g at
0)

Ln(B(0, 2‖um‖) \ C) <
(

ε
32

)n
Ln(B(0, 2‖um‖)) (2.5)

Ln(B(0, 2‖vm‖) \ C) <
(

ε
32

)n
Ln(B(0, 2‖vm‖)), (2.6)

B(0, 2max(‖um‖, ‖vm‖)) ⊂ B(0, η), and
∣

∣‖g(w)− g(z)‖ −MD(g, 0)(w − z)
∣

∣ ≤ ε
8
(‖w‖+ ‖z‖),

for all max(‖w‖, ‖z‖) ≤ 2 max(‖um‖, ‖vm‖). Thus by (2.5) and (2.6), there
exist u ∈ C ∩ B(0, 2‖um‖) and v ∈ C ∩ B(0, 2‖vm‖) with ‖u − um‖ ≤

ε
16
‖um‖

and ‖v − vm‖ ≤
ε
16
‖vm‖. Now estimate

∣

∣‖f(um)− f(vm)‖ −MD(f, 0)(um − vm)
∣

∣

≤ ‖f(um)− f(u)‖+ ‖f(vm)− f(v)‖+
∣

∣‖f(u)− f(v)‖ −MD(g, 0)(u− v)
∣

∣

+MD(g, 0)(u− um) +MD(g, 0)(v − vm)

≤ ε
16
‖um‖+

ε
16
‖vm‖+

ε
8

(

‖u‖+ ‖v‖
)

+ ‖u− um‖+ ‖v − vm‖

≤ ε
8
‖um‖+

ε
8
‖vm‖+

ε
4

(

‖um‖+ ‖vm‖
)

≤ ε
2

(

‖um‖+ ‖vm‖
)

,

and that is a contradiction with (2.4). Thus (1.3) holds for f at a, and f is
metrically differentiable at a.

Lemma 2.2. Let Y be a separable Banach space, C ⊂ B ⊂ R
n, a ∈ C,

f, g : B 7→ Y ∗, f(x) = g(x) for all x ∈ C, 0 < η, 0 < M <∞,

‖f(x)− f(z)‖ ≤M‖x− z‖ for z ∈ C and all x ∈ B(z, η),

let the function g be Lipschitz, g be metrically Fréchet differentiable at a, g be
w∗-Fréchet differentiable at a,

MD(g, a)(w) = ‖wd(g, x)(w)‖ for all w ∈ R
n, (2.7)

and suppose that the set R
n \ C has Ln-density 0 at a. Then f is metrically

Fréchet differentiable at a, f is w∗-Fréchet differentiable at a, and

MD(f, a)(w) = ‖wd(f, a)(w)‖ for all w ∈ R
n. (2.8)
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Proof. Without any loss of generality, we can (and do) assume that g is
M -Lipschitz (by possibly enlarging M), a = 0, f(a) = g(a) = 0, and M = 1 (by
rescaling). Note that Lemma 2.1 (i) implies that f is directionally metrically
differentiable with MD(f, a)(v) = MD(g, a)(v) for all v ∈ R

n.

We see that MD(f, a)(·) is a seminorm (as it is equal to MD(g, a)(·)). For
a contradiction, suppose that condition (1.2) fails at a. Then there are ε > 0,
um ∈ R

n with ‖um‖ > 0, limm um = 0, and
∣

∣‖f(um)‖ −MD(f, 0)(um)
∣

∣ > ε‖um‖. (2.9)

For large enough m we obtain (by the density of C at 0 and by (1.2) for g at 0)

Ln(B(0, 2‖um‖) \ C) <
(

ε
32

)n
Ln(B(0, 2‖um‖)), (2.10)

B(0, 2‖um‖) ⊂ B(0, η), and
∣

∣‖g(w)‖ −MD(g, 0)(w)
∣

∣ ≤ ε
8
‖w‖, for all ‖w‖ ≤

2 ‖um‖. Thus by (2.10) there exist u ∈ C∩B(0, 2‖um‖) with ‖u−um‖ ≤
ε
16
‖um‖.

Now estimate
∣

∣‖f(um)‖ −MD(f, 0)(um)
∣

∣ ≤ ‖f(um)− f(u)‖

+
∣

∣‖f(u)‖ −MD(g, 0)(u)
∣

∣+MD(f, 0)(um − u)

≤ ε
16
‖um‖+

ε
8
‖u‖+ ‖u− um‖

≤ ε
8
‖um‖+

ε
4
‖um‖

≤ ε
2
‖um‖,

and that is a contradiction with (2.9). Thus (1.2) holds for f at a, and f is
Fréchet metrically differentiable at a.

To finish the proof, it is enough to establish that wd(g, 0)(·) is the w∗-Fréchet
differential of f at 0. Then (2.8) follows from (2.7), and from the fact that we
have the equality MD(f, 0)(·) = MD(g, 0)(·). For a contradiction, suppose
that f fails the condition (1.4) at a = 0 (with wd(f, 0)(·) := wd(g, 0)(·)). Then
there are y ∈ Y , ε > 0, um ∈ R

n with ‖um‖ > 0, limm um = 0, and
∣

∣〈f(um)− wd(g, 0)(um), y
〉∣

∣ > ε‖um‖. (2.11)

For large enough m we obtain (by the density of C at 0 and by (1.4) for g at 0)

Ln(B(0, 2‖um‖) \ C) <
(

ε
16
‖y‖

)n
Ln(B(0, 2‖um‖)), (2.12)

B(0, 2‖um‖) ⊂ B(0, η), and
∣

∣〈g(w) − wd(g, 0)(w), y〉
∣

∣ ≤ ε
8
‖w‖, for all ‖w‖ ≤

2 ‖um‖. Thus by (2.12) there exists u ∈ C ∩ B(0, 2‖um‖) with ‖u − um‖ ≤
(

ε
8
‖y‖

)

‖um‖. Now estimate
∣

∣

〈

f(um)− wd(g, 0)(um), y
〉∣

∣ ≤ ‖y‖ ‖f(um)− f(u)‖+
∣

∣

〈

f(u)− wd(g, 0)(u), y〉
∣

∣

+ ‖y‖ ‖wd(g, 0)(u− um)‖

≤ ε
8
‖um‖+

ε
8
‖u‖+ ‖y‖ ‖u− um‖

≤ ε
4
‖um‖+

ε
4
‖um‖

≤ ε
2
‖um‖,
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and that is a contradiction with (2.11). Thus (1.4) holds for f at a, and f is
w∗-Fréchet differentiable at a.

Definition 2.3. Let X,Z be Banach spaces, let Ω ⊂ X be open, and let
f : Ω 7→ Z. By S(f) denote the set of points, where f is pointwise Lipschitz.

Lemma 2.4. Let X,Z be Banach spaces with X separable, let Ω ⊂ X be open,
and let f : Ω 7→ Z. Then there exist Borel Am,k ⊂ Ω (m, k ∈ N) such that:

– Am,k ∩ Am′,k′ = ∅ for (m, k) 6= (m′, k′);

–
⋃

m,k Am,k = S(f);

– f |Am,k
is m-Lipschitz;

– ‖f(x)−f(w)‖ ≤ m ‖x−w‖ for all x ∈ Am,k, and w ∈ Ω with ‖x−w‖ < 1
m
.

Proof. Write

Am =
{

x ∈ Ω : ‖f(x)− f(z)‖ ≤ m‖x− z‖ when z ∈ Ω with ‖x− z‖ < 1
m

}

.

Then Am is easily seen to be closed in Ω (see e.g. [5, Lemma 1]), and S(f) =
⋃

mAm. For each m ∈ N let Bm
k be a sequence of closed balls, such that

diam(Bm
k ) = 1

m+1
, and Ω ⊂

⋃

k B
m
k . Define A′

1 = A1, and for m > 1 let

A′
m := Am \

(
⋃

j<mAj). Further define Am,k := A′
m ∩

(

Bm
k \

⋃

j<k B
m
j

)

. Then
f |Am,k

is m-Lipschitz for all m, k ∈ N, Am,k are Borel, pairwise disjoint (by
definition), and obviously S(f) =

⋃

m,k Am,k. The last condition follows from
the definition of Am,k (resp. Am).

We have the following version of Theorem 1.1 for pointwise Lipschitz map-
pings. We follow a similar argument as in the proof of Stepanoff’s theorem;
see [12, Theorem 3.1.9].

Theorem 2.5. Let X be a Banach space, and let f : R
n 7→ (X, ‖ · ‖) be

a function. Then, for almost every x ∈ S(f), we have that f is metrically
differentiable at x.

Proof. Let Am,k be given by Lemma 2.4. Then f |Am,k
is m-Lipschitz, and thus

it can be extended (see [15, Theorem 2]) to C ·m-Lipschitz function fm,k on R
n

with C > 0 depending only on n. By Theorem 1.1, for almost all x ∈ Am,k, we
have that fm,k is metrically differentiable at x. By Lemma 2.1, because almost
all points of Am,k are points of density of that set, we obtain that the function f

is metrically differentiable at almost all points of Am,k, and thus at almost all
points of S(f).

We have the following version of Theorem 1.2. Again, we follow a similar
argument as in the proof of Stepanoff’s theorem; see [12, Theorem 3.1.9].
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Theorem 2.6. Let Y be a separable Banach space, and let f : R
n 7→ (Y ∗, ‖ · ‖)

be a function. Then, for almost every x ∈ S(f), we have that f is metri-
cally Fréchet differentiable at x, w∗-Fréchet differentiable, and MD(f, x)(v) =
‖wd(f, x)(v)‖ for all v ∈ R

n.

Proof. Let Am,k be from Lemma 2.4. Then f |Am,k
is m-Lipschitz, and thus it

can be extended (see [15, Theorem 2]) to C ·m-Lipschitz function fm,k on R
n

with C > 0 depending only on n. By Bm,k denote the set of all x ∈ Am,k, such
that fm,k is metrically Fréchet differentiable at x, w∗-Fréchet differentiable, and
MD(fm,k, x)(v) = ‖wd(fm,k, x)(v)‖ for all v ∈ R

n. By Theorem 1.2 we have
that Ln(Am,k \ Bm,k) = 0. Let x ∈ Bm,k be a point of density of Bm,k. Then
Lemma 2.2 implies that f is metrically Fréchet differentiable at x, w∗-Fréchet
differentiable, and MD(f, x)(v) = ‖wd(f, x)(v)‖ for all v ∈ R

n. Thus the
conclusion holds for almost all x ∈ S(f).

Theorems 2.5 and 2.6 have the following corollary.

Corollary 2.7. Let Y be a separable Banach space, and let f : R
n 7→ Y ∗

be an arbitrary function. Then, for almost every x ∈ S(f), we have that f is
metrically differentiable at x, w∗-Fréchet differentiable at x, and MD(f, x)(v) =
‖wd(f, x)(v)‖ for all v ∈ R

n.

Let X be a Banach space, Ω ⊂ R
n open and f : Ω 7→ X. We say that f

satisfies the condition (RR) (the spherical condition of Rado and Reichelderfer)
with weight θ ∈ L1loc(Ω) provided

(

diam(u(B))
)n
≤

∫

B

θ(x) dx, (2.13)

for each ball B ⊂ Ω. Condition (RR) was used by Rado and Reichelderfer [22]
as a sufficient condition for almost everywhere differentiability and area for-
mula. Note that if f satisfies (RR)-condition, it is necessarily continuous. If
MD(f, x)(·) is a seminorm, we define ‖MD(f, x)‖ := sup‖u‖=1MD(f, x)(u).
Theorem 2.5 has the following interesting corollary.

Corollary 2.8. Let X be a Banach space, Ω ⊂ R
n open, and f : Ω 7→ X. Let

f satisfy the (RR)-condition with L1(Ω)-weight θ. Then:

(i) For almost all x ∈ Ω, we have that the function f is metrically differen-
tiable at x.

(ii) If X = Y ∗, where Y is separable, then for almost all x ∈ Ω we have
that f is metrically differentiable at x, w∗-Fréchet differentiable at x, and
MD(f, x)(v) = ‖wd(f, x)(v)‖ for all v ∈ R

n.

Further ‖MD(f, ·)‖ ∈ Ln(Ω).
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Proof. If x is a Lebesgue point of θ, then

(

lim sup
y→x

‖f(x)− f(y)‖

‖x− y‖

)n

≤ C θ(x) <∞.

To prove (i), Theorem 2.5 (extend f to R
n \Ω by 0) implies that f is metrically

differentiable at almost all x ∈ Ω. Part (ii) follows from Corollary 2.7.

At the Lebesgue points x ∈ Ω of θ, where MD(f, x)(·) is a seminorm, we
have that

‖MD(f, x)‖n ≤

(

lim sup
y→x

‖f(x)− f(y)‖

‖x− y‖

)n

≤ C θ(x).

Thus ‖MD(f, ·)‖ ∈ Ln(Ω).

We say that a Banach space X has the RNP (or the Radon–Nikodým prop-
erty), provided each absolutely continuous function f : [0, 1] 7→ X is almost
everywhere differentiable. For other equivalent definitions and properties of
such spaces, see [4].

As an application of [5, Theorem 1], we obtain the following version of
Stepanoff’s theorem.

Theorem 2.9. Let X be a Banach space with RNP, Ω ⊂ R
n open, and f : Ω 7→

X. Then for almost all x ∈ S(f), the function f is Fréchet differentiable at x.

Proof. Let Am,k be from Lemma 2.4. Then f |Am,k
is m-Lipschitz, and thus it

can be extended (see [15, Theorem 2]) to C ·m-Lipschitz function fm,k on R
n,

with C > 0 depending only on n. By [5, Theorem 1], for almost all x ∈ R
n we

have that fm,k is Gâteaux differentiable at x. The remark after the definition
of Gâteaux differentiability implies that fm,k is in fact Fréchet differentiable
at almost all x ∈ R

n. By a version of [12, Lemma 3.1.5] for f with values
in a Banach space (which holds with the same proof), because almost all points
of Am,k are points of density of that set, we obtain that f is Fréchet differentiable
at almost all points of Am,k, and thus at almost all points of S(f).

We have the following corollary.

Corollary 2.10. Let X be a Banach space with RNP, Ω ⊂ R
n be an open

set, and f : Ω 7→ X. Suppose that f satisfies the (RR)-condition with L1(Ω)-
weight θ. Then for almost all x ∈ Ω, the function f is Fréchet differentiable
at x. Further ‖f ′(x)‖ ∈ Ln(Ω).

Proof. If x is a Lebesgue point of θ, then

(

lim sup
y→x

‖f(x)− f(y)‖

‖x− y‖

)n

≤ C θ(x) <∞.
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Thus Ln(Ω \ S(f)) = 0. By Theorem 2.9, for almost all x ∈ S(f) ∩ Ω, we have
that f is Fréchet differentiable at x.

At the Lebesgue points x ∈ Ω of θ, where f ′(x) exists, we have that

‖f ′(x)‖n ≤

(

lim sup
y→x

‖f(x)− f(y)‖

‖x− y‖

)n

≤ C θ(x).

Thus ‖f ′(·)‖ ∈ Ln(Ω).

Another corollary to the method of proof of Theorem 2.5 is the area formula
for pointwise Lipschitz mappings, which generalizes Theorem 7 and Corollary 8
from [16]. Let s be a seminorm on R

n. Following [16], we define the Jacobian
of s by

J (s) =
α(n)n

∫

Sn−1(s(x))−n dHn−1(x)
,

where αn = Γ(1/2)n

Γ(n/2+1)
= Ln(B(0, 1)). We have the following theorem (the case

when Ω = R
n, and f is Lipschitz is proved in [16, Theorem 7]).

Theorem 2.11. Let Ω ⊂ R
n be open, let f : Ω 7→ (X, ·) be arbitrary, and let

A ⊂ S(f) be Lebesgue measurable. Then

∫

A

J (MD(f, x)) dLn(x) =

∫

X

N(f |A, x) dH
n
‖·‖(x),

where N(f |A, x) = card(A ∩ f−1(x)).

Proof. Let Am,k be from Lemma 2.4. Let Fm,k be the C·m-Lipschitz extensions
of f |Am,k

to R
n (see [15, Theorem 2]). For each m, k ∈ N we obtain that

∫

A∩Am,k

J (MD(f, x))Ln(x) =

∫

A∩Am,k

J (MD(Fm,k, x))L
n(x)

=

∫

X

N(f |A∩Am,k
, x) dHn

‖·‖(x),

where the first equality follows from the fact that MD(f, x) = MD(Fm,k, x) at
all points x, which are points of density of A ∩ Am,k (see Lemma 2.1), and the
second equality follows from [16, Theorem 7]. By adding these for all m, k ∈ N,
we get the conclusion of the theorem.

As a consequence (by standard approximation procedures), we obtain the
following corollary.

Corollary 2.12. Let Ω ⊂ R
n be open, and f : Ω 7→ (X, ‖ · ‖) be pointwise

Lipschitz.
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(i) If g : Ω 7→ R is Lebesgue integrable, then
∫

Ω

g(x)J (MD(f, x)) dLn(x) =

∫

X

(

∑

x∈f−1(y)∩Ω

g(x)

)

dHn
‖·‖(y).

(ii) If g : X 7→ R is Hn
‖·‖-measurable, and A ⊂ Ω is Ln-measurable, then

∫

Ω

g(f(x))J (MD(f, x)) dLn(x) =

∫

X

g(x)N(f |A, y) dH
n
‖·‖(y).

3. Absolutely continuous functions

Let X be a real Banach space, let Ω be an open subset of R
n. Let 0 < λ ≤ 1.

We say that a function f : Ω 7→ X is (n, λ)-absolutely continuous if for each
ε > 0 there is a δ > 0 such that

∑

i

Ln(B(xi, ri)) < δ =⇒
∑

i

(

OscB(xi,λri) f
)n

< ε,

for any disjoint sequence of balls (B(xi, ri))i in Ω. We say that f is in the class
BVn

λ(Ω) provided V n
λ (f,Ω) <∞, where the (n, λ)-variation V n

λ (f,A) of f on A

is defined as

sup
{

∑

i

(

OscB(xi,λri) f
)n

: {B(xi, ri)} is a disjoint family of balls in A
}

.

We define the space ACn
λ(Ω) as the family of all (n, λ)-absolutely continuous

functions in the space BVn
λ(Ω). Note that obviously

f is (n, λ)-absolutely continuous =⇒ f ∈ BVn
λ,loc(Ω). (3.1)

Hencl [14, Theorem 3.1] proved the following theorem for R
m-valued func-

tions. It holds with the same proof for X-valued (n, λ)-absolutely continuous
functions (resp. BVn

λ functions).

Theorem 3.1. Let 0 < λ1 < λ2 < 1 and f : Ω 7→ X. Then

(i) f is (n, λ1)-absolutely continuous if and only if f is (n, λ2)-absolutely con-
tinuous,

(ii) BVn
λ1
(Ω) = BVn

λ2
(Ω),

(iii) ACn
λ1
(Ω) = ACn

λ2
(Ω).

The R
m-valued (n, λ)-absolutely continuous functions are Fréchet differen-

tiable almost everywhere (see Malý [18] for the case λ = 1, and the remark
in [14] which asserts that the same proof works also for the case 0 < λ < 1; in
fact it is enough to replace r by λr and ri by λri in Malý’s proof).

Theorem 2 in [16] and Lemma 2.1 have the following corollary:



Metric and w∗-Differentiability 353

Theorem 3.2. Let f : Ω 7→ X be such that f ∈ BVn
λ,loc(Ω). Then:

(i) f is metrically differentiable at almost all x ∈ Ω.

(ii) If X = Y ∗, where Y is separable, then for almost all x ∈ Ω we have
that f is metrically differentiable at x, w∗-Fréchet differentiable at x, and
MD(f, x)(v) = ‖wd(f, x)(v)‖ for all v ∈ R

n.

Proof. The proof of Theorem 3.3 from [18] shows that lip(f, x) < ∞ for al-
most all x ∈ Ω. Thus Theorem 2.5 implies part (i). Part (ii) follows from
Corollary 2.7.

Remark 3.3. The inclusion (3.1) implies that Theorem 3.2 holds also for (n, λ)-
absolutely continuous functions.

Theorem 2.9 has the following consequence:

Corollary 3.4. Let X be a Banach space satisfying the RNP, f : Ω 7→ X, and
0 < λ ≤ 1. Then:

(i) if f ∈ BV n
λ (Ω), then f ′(x) exists for almost every x ∈ Ω;

(ii) if f is (n, λ)-absolutely continuous, then f ′(x) exists for almost each x∈ Ω.

Proof. Because of (3.1), part (ii) easily follows from part (i). To prove (i), note
that the proof of Theorem 3.3 from [18] shows that lip(f, x) <∞ for almost all
x ∈ Ω. Thus Ln(Ω \ S(f)) = 0. By Theorem 2.9, for almost all x ∈ S(f) ∩ Ω,
we have that f is Fréchet differentiable at x.

Kirchheim [16] proved an area formula for Lipschitz mappings from R
n to

an arbitrary Banach space. Using the ideas from the proof of Theorem 2.5 we
can prove an area formula for (n, λ)-absolutely continuous mappings with values
in any Banach space. We have the following result:

Theorem 3.5. Let f : Ω 7→ X be (n, λ)-absolutely continuous so that dim(X) ≥
n, and let A ⊂ Ω be Lebesgue measurable. Then

∫

A

J (MD(f, x)) dLn(x) =

∫

X

N(f |A, x) dH
n
‖·‖(x). (3.2)

Proof. The proof of Theorem 3.3 from [18] shows that lip(f, x) < ∞ for all
x ∈ Ω \ N with Ln(N) = 0. Apply Lemma 2.4 to obtain Am,k. By [15,
Theorem 2] extend f |Am,k

to C ·m -Lipschitz mappings Fm,k on R
n, and by

Theorem 1.1 we have that Fm,k are metrically differentiable almost everywhere
in R

n. Let Bm,k be the set of density points of Am,k where Fm,k is metrically
differentiable. Then for each x ∈ Bm,k, we have that

Fm,k(x) = f(x) and MD(Fm,k, x) = MD(f, x). (3.3)
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Thus by [16, Theorem 7] (applied to Fm,k and A ∩ Bm,k) and by (3.3) we have
that

∫

A∩Bm,k

J (MD(f, x)) dLn(x) =

∫

X

N(f |A∩Bm,k
, x) dHn

‖·‖(x).

By adding these up for all m, k ∈ N, it is easy to see that it is enough to
prove (3.2) for A ⊂ Ω with Ln(A) = 0.

We shall modify the proof of [14, Theorem 3.4]. By Theorem 3.1, we can
assume that λ = 1

5
. Let

E1 =

{

x ∈ A : lim inf
r→0

OscB(x,r) f

OscB(x,r/5) f
≤ 10

}

,

and

E2 =

{

x ∈ A : lim inf
r→0

OscB(x,r) f

OscB(x,r/5) f
> 10

}

.

Choose ε > 0 and find 0 < δ < 1 from the definition of (n, λ)-absolute continuity
of f . Let G ⊂ Ω be an open set containing A with Ln(G) < δ. For each x ∈ E1
there is r(x) > 0 such that

B(x, r(x)) ⊂ G and OscB(x,r(x)) f < 11Osc
B(x, r(x)

5 ) f < ε. (3.4)

For each x ∈ E2 there is w(x) > 0 such that for all r ∈ (0, w(x)) we have
OscB(x,r) f

r
> 2

OscB(x,r/5) f
r
5

. Thus limr→0
OscB(x,r) f

r
= 0. Hence for each x ∈ E2 we

can find r(x) > 0 such that

B(x, r(x)) ⊂ G and OscB(x,r(x)) f < ε
1
n r(x) < ε. (3.5)

Because E = E1∪E2, by Vitali’s covering theorem, we can find a disjoint system
{

B
(

xi,
ri

5

)

: i ∈ N

}

⊂
{

B
(

x,
r(x)

5

)

: x ∈ E
}

,

such that A ⊂
⋃

iB (xi, ri). Let Ij = {i ∈ N : xi ∈ Ej} for j = 1, 2. Now
by (3.4) and (3.5) we get

Hn
ε (f(A)) ≤ C

∑

i

(

diam(f(B(xi, ri)))
)n

= C
∑

i

(

OscB(xi,ri) f
)n

and hence

Hn
ε (f(A)) ≤ C

(

11n
∑

i∈I1

(

OscB(xi,ri/5) f
)n

+ ε
∑

i∈I2

(ri)
n

)

≤ C

(

11n ε+ 5nε
∑

i∈I2

(ri

5

)n
)

≤ C ε (11n + 5n · δ) ≤ C ε.

Now let ε→ 0 to obtain Hn(f(A)) = 0.
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4. Auxiliary results

Let X be a separable Banach space, A ⊂ X, and let 0 6= u ∈ X. We say that
A ∈ A(u) provided A is Borel and L1({λ ∈ R : x+λu ∈ A}) = 0, for all x ∈ X.
For a sequence {un} ⊂ X we define

A({un}) =

{

E ∈ X : E =
⋃

n

En with En ∈ A(un)

}

.

Finally, we say that A is Aronszajn null provided A is Borel and for each
complete sequence {un} ⊂ X we have A ∈ A({un}) (a sequence {un} is complete
provided X = span({un})). For more information about Aronszajn null sets,
see [4].

We will need the following lemma:

Lemma 4.1. Let X,Y be separable, and let f : X 7→ Y ∗ be Lipschitz. If V is
a countable dense subset of X closed under linear combinations with rational
coefficients, then:

(i) If wd(f, x)(v) exists for all v ∈ V , then wd(f, x)(w) exists for all w ∈ X.
If wd(f, x)(·) is linear on V , then wd(f, x)(·) : X 7→ Y ∗ is a bounded
linear operator.

(ii) If MD(f, x)(v) exists for all v ∈ V , then MD(f, x)(w) exists for all
w ∈ X. If MD(f, x)(·) is a seminorm on V , then MD(f, x)(·) is a
seminorm on X.

(iii) If MD(f, x)(v) = ‖wd(f, x)(v)‖ for all v ∈ V , then we have the equality
MD(f, x)(w) = ‖wd(f, x)(w)‖ for all w ∈ X.

Proof. The proof of the lemma is standard so we omit it. Let us only remark
that the main ingredience used is the fact that the difference quotients of a
Lipschitz function are uniformly Lipschitz as a function of the direction.

The proof of the following lemma is standard, and so we omit it.

Lemma 4.2. Let X,Y be separable Banach spaces, f : X 7→ Y ∗ be Lipschitz,
and 0 6= v ∈ X. Then the following sets are Borel:

– A = {x ∈ X : MD(f, x)(v) exists}

– B = {x ∈ X : wd(f, x)(v) exists}

–
{

x ∈ A ∩B : MD(f, x)(v) 6= ‖wd(f, x)(v)‖
}

–
{

x ∈ X : wd(f, x)(w) exists for all w ∈ X but is not linear in w
}

–
{

x ∈ X : MD(f, x)(w) exists for all w ∈ X; it is not a seminorm in w
}

.

We will need the following theorem, which is a consequence of [2, Theo-
rem 3.5].
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Theorem 4.3. Let X,Y be separable Banach space, let f : X 7→ Y ∗ be Lips-
chitz. Then the complement of the set of points x ∈ X, where f is w∗-Gâteaux
differentiable at x, f is metrically Gâteaux differentiable at x, and

MD(f, x)(w) = ‖wd(f, x)(w)‖ (4.1)

for all w ∈ X, is Aronszajn null.

Proof. Let E be the set of x ∈ X such that f is w∗-Gâteaux differentiable at x,
f is directionally metrically differentiable at x, MD(f, x)(·) is a seminorm,
and (4.1) holds for all w ∈ X. By Lemmata 4.1 and 4.2, it follows that the set
E is Borel.

Let {vn} be any complete sequence in X, and put Vn = span{vk : k ≤ n}.
Let Dn be the set of those x ∈ X such that gnx(·) = f(· − x)|Vn is met-
rically Fréchet differentiable at 0, gnx is w∗-Fréchet differentiable at 0, and
MD(gnx , 0)(w) = ‖wd(gnx , 0)(w)‖ for all w ∈ Vn. By [2, Theorem 3.5] we have
that Ln(((X \Dn) + y) ∩ Vn) = 0 for all y ∈ X. Thus by [4, Proposition 6.29]
we have that X \Dn belongs to A({vk : k ≤ n}). By Lemma 4.1 the function f

satisfies the conclusion of the theorem for all x ∈
⋂

nDn.

Lemma 4.4. Let X,Z be Banach spaces, with X separable, let f : X 7→ Z be
a mapping, f̃ : X 7→ `∞ be a Lipschitz mapping, G ⊂ X Borel, D ⊂ G be such
that dist(·, G) is Gâteaux differentiable on D, there exists L, δ > 0 such that for
all z ∈ G we have that

‖f(z)− f(w)‖ ≤ L‖z − w‖ whenever ‖z − w‖ < δ. (4.2)

Let Ψ : f(G) 7→ `∞ be an isometric embedding such that Ψ◦f = f̃ on G. Then:

(i) If x ∈ D is such that f̃ is metrically Gâteaux differentiable at x, then f

metrically Gâteaux differentiable at x.

(ii) If Z = Y ∗ with Y separable, Ψ∗|`1 is a quotient mapping from `1 onto Y ,
x ∈ D is such that f̃ is metrically Gâteaux differentiable at x, w∗-Gâteaux
differentiable at x, and

MD(f̃ , x)(w) = ‖wd(f̃ , x)(w)‖ for all w ∈ X, (4.3)

then f is metrically Gâteaux differentiable at x, f is w∗-Gâteaux differen-
tiable at x, and

MD(f, x)(w) = ‖wd(f, x)(w)‖ for all w ∈ X. (4.4)

Proof. We will only prove the part (ii), as the proof of (i) is similar. Without
any loss of generality, we can assume that f̃ is L-Lipschitz, and L = 1. First,
we will prove that f is directionally metrically differentiable at x (such that
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MD(f, x)(w)=MD(f̃ , x)(w)), and that wd(f, x)(w)=wd(f̃ , x)(w). Let w ∈X,
and fix y ∈ Y . As Ψ∗|`1 is a quotient mapping from `1 onto Y , and thus there
exists µ = (µi) ∈ `1 such that Ψ∗(µ) = y and ‖µ‖ ≤ C‖y‖. Given ε > 0, by
the existence of MD(f̃ , x)(w), wd(f̃ , x)(w), and by the differentiability of the
distance function dist(·, G) at the point x, there exists τε > 0 such that

∣

∣

∣
|t|−1‖f̃(x+ tw)− f̃(x)‖ −MD(f̃ , x)(w)

∣

∣

∣
<

ε

3
(4.5)

∣

∣

∣

〈

t−1(f̃(x+ tw)− f̃(x))− wd(f̃ , x)(w), µ
〉∣

∣

∣
<

ε

10
, (4.6)

and dist(x+ tw,G) < ε
5max(‖µ‖,1)

|t|, for each 0 < |t| < τε.

Let 0 < |t| < min
(

τε, 5max(‖µ‖, 1) δ
2ε

)

and let zt ∈ G be such that ‖x +
tw − zt‖ < ε

5max(‖µ‖,1)
|t|. Now by (4.5) it follows that

∣

∣‖f(x+ tw)− f(x)‖−MD(f̃ , x)(tw)
∣

∣

≤
∣

∣‖f̃(x+ tw)− f̃(x)‖ −MD(f̃ , x)(tw)
∣

∣

+ ‖f̃(x+ tw)− f̃(zt)‖+ ‖f(x+ tw)− f(zt)‖

≤
ε|t|

3
+

ε|t|

3
+

ε|t|

3
= ε|t|,

(we used that Ψ(f(u)) = f̃(u) for u ∈ G). This proves that MD(f, x)(w)
exists and f is directionally metrically differentiable at x. Because of (4.3),
we easily see that MD(f, x)(·) is a continuous seminorm. Similarly, for an
0 < |s| < min

(

τε, 5max(‖µ‖, 1) δ
2ε

)

there exists zs ∈ G satisfying ‖x+sw−zs‖ <
ε

5max(‖µ‖,1)
|s|. Thus by (4.6) we can estimate

∣

∣

∣

∣

〈

f(x+ tw)− f(x)

t
−

f(x+ sw)− f(x)

s
, y

〉∣

∣

∣

∣

=

∣

∣

∣

∣

〈

f(x+ tw)− f(x)

t
−

f(x+ sw)− f(x)

s
,Ψ∗(µ)

〉∣

∣

∣

∣

=
∣

∣

〈

t−1
(

Ψ(f(x+ tw))−Ψ(f(x))
)

− s−1
(

Ψ(f(x+ sw))−Ψ(f(x))
)

, µ
〉∣

∣

≤
∣

∣

〈

t−1
(

f̃(x+ tw)− f̃(x)
)

− s−1
(

f̃(x+ sw)− f̃(x)
)

, µ
〉∣

∣

+ ‖µ‖ |t|−1
∥

∥f̃(x+ tw)− f̃(zt)
∥

∥+ ‖µ‖ |t|−1‖Ψ(f(x+ tw))−Ψ(f(zt))‖

+ ‖µ‖ |s|−1
∥

∥f̃(x+ sw)− f̃(zs)
∥

∥+ ‖µ‖ |s|−1‖Ψ(f(x+ sw))−Ψ(f(zs))‖

≤ ε,

(we used that Ψ(f(u)) = f̃(u) for u ∈ G). This proves that wd(f, x)(w) exists.

Now we will prove that f is w∗-Gâteaux differentiable at x. By the last
paragraph, we have that gw(y) := limt→0〈t

−1(f(x+ tw)− f(x)), y〉 exists for all
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y ∈ Y . It is easy to see that gw(·) ∈ Y ∗. Now, by a similar argument as above,
it is easy to see that g(av+bw) = agv + bgw for all a, b ∈ R, and v, w ∈ X; the
boundedness of gw in w follows from (4.2).

Note that
Ψ(wd(f, x)(w)) = wd(f̃ , x)(w), (4.7)

as for any ν ∈ `1 we have

∣

∣

∣

∣

〈

f̃(x+ tw)− f̃(x)

t
−Ψ(wd(f, x)(w)), ν

〉∣

∣

∣

∣

≤
∣

∣

〈

t−1
(

Ψ(f(x+ tw)− f(x))
)

−Ψ(wd(f, x)(w)), ν
〉∣

∣

+ ‖ν‖ |t|−1
∥

∥f̃(x+ tw)− f̃(zt)
∥

∥+ ‖ν‖ |t|−1‖Ψ(f(x+ tw))−Ψ(f(zt))‖

≤
ε

3
+

ε

3
+

ε

3
= ε,

for each 0 < |t| < τ , where τ > 0 is small enough (we used that Ψ(f(w)) = f̃(w)
for w ∈ G, and that Ψ∗(`1) ⊂ Y ).

Equality (4.4) follows from (4.3), (4.7), and from the equalityMD(f, x)(·) =
MD(f̃ , x)(·).

5. Metric and w∗-differentiability of mappings
with infinite-dimensional domains

The following example shows that there is no hope to obtain (1.3) in the case
when X is infinite-dimensional.

Example 5.1. There exists a 1-Lipschitz mapping f : `2 7→ `2 such that f is ev-
erywhere directionally metrically differentiable, and MD(f, x)(·) is a seminorm
for all x ∈ `2, but (1.3) doesn’t hold for any x ∈ `2.

Proof. Consider the mapping f : `2 7→ `2 defined as f((xi)i∈N) = (|xi|)i∈N. Then
f is everywhere directionally metrically differentiable with MD(f, x)(u) = ‖u‖.
Take x ∈ `2, fix ε > 0, and find n ∈ N such that |xn| <

ε
2
. Then for vectors

y = x+ ε · en, z = x− ε · en, we obtain

∣

∣‖f(z)− f(y)‖ −MD(f, x)(z − y)
∣

∣ ≥ 2ε+ |xn + ε| − |xn − ε| ≥ ε,

and the condition (1.3) is violated (because ‖y − x‖ = ‖z − x‖ = ε).

The next example shows that also condition (1.2) can fail outside a set
which is Aronszajn null even if we consider only real valued functions defined
on `1 (or in other words, f is not metrically Fréchet differentiable at almost
all x).
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Example 5.2. There exists a Lipschitz function f : `1 7→ R such that (1.2)
does not hold for almost all x ∈ `1 (i.e., outside an Aronszajn null set).

Proof. Let g : R → R be defined as g(x) = max(0, x). Define f : `1 7→ R as
f
(

(xi)i∈N

)

=
∑

i g(xi). It is easy to see that f is well defined, 1-Lipschitz, and
MD(f, x)(·) exists and is a seminorm for x ∈ `1 with xi 6= 0 for all i ∈ N; call
this set P . We see that `1 \ P is a countable union of hyperplanes {xi = 0},
and thus it is Aronszajn null. Let x ∈ P . It is easily seen that

MD(f, x)(u) =
∑

i

∣

∣g(sign(xi)) · ui
∣

∣ (u ∈ `1).

If there exists an infinite A = Ax ⊂ N such that xi < 0 for all i ∈ A, then note
that for i ∈ A and y = x+ 2|xi|ei we have

∣

∣f(y)− f(x)
∣

∣−MD(f, x)(2|xi|ei) =
∣

∣g(xi + 2|xi|)
∣

∣ = |xi| =
‖y − x‖

2
.

If xi > 0 for all i > i0 for some i0 ∈ N, then for y = x− 2|xi|ei we have

∣

∣f(y)− f(x)
∣

∣−MD(f, x)(2|xi|ei) =
∣

∣g(xi − 2|xi|)− g(xi)
∣

∣− 2|xi| =
‖y − x‖

2
.

Thus (1.2) does not hold for any x ∈ P .

We obtain the following theorem.

Theorem 5.3. Let X,Y be separable Banach spaces, and let f : X 7→ Y ∗ be a
mapping. Let G be the set of all points x ∈ X at which f is Lipschitz. Then
there exists a set E ∈ A such that for each x ∈ G\E we have that f is metrically
Gâteaux differentiable at x, f is w∗-Gâteaux differentiable at x, and

MD(f, x)(w) = ‖wd(f, x)(w)‖ for all w ∈ X. (5.1)

Proof. Note that there exists an isometric embedding Ψ of Y ∗ to `∞ (take a
dense sequence {yi} ⊂ SY and define Ψ(y∗) = {〈y∗, yi〉}). It is easy to see that
Ψ∗|`1 is a quotient mapping from `1 onto Y . Let Am,k be from Lemma 2.4. Order
the sequence {Am,k} into a single sequence; call it {Gj}. Then there are Lj > 0
such that f |Gj

is Lj-Lipschitz, and δj > 0 such that ‖f(x)−f(w)‖ ≤ Lj‖x−w‖
for all x ∈ Gj and w ∈ X with ‖x − w‖ < δj. Since the distance function
dist(·, Gj) is 1-Lipschitz on X, by Aronszajn’s theorem (see [3, Theorem 1]),
there exists a Borel set Dj such that X \ Dj ∈ A and dist(·, Gj) is Gâteaux
differentiable on Dj. Then Gj \ Dj ∈ A. Fix j ∈ N. By [4, Lemma 1.1 (ii)],
we can extend Ψ ◦ f |Gj

to Lj-Lipschitz mapping fj : X 7→ `∞. By Theorem 4.3
there exist Ej ∈ A such that fj is metrically Gâteaux differentiable at x, fj is
w∗-Gâteaux differentiable at x, and (5.1) holds for x ∈ Gj \ Ej. If x ∈ (Dj ∩
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Gj) \ Ej, then by Lemma 4.4 (ii) (applied to f , f̃ = fj, G = Gj, D = Gj ∩Dj,
L = Lj, and δ = δj) we obtain that f is metrically Gâteaux differentiable at x,
f is w∗-Gâteaux differentiable at x, and (5.1) holds.

Now define E =
⋃

j(Ej ∩ Gj) ∪
⋃

j(Gj \ Dj). If x ∈ S(f) \ E, then there
exists j ∈ N such that x ∈ (Dj ∩Gj) \ Ej and the conclusion follows.

As a consequence of Theorem 4.3, we obtain the following theorem. Its proof
follows the same lines as the proof of Theorem 5.3 (this time using part (i) of
Lemma 4.4) and thus we omit it.

Theorem 5.4. Let X,Y be Banach spaces with X separable, and let f : X 7→ Y

be a mapping. Let G be the set of all points x ∈ X at which f is Lipschitz. Then
there exists a set E ∈ A such that for each x ∈ G\E we have that f is metrically
Gâteaux differentiable at x.

Let us finish with a lemma and two propositions that suggest an application
of the metric differential. Similar reasoning was used e.g. in [11]. For f : X 7→ Y

and x, u ∈ X define the tangent of f at x in the direction u as

τ(f, x)(u) = lim
t→0

sign(t)
f(x+ tu)− f(x)

‖f(x+ tu)− f(x)‖
.

If X = R, put τ(f, x) = τ(f, x)(1) and md(f, x) = MD(f, x)(1).

Lemma 5.5. Let X,Y be Banach spaces. Let f : X 7→ Y be such that
f is directionally metrically differentiable at x and for each u ∈ X either
MD(f, x)(u) = 0 or τ(f, x)(u) exists. Then f is directionally differentiable
at x.

Proof. If MD(f, x)(u) = 0, then obviously D(f, x)(u) = 0, otherwise we have

D(f, x)(u) = lim
t→0

t−1(f(x+ tu)− f(x)) = MD(f, x)(u) · τ(f, x)(u).

Proposition 5.6. Let Y be a Banach space, and let f : [0, 1] 7→ Y be a
pointwise-Lipschitz mapping such that f ′(x) doesn’t exist for any x ∈ [0, 1].2

Then if md(f, x) exists, then md(f, x) > 0, and thus for almost all x ∈ [0, 1] we
have that τ(f, x) doesn’t exist.

Proof. By Theorem 2.5, md(f, x) exists for almost all x ∈ [0, 1]. If τ(f, x) exists,
then we have a contradiction with Lemma 5.5 and our assumption.

We have the following characterization of RNP in terms of existence of
tangents.

2Existence of such a Lipschitz function is equivalent to Y failing the RNP; see, e.g., [4].
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Proposition 5.7. Let X be a Banach space. Then X has the RNP if and only
if for every non-constant Lipschitz function f : [0, 1] 7→ X there exists a set
A ⊂ [0, 1] with λ(A) > 0 and such that τ(f, x) exists for all x ∈ A.

Proof. If X has the RNP, then every Lipschitz function f : [0, 1] 7→ X is almost
everywhere differentiable. Because f is non-constant, we have that f ′(x) 6= 0
for all x in a set of positive measure; call it A (otherwise f ≡ 0 in [0, 1] by [10,

Lemma 2.1]). Thus τ(f, x) = f ′(x)
‖f ′(x)‖

exists for all x ∈ A.

Suppose that X satisfies the condition. Let f : [0, 1] 7→ X be a non-constant
Lipschitz function. By Theorem 1.1 we have that md(f, x) exists for almost all
x ∈ [0, 1]. Thus there exists x ∈ A such that md(f, x) exists. Now by Lemma 5.5
we obtain that f ′(x) exists. Thus X has the RNP by [4, Theorem 5.21].
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