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1. Introduction

In this work we study the existence of asymptotically almost periodic and almost
periodic solutions for a class of partial neutral integro-differential equation with
unbounded delay modelled in the form

d

dt
D(t, ut) = AD(t, ut) +

∫ t

0

B(t− s)D(s, us)ds+ g(t, ut), (1)

where A : D(A) ⊂ X 7→ X, B(t) : D(B(t)) ⊂ X 7→ X, t ≥ 0, are linear
closed and densely defined operators on a Banach space X; D(B(t)) ⊃ D(A)
for every t ≥ 0; the history xt : (−∞, 0] 7→ X, xt(θ) = x(t+ θ), belongs to some
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abstract space B described axiomatically; D(t, ϕ) = ϕ(0)+f(t, ϕ) and f(·), g(·)
are appropriate functions.

The existence of almost periodic and asymptotically almost periodic solu-
tions is one of the most attracting topics in the qualitative theory of differential
equations due to their significance in physical sciences. The existence of these
type of solution for the case which f ≡ 0 is studied in [5, 11, 16] among other
papers. The cases of ordinary neutral differential equations (A ≡ 0) and ab-
stract partial neutral differential equations (B ≡ 0) have been treated recently
in [21, 24] and [15], respectively. To the best of our knowledge, nothing has
been done in terms of “partial” neutral integro-differential equations. This fact
is the main motivation of this work.

Neutral differential equations arise in many areas of applied mathematics
and for this reason, this type of equation has received much attention in recent
years. The literature relative to ordinary neutral differential equations is very
extensive, and we suggest to the reader the Hale & Lunel book [9] concerning
this matter. Referring to partial neutral functional differential equations, we
cite the pioneer Hale paper [10] and Wu [27, 28] for finite delay equations and
Hernández & Henriquez [12, 13], Hernández [14] for the unbounded delay one.

The system (1) permits the abstract formulation of some integro-differential
system which arises, for instance, in the theory development in Gurtin & Pip-
kin [8] and Nunziato [22] for the description of heat conduction in materials
with fading memory. In the classic heat conduction theory, it is assumed that
the internal energy and the heat flux depends linearly on the temperature u(·)
and on ∇u(·). Under these conditions, the classic heat equation describe suf-
ficiently well the evolution of the temperature in different type of materials.
However, this description is not satisfactory in materials with fading memory.
In the theory developed in [8, 22], the internal energy and the heat flux are
described as functionals of u and ux. The next system has been frequently used
to describe this phenomena (see, for instance, [1, 4, 19, 25])

d

dt

[
c0u(t, x) +

∫ t

−∞

a1(t− s)u(s, x)ds

]
= c14u(t, x) +

∫ t

−∞

a2(t− s)4u(s, x)ds

u(t, x) = 0, x ∈ ∂Ω.

In this system, Ω is an open bounded subset of R
n with smooth boundary;

(t, x) ∈ [0,∞)× Ω; u(t, x) represents the temperature in x at the time t; c0, c1
are physical constants and ai : R 7→ R, i = 1, 2, are the internal energy and
the heat flux relaxation, respectively. By assuming that the solution u(·) is
known on (−∞, 0] and that a1 = a2, we can transform this system into the
neutral system (1) by defining B(t) = 0 for t ≥ 0. For additional details related
abstract partial integro-differential equations we cite [1, 3, 4, 6, 7, 18, 23].
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This paper has four sections. In Section 2 we mention some concepts,
notations and results referents resolvent of operators, asymptotically almost
periodic functions and almost periodic functions needed to establish our results.
The existence of asymptotically almost periodic and almost periodic solutions
for system (1) is discussed in Section 3. In Section 4 one example is considered.

2. Preliminaries

In this paper, (X, ‖ · ‖) is an abstract Banach space; A : D(A) ⊂ X 7→ X

and B(t) : D(B(t)) ⊂ X 7→ X, t ≥ 0, are linear, closed and densely defined
operators on X with D(B(t)) ⊃ D(A) for each t ≥ 0. To obtain our results we
always assume that the integro-differential abstract Cauchy problem

x′(t) = Ax(t) +

∫ t

0

B(t− s)x(s)ds, t ≥ 0, (2)

x(0) = x0 ∈ X, (3)

has an associated resolvent family of bounded linear operators (R(t))t≥0 on X.

Definition 2.1. A one parameter family (R(t))t≥0 of bounded linear operators
from X into X is called an strongly continuous resolvent operator for (2)–(3) if
the following conditions are satisfied:

(i) R(0) = Id, and the function R(t)x is continuous on [0,∞) for every x ∈ X;

(ii) R(t)D(A) ⊂ D(A) for all t ≥ 0 and for x ∈ D(A), AR(t)x is continuous
on [0,∞) and R(t)x is continuously differentiable on [0,∞);

(iii) for x ∈ D(A), the next resolvent equations are satisfied:

R′(t)x = AR(t)x+

∫ t

0

B(t− s)R(s)xds, t ≥ 0

R′(t)x = R(t)Ax+

∫ t

0

R(t− s)B(s)xds, t ≥ 0.

In this paper, we always assume that the resolvent family (R(t))t≥0 is uni-

formly exponentially stable and that M̃, δ are positive constants such that
‖R(t)‖ ≤ M̃e−δt for every t ≥ 0. For a complementary literature related to
partial integro-differential equations and the theory of resolvent of operators,
we cite the papers [6, 7].

In this work, the phase space B is defined axiomatically. Specifically, B is
a linear space of functions mapping (−∞, 0] into X endowed with a seminorm
‖ · ‖B and verifying the following axioms:

(A) If x : (−∞, σ + a) 7→ X, a > 0, σ ∈ R, is continuous on [σ, σ + a) and
xσ ∈ B, then for every t ∈ [σ, σ + a) the following conditions hold:
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(i) xt is in B;

(ii) ‖x(t)‖ ≤ H‖xt‖B;

(iii) ‖xt‖B ≤ K(t− σ) sup{‖x(s)‖ : σ ≤ s ≤ t}+M(t− σ)‖xσ‖B,

where H > 0 is a constant; K,M : [0,∞) 7→ [1,∞), K is continuous,
M is locally bounded and H,K,M are independent of x(·).

(A1) For the function x(·) in (A), xt is a B-valued continuous function on
[σ, σ + a).

(B) The space B is complete.

(C2) If (ϕn)n∈N is an uniformly bounded sequence in C((−∞, 0];X) formed
by functions with compact support and ϕn → ϕ uniformly on compact
subset of (−∞, 0], then ϕ ∈ B and ‖ϕn − ϕ‖B → 0 as n→∞.

Definition 2.2. Let S(t) : B 7→ B be the C0-semigroup defined by S(t)ϕ(θ) =
ϕ(0) for θ ∈ [−t, 0] and S(t)ϕ(θ) = ϕ(t + θ) for θ ∈ (−∞,−t]. The space B is
called a fading memory if ‖S(t)ϕ‖B → 0 as t → ∞ for every ϕ ∈ B such that
ϕ(0) = 0.

Remark 2.3. In this paper, L > 0 is such that ‖ϕ‖B ≤ L supθ≤0 ‖ϕ(θ)‖ for ev-
ery ϕ ∈ B continuous and bounded. Moreover, for the case in which B is a fading
memory, we will assume that K is a constant such that max{K(t),M(t)} ≤ K

for every t ≥ 0. For details with respect to these assumptions see [17, Proposi-
tion 7.1.1] and [17, Proposition 7.1.5].

For additional literature concerning abstract phase space, we refer to the reader
the book Hino, Murakami & Naito [17].

Next we mention a few results, definitions and notations related to asymp-
totically almost periodic and almost periodic functions. Next, (Z, ‖ · ‖Z),
(W, ‖ · ‖W ) are Banach spaces and C0([0,∞);Z) is the subspace of C([0,∞);Z)
formed by the functions that vanishes at infinity.

Definition 2.4. A function F ∈ C(R;Z) is called almost periodic (a.p.) if for
every ε > 0 there exists a relatively dense subset of R, denoted by H(ε, F, Z),
such that

‖F (t+ ξ)− F (t)‖Z < ε, t ∈ R, ξ ∈ H(ε, F, Z).

Definition 2.5. A function F ∈ C([0,∞);Z) is called asymptotically almost pe-
riodic (a.a.p.) if there exists w ∈ C0([0,∞);Z) and an almost periodic function
g(·) such that F (·) = g(·) + w(·).

The next Lemmas are useful characterizations of a.p. and a.a.p. functions.

Lemma 2.6 ([29, p. 25]). A function f ∈ C(R;Z) is almost periodic if, and

only if, the set of functions {Htf : t ∈ R}, where (Htf)(s) = f(s + t), is
relatively compact in C(R;Z).
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Lemma 2.7 ([29, Theorem 5.5]). A function F ∈ C([0,∞);Z) is asymptotically
almost periodic if and only if, for every ε > 0 there exists L(ε, F, Z) > 0 and a

relatively dense subset of [0,∞), denoted by T (ε, F, Z), such that

‖F (t+ ξ)− F (t)‖Z < ε, t ≥ L(ε, F, Z), ξ ∈ T (ε, F, Z).

In this paper, AP (Z) and AAP (Z) are the spaces

AP (Z) = {F ∈ C(R;Z) : F is a.p.}

AAP (Z) = {F ∈ C([0,∞);Z) : F is a.a.p.},

endowed with the norms |‖u‖|Z = sups∈R
‖u(s)‖ and ‖u‖Z = sups≥0 ‖u(s)‖,

respectively. We know from [29] that AP (Z) and AAP (Z) are Banach spaces.

Definition 2.8. Let Ω be an open subset of W .

(a) A function F ∈ C(R×Ω;Z) is called pointwise almost periodic (p.a.p.) if
F (·, x) ∈ AP (Z) for every x ∈ Ω.

(b) A function F ∈ C([0,∞)×Ω;Z) is called pointwise asymptotically almost

periodic (p.a.a.p.) if F (·, x) ∈ AAP (Z) for every x ∈ Ω.

(c) A function F ∈ C(R×Ω;Z) is called uniformly almost periodic (u.a.p.), if
for every ε > 0 and every compact K ⊂ Ω there exists a relatively dense
subset of R, denoted by H(ε, F,K,Z), such that

‖F (t+ ξ, y)− F (t, y)‖Z ≤ ε, (t, ξ, y) ∈ R×H(ε, F,K,Z)×K.

(d) A function F : C([0,∞)×Ω;Z) is called uniformly asymptotically almost

periodic (u.a.a.p.), if for every ε > 0 and every compact K ⊂ Ω there
exists a relatively dense subset of [0,∞), denoted by T (ε, F,K,Z), and
L(ε, F,K,Z) > 0 such that

‖F (t+ξ, y)−F (t, y)‖Z ≤ ε, t ≥ L(ε, F,K,Z), (ξ, y) ∈ T (ε, F,K,Z)×K.

The next lemma summarizes some properties which are fundamental to
obtain our results. This result can be obtained from [26, Theorem 1.2.7] and
[17, Proposition 7.1.3].

Lemma 2.9. Let Ω ⊂ W be an open set. Then the following properties hold:

(a) If F ∈ C(R × Ω;Z) is pointwise almost periodic and satisfies a local

Lipschitz condition at x ∈ Ω, uniformly at t, then F is pointwise almost

periodic.

(b) If F ∈ C([0,∞) × Ω;Z) is pointwise asymptotically almost periodic and

satisfies a local Lipschitz condition at x ∈ Ω, uniformly at t, then F is

pointwise asymptotically almost periodic.
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(c) If x ∈ AP (X), then t→ xt ∈ AP (B). Moreover, if B is a fading memory

space and z ∈ C(R;X) is such that z0 ∈ B and z|[0,∞) ∈ AAP (X), then
t 7→ zt ∈ AAP (B).

(d) If F ∈ C(R× Ω;Z) is uniformly almost periodic and y ∈ AP (W ) is such

that {y(t) : t ∈ R}
W
⊂ Ω, then F (t, y(t)) ∈ AP (Z).

(e) If F ∈ C([0,∞) × Ω;Z) is asymptotically almost periodic, y ∈ AAP (W )

and {y(t) : t ∈ R}
W
⊂ Ω, then F (t, y(t)) ∈ AAP (Z).

The terminology and notations in this paper are those generally used in
functional analysis. In particular, the notation L(Z,W ) stands for the Banach
space of bounded linear operators from Z into W , and we abbreviate this no-
tation to L(Z) when Z = W. Moreover Br(x, Z) denotes the closed ball with
center at x and radius r > 0 in Z.

3. Existence Results

In this section we study the existence of asymptotically almost periodic and
almost periodic solutions of (1). The next result is proved using the ideas and
estimates in [29, Example 2.2] and we include the proof by completeness.

Lemma 3.1. Let v ∈ AAP (X) and u : [0,∞) 7→ X be the function defined by

u(t) =
∫ t

0
R(t− s)v(s)ds, t ≥ 0. Then u ∈ AAP (X).

Proof. It’s clear that u(·) is well defined and continuous. Let ε > 0 be given and

η =
∫∞

0
M̃e−δsds. Let T ( ε

3
η−1, v,Xµ), L = L( ε

3
η−1, v,X) be as in Lemma 2.7,

and let L1 > 0 be such that 2‖v‖Xηe
δLe−δL1 ≤ ε

3
. For t ≥ L + L1 and ξ ∈

T ( ε
3
η−1, v,X) we get

‖u(t+ ξ)− u(t)‖

≤

∫ ξ

0

‖R(t+ ξ − s)v(s)‖ds+

∫ t

0

‖R(t− s)(v(s+ ξ)− v(s))‖ds

≤ e−δt‖v‖X

∫ ξ

0

M̃e−δ(ξ−s)ds+

∫ L

0

‖R(t− s)‖‖v(s+ ξ)− v(s)‖ds

+

∫ t

L

‖R(t− s)‖‖v(s+ ξ)− v(s)‖ds

≤ e−δt‖v‖Xη + 2‖v‖Xe
−δ(t−L)

∫ L

0

M̃e−δ(L−s)ds+
ε

3η

∫ ∞

0

M̃e−δsds

≤ e−δt‖v‖Xη + 2‖v‖Xe
δLηe−δt +

ε

3
,

which implies that

‖u(t+ ξ)− u(t)‖ ≤ ε, t ≥ L
(
ε
3
η−1, v,X

)
+ L1, ξ ∈ T

(
ε
3
η−1, v,X

)
.
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This inequality and Lemma 2.7 permits to conclude that u(·) is a.a.p. The proof
is now completed.

To prove our existence results we always assume that the next condition
holds.

(H1) The functions f, g : R× B 7→ X are continuous and there are continuous
and nondecreasing functions Lg, Lf : [0,∞) 7→ [0,∞) such that

‖f(t, ψ1)− f(t, ψ2)‖ ≤ Lf (r)‖ψ1 − ψ2‖B

‖g(t, ψ1)− g(t, ψ2)‖ ≤ Lg(r)‖ψ1 − ψ2‖B,

for every t ∈ R and every ψi ∈ B such that ‖ψi‖B ≤ r.

From the theory of resolvent operators, see [7], we introduce the following
concept of mild solution of (1).

Definition 3.2. A function u : (−∞, σ + a) 7→ X, a > 0, is called a mild

solution of the neutral integro-differential system (1) on [σ, σ + a), if uσ ∈ B,
u |[σ,σ+a) is continuous and

u(t) = R(t)(ϕ(0) + f(σ, ϕ))− f(t, ut) +

∫ t

σ

R(t− s)g(s, us)ds, t ∈ [σ, σ + a).

Now, we can establish our first existence result.

Theorem 3.3. Assume that B is a fading memory space, f(·) and g(·) are

p.a.a.p. and that f(t, 0) = g(t, 0) = 0 for every t ∈ R. If
[
Lf (0)+

M̃Lg(0)

δ

]
K < 1,

where K is the constant introduced in Remark 2.3, then there exists ε > 0 such

that for each ϕ ∈ Bε(0,B) there exists a mild solution u(·, ϕ) of (1) on [0,∞)
such that u(·, ϕ) ∈ AAP (X) and u0(·, ϕ) = ϕ.

Proof. Let r > 0 and 0 < λ < 1 be such that

Θ = M̃(H + Lf (λr))λ+

[
Lf ((λ+ 1)Kr) +

M̃Lg((λ+ 1)Kr)

δ

]
(λ+ 1)K < 1.

We affirm that the assertion holds for ε = λr. Let ϕ ∈ Bε(0,B). On the space

D = {u ∈ AAP (X) : u(0) = ϕ(0), ‖u(t)‖ ≤ r, t ≥ 0 }

endowed with the metric d(u, v) = ‖u − v‖X , we define the operator Γ : D 7→
C([0,∞);X) by

Γu(t) = R(t)(ϕ(0) + f(0, ϕ))− f(t, ũt) +

∫ t

0

R(t− s)g(s, ũs)ds, t ≥ 0,
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where ũ : R 7→ X is such that ũ0 = ϕ on (−∞, 0) and ũ = u on [0,∞). From
the properties of (R(t))t≥0 and f(·), g(·), we infer that Γu(·) is well defined and
that Γu ∈ C([0,∞);X). Moreover, from Lemmas 2.9 and 3.1 it follows that
Γu ∈ AAP (X).

Next, we prove that Γ(·) is a contraction from D into D. Let u ∈ D and
t ≥ 0. From the inequality ‖ũt‖ ≤ (λ + 1)Kr, which follows from the space
axioms, we get

‖Γu(t)‖ ≤ M̃(Hλr + Lf (λr)λr) + Lf ((λ+ 1)Kr)(λ+ 1)Kr

+

∫ t

0

M̃e−δ(t−s)Lg((λ+ 1)Kr)(λ+ 1)Krds

≤ M̃(H + Lf (λr))λr + Lf ((λ+ 1)Kr)(λ+ 1)Kr

+
M̃Lg((λ+ 1)Kr)(λ+ 1)Kr

δ
≤ Θr,

which implies that Γ(D) ⊂ D. On the other hand, for u, v ∈ D we see that

‖Γu(t)− Γv(t)‖ ≤ ‖f(t, ũt)− f(t, ṽt)‖+

∫ t

0

M̃‖g(s, ũs)− g(s, ṽs)‖ds

≤ Lf ((λ+ 1)Kr)‖ũt − ṽt‖X

+

∫ t

0

M̃Lg((λ+ 1)Kr)e−δ(t−s)‖ũs − ṽs‖Bds

≤

[
Lf ((λ+ 1)Kr) +

M̃Lg((λ+ 1)Kr)

δ

]
K‖u− v‖X ,

which shows that Γ(·) is a contraction from D into D.

The existence of a mild solution with the required properties is now a con-
sequence of the contraction mapping principle. The proof is completed.

The next result is proved using the ideas and estimates in the proof of the
previous theorem and because of this we choose to omit the proof.

Theorem 3.4. If B is a fading memory space; f(·) and g(·) are p.a.a.p; Lf (t) =

Lf and Lg(t) = Lg for all t ≥ 0 and
[
Lf +

M̃Lg
δ

]
K < 1, then for every ϕ ∈ B

there exists a unique mild solution, u(·, ϕ), of (1) on [0,∞) such that u(·, ϕ) ∈
AAP (X) and u0(·, ϕ) = ϕ.

Now we discuss the existence of almost periodic solutions for (1).

Theorem 3.5. Assume that f(·) and g(·) are p.a.p. functions. If Lf (t) = Lf

and Lg(t) = Lg for all t ≥ 0 and L
[
Lf + M̃Lg

δ

]
< 1, where L is the constant

in Remark 2.3, then there exists a unique u ∈ AP (X) such that u(·) is a mild

solution of (1) on every interval [σ, σ + a).
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Proof. Let Γ : AP (X) 7→ C(R;X) be the map defined by

Γu(t) = −f(t, ut) +

∫ t

−∞

R(t− s)g(s, us)ds, t ∈ R.

From the assumption, it is easy to see that Γu(·) is continuous and from Lem-
mas 2.6 and 2.9 we infer that v(t) = (f(t, ut), g(t, ut)) ∈ AP (X ×X). If t ∈ R

and ξ ∈ H(ε, v,X ×X) we get

‖Γu(t+ ξ)− Γu(t)‖ ≤ ‖f(t+ ξ, ut+ξ)− f(t, ut)‖

+

∫ t

−∞

M̃e−δ(t−s)‖g(s+ ξ, us+ξ)− g(s, us)‖ds

≤ ε+

∫ t

−∞

M̃e−δ(t−s)ε ds

≤ ε

(
1 +

M̃

δ

)
,

which implies that Γu ∈ AP (X). Thus, Γ(·) is well defined and with values in
AP (X). Moreover, for u, v ∈ AP (X) we find that

‖Γu(t)− Γv(t)‖ ≤ Lf‖ut − vt‖B +

∫ t

−∞

M̃e−δ(t−s)Lg‖us − vs‖Bds

≤ L

[
Lf +

M̃Lg

δ

]
|‖u− v‖|X ,

which permits conclude that Γ(·) is a contraction. Now, the assertion is a
consequence of the contraction mapping principle.

4. Examples

In this section we apply our result to establish the existence of asymptotically
almost periodic and almost periodic solutions for a concrete partial functional
differential equation with unbounded delay. We have already introduced the
required technical framework in Section 3.

Let h : (−∞,−r) 7→ R be a positive Lebesgue integrable function and
assume that there exists a non-negative and bounded function γ on (−∞, 0]
such that h(ξ + θ) ≤ γ(ξ)h(θ), for all ξ ≤ 0 and every θ ∈ (−∞,−r) \ Nξ,
where Nξ ⊆ (−∞,−r) is a set with Lebesgue measure zero. The space B =
Cr × Lp(h;X) consists of all classes of functions ϕ : (−∞, 0] 7→ X such that ϕ
is continuous on [−r, 0], Lebesgue-measurable and h‖ϕ‖p is Lebesgue integrable
on (−∞,−r). The seminorm in B, denoted by ‖ · ‖B, is defined by

‖ϕ‖B := sup{‖ϕ(θ)‖ : −r ≤ θ ≤ 0}+

(∫ −r

−∞

h(θ)‖ϕ(θ)‖pdθ

) 1

p

.
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Assume that h(·) verifies the conditions (g-5), (g-6) and (g-7) in the nomen-
clature of [17]. In this conditions, B is a fading memory space which verifies
axioms (A), (A-1), (B) and (C2), see [17, Theorem 1.3.8] and [17, Exam-
ple 7.1.7] for details. Moreover, when r = 0 and p = 2, we have that H = 1,

M(t) = γ(−t)
1

2 , K(t) = 1 +
( ∫ 0

−t
h(θ) dθ

) 1

2 for t ≥ 0, L =
( ∫ 0

−∞
h(s) ds

) 1

2 , and

K =
(
sups≤0 |γ(s)

1

2 |+ 1 +
(∫ 0

−∞
h(θ)dθ

) 1

2

)
.

LetX = H1
0 (Ω)×L

2(Ω), where Ω ⊂ R
3 is an open set with smooth boundary

of class C∞; α(·), β(·) are R-valued functions of class C2 on [0,∞) with α(0) > 0,
β(0) > 0 and A : D(A) = (H2(Ω) ∩ H1

0 (Ω)) × H1
0 (Ω) 7→ X be the operator

defined by

A

(
x

y

)
=

(
y

α(0)x′′ − β(0)y

)
.

We know from Chen [2], that A is the infinitesimal generator of a uniformly
exponentially stable C0-semigroup (T (t))t≥0 on X. In the sequel, we will assume

that M̃, γ are positive constants such that ‖T (t)‖ ≤ M̃e−γt for all t ≥ 0.

Let B(t) = AF (t) where F (t) : X 7→ X, t ≥ 0, is defined by

F = (Fij) =




0 0

−β′(t) + β(0)
α′(t)

α(0)

α′(t)

α(0)


 .

Assume functions α(i)(·), β(i)(·), i = 1, 2, be bounded, uniformly continuous and

that max{‖F22(t)‖, ‖F21(t)‖} ≤
γe−γt

2M
and max{‖F ′22(t)‖, ‖F

′
21(t)‖} ≤

γ2e−γt

4M2 , for
t ≥ 0. Under these conditions, the abstract integro-differential system

x′(t) = Ax(t) +

∫ t

0

AF (t− s)x(s)ds,

has associated a resolvent of operator (R(t))t≥0 on X such that ‖R(t)‖ ≤ M̃e
−γt

2

for t ≥ 0, see Grimmer [6, p. 343] for details.

Motivated by the abstract systems studied in [1, 4, 19, 25], we consider the
neutral integro-differential system

∂

∂t

[
u(t, ξ) +

∫ t

−∞

a1(t− s)u(s, ξ)ds

]

= A

(
u(t, ξ) +

∫ t

−∞

a1(t− s)u(s, ξ)ds

)

+

∫ t

0

AF (t− s)

(
u(s, ξ) +

∫ s

−∞

a1(s− τ)u(τ, ξ)dτ

)
ds

+

∫ t

−∞

a2(t− s)u(s, ξ)ds,

(4)
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where ai : R → R, i = 1, 2, are continuous and Li =
( ∫ 0

−∞

a2

i (s)

h(s)
ds
) 1

2 < ∞

for i = 1, 2. By assuming that u(·) is known on (−∞, 0], we can transform this
system into a delayed system. In fact, if B := C0×L

p(h;X) and f, g : R×B 7→ X

are the operators defined by

f(t, ϕ)(ξ) =

∫ 0

−∞

a1(−s)ϕ(s)(ξ) ds

D(t, ϕ)(ξ) = ϕ(0)(ξ) + f(t, ϕ)(ξ)

g(t, ϕ)(ξ) =

∫ 0

−∞

a2(−s)ϕ(s)(ξ) ds,

then the system (4) can be rewritten as an abstract system of the form (1).
Moreover, the functions f(t, ·), g(t, ·) are bounded linear operator with
‖f(t, ·)‖L(B,X) ≤ L1 and ‖g(t, ·)‖L(B,X) ≤ L2 for every t ≥ 0.

The next result follows from Theorems 3.3 and 3.5. We will omit the proof.

Proposition 4.1. Let K =
(
sups≤0 |γ(s)

1

2 |+1+
( ∫ 0

−∞
h(θ)dθ

) 1

2

)
. Assume that

the previous conditions are verified. If

K ·

[(∫ 0

−∞

a2
1(s)

h(s)
ds

) 1

2

+
M̃

γ

(∫ 0

−∞

a2
2(s)

h(s)
ds

) 1

2

]
< 1,

then there exists u ∈ AAP (X) and v ∈ AP (X) such that u(·) is a mild solution
of (4) on [0,∞) and v(·) is a mild solution of (4) on each interval of the form

[σ, σ + a) with a > 0 and σ ∈ R.

Acknowledgement. The authors want express their thanks to the referee for
his/her valuable comments and suggestions on the paper.
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