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Abstract. In this paper we study the differentiation and maximal functions of com-
plex Borel measures on the unit circle of C with respect to the measures associated to
Dunkl differential-difference operators for dihedral groups. We prove that the Poisson
integrals corresponding to these differential-difference operators have nontangential
limits almost everywhere. Our approach relies on the proof of the doubling condition
to obtain an appropriate covering lemma.
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1. Notation and statement of the main results

The main purpose of this paper is to study the nontangential boundary be-
havior of Poisson integrals associated to Dunkl operators for dihedral groups.
The corresponding Dirichlet problem has been studied previously by the author
in [7]. Problems of this kind were considered for Poisson integrals associated to
ultraspherical expansions in [4]. For more information about Dunkl operators,
see [5].

For every integer q such that q ≥ 1, let Dq be the dihedral group of order 2q,

that is, Dq consists of the rotations z 7→ ze
2πil
q and the reflections z 7→ z e

2πil
q ,

0 ≤ l ≤ q − 1, z ∈ C.
Fix an integer k ≥ 1 and real numbers α, β > 0, or β ≥ 0 when k is odd,

and consider the weight function h defined by

h(z) =
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which is a product of powers of the linear functions on R
2 ∼= C whose zero-sets

are the mirrors of the reflections in Dk if α > 0, β = 0, and D2k if α, β > 0
(see [1]).

Consider the measure dm(eiθ) = cα,βh(e
iθ)2dθ on the unit circle with

cα,β =

(
∫ π

−π

h(eiθ)2dθ

)−1
=

(

2B
(

α+
1

2
, β +

1

2

))−1
,

where B denotes the beta function.
The complex Dunkl operators are defined for a complex-valued function f

of class C1 on the unit disc D = {z ∈ C : |z| < 1} by

Thf(z) =
∂f(z)

∂z
+ α

k−1
∑

l=0

f(z)− f(zω2l)

z − zω2l
+ β

k−1
∑

l=0

f(z)− f(zω2l+1)

z − zω2l+1

and

T hf(z) =
∂f(z)

∂z
− α

k−1
∑

l=0

f(z)− f(zω2l)

z − zω2l
ω2l − β

k−1
∑

l=0

f(z)− f(zω2l+1)

z − zω2l+1
ω2l+1,

where ω = e
πi
k (see [2], [3]).

We write S1 for the unit circle {z ∈ C : |z| = 1}, and B(ζ, δ) for the arc
{z ∈ S1 : |z − ζ| < δ}, where ζ ∈ S1 and δ > 0.

The total variation measure of a complex Borel measure µ on S1 is denoted
by |µ|, and µ ⊥ m means that µ is singular with respect to m, i.e., that there is
a Borel set E ⊂ S1 such thatm(E) = 0 and |µ|(E) = ‖µ‖, where ‖µ‖ = |µ|(S1).

Define the maximal function Mµ of a complex Borel measure µ on S1 by

(Mµ)(ζ) = sup
δ>0

|µ|(B(ζ, δ))
m(B(ζ, δ))

(1)

for ζ ∈ S1. In Theorem 2.4 below we establish an estimate for the maximal
function, that will be used to prove the following

Theorem 1.1. If f ∈ L1(m), then

lim
δ→0

1

m(B(ζ, δ))

∫

B(ζ,δ)

|f − f(ζ)| dm = 0

for almost every ζ ∈ S1. Hence

f(ζ) = lim
δ→0

1

m(B(ζ, δ))

∫

B(ζ,δ)

f dm

almost everywhere.
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Theorem 1.2. If µ is a complex Borel measure on S1 and µ ⊥ m, then

lim
δ→0

µ

m
(B(ζ, δ)) = 0

almost everywhere with respect to m.

Combining these two theorems, we obtain the following corollary:

Corollary 1.3. If µ is a complex Borel measure on S1, then its derivative

(Dµ)(ζ) = lim
δ→0

µ

m
(B(ζ, δ))

exists almost everywhere with respect to m; if dµ = f dm+ dµs with f ∈ L1(m)
and µs ⊥ m, then

(Dµ)(ζ) = f(ζ)

almost everywhere with respect to m.

In Section 3 below, we shall study the connection between the maximal
function Mµ and the class L logL of all Borel functions f on S1 that satisfy

∫

S1

|f | log+ |f | dm <∞,

where log+ |f(z)| = max(log |f(z)|, 0) for z ∈ S1. More precisely, we shall prove
the following

Theorem 1.4. If µ is a complex Borel measure on S1 for which Mµ ∈ L1(m),
then there is an f ∈ L logL such that dµ = f dm.

In Section 4, we assume β = 0 and consider the Poisson kernel P associated
to the h-Laplacian operator ∆h = 4ThT h. It is given for z, w ∈ C such that
|zw| < 1 by

P (z, w) =
1− |z|2|w|2

B(α, α + 1) |1− zw|2
∫ 1

0

uα−1(1− u)αdu
[

(1− u)|1− zkwk|2 + u|1− zkwk|2
]α (2)

(see [2, Theorems 1.3 and 2.1]), and it satisfies ∆hP (., w) = 0 on D, for fixed
w ∈ S1.

For γ > 1, we consider the nontangential approach region defined at a
boundary point ζ ∈ S1 by

Ωγ(ζ) = {z ∈ D : |z − ζ| < γ(1− |z|)}.

We shall establish the following result:
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Theorem 1.5. Assume β = 0. To every γ > 1 it corresponds a constant

C(γ) <∞ such that

sup
z∈Ωγ(ζ)

∣

∣

∣

∣

∫

S1

P (z, w)h(w)2dµ(w)

∣

∣

∣

∣

≤ C(γ)(Mµ)(ζ) (ζ ∈ S1) (3)

for all complex Borel measures µ on S1.

The Poisson integral P [f ] of a function f ∈ L1(m) is defined as in [7] by

P [f ](z) =

∫

S1

f(w)P (z, w)dm(w)

for z ∈ D. Theorem 1.5 will be combined with Theorem 1.1 and the results in
Section 2 to prove the following

Theorem 1.6. Assume β = 0. If f ∈ L1(dθ), then for almost every ζ ∈ S1,

lim
z→ζ, z∈Ωγ(ζ)

P [f ](z) = f(ζ)

for all γ > 1.

2. Differentiation of measures on S1

In what follows, the symbol B always denotes an arc B(ζ, δ), where ζ ∈ S1 and
δ > 0. If B = B(ζ, δ) and τ > 0, we write τB in place of B(ζ, τδ).

To prove the results of Sections 2 and 3, it is natural to follow the ideas used
in the classical case by Rudin [6] for the normalized rotation-invariant surface
measure on the unit sphere of C

N . However, some difficulties arise in proving
the finiteness of the constants

A(τ) := sup
B

m(τB)

m(B)
(τ > 1).

This is established in Lemma 2.1 below, and is trivial when m is replaced by
the measure dθ on S1.

Lemma 2.1. For any real number τ > 1,

A(τ) = sup
B

m(τB)

m(B)
<∞.
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Proof. Fix τ > 1. Since S1 is compact, it is enough to show that for every
ζ0 ∈ S1, there exist a neighborhood U(ζ0) of ζ0 in S1, δζ0 > 0, and Cζ0 ≥ 0 such
that

m(B(ζ, τδ))

m(B(ζ, δ))
≤ Cζ0 , for all ζ ∈ U(ζ0), δ ∈ (0, δζ0 ]. (4)

For ζ = eiϕ ∈ S1 and δ ∈ (0, 2], we have m(B(ζ, δ)) = G
(

ϕ, 2 arcsin δ
2

)

,
where

G(ϕ, θ) = cα,β

∫ ϕ+θ

ϕ−θ

(sin2 kt)α(cos2 kt)βdt (ϕ ∈ R, θ ∈ (0, π]).

Fix ζ0 = eiϕ0 ∈ S1. If ζ2k0 /∈ {−1, 1}, we have G(ϕ, θ) ∼ 2cα,βκζ0θ as
(ϕ, θ) → (ϕ0, 0), where κζ0 = (sin

2 kϕ0)
α(cos2 kϕ0)

β 6= 0, so that there are a
neighborhood U(ζ0) of ζ0 in S

1 and a number δζ0 > 0 such that U(ζ0), δζ0 and
Cζ0 = τ + 1 satisfy (4).

We now consider the case when ζ2k0 = ±1. We may assume ζ0 ∈ {1, e
iπ
2k },

because of the periodicity of t 7→ (sin2 kt)α(cos2 kt)β. For η ≥ 0, let fη be the
function defined by fη(t) = (t

2)ηt for any real number t (with the understanding
that f0(t) := t). Since

G(ϕ, θ) ∼ cα,βk
2α

2α + 1
[fα(ϕ+ θ)− fα(ϕ− θ)]

and

G
( π

2k
+ ϕ, θ

)

= cα,β

∫ ϕ+θ

ϕ−θ

(sin2 kt)β(cos2 kt)αdt

∼ cα,βk
2β

2β + 1
[fβ(ϕ+ θ)− fβ(ϕ− θ)]

as (ϕ, θ) → (0, 0), it is enough to see that for fixed η ≥ 0, there is δ̃ > 0 such
that the function Fη defined by

Fη(ϕ, δ) =
fη(ϕ+Θ(τδ))− fη(ϕ−Θ(τδ))
fη(ϕ+Θ(δ))− fη(ϕ−Θ(δ))

is bounded on R× (0, δ̃], where Θ(δ) = 2 arcsin( δ
2
).

If 0 < δ < 2
τ
, so that Θ(δ)

Θ(τδ)
≤ 1

τ
, and if |ϕ| > Θ(τδ), then

Fη(ϕ, δ) =
fη

(

1 + Θ(τδ)
|ϕ|

)

− fη

(

1− Θ(τδ)
|ϕ|

)

fη

(

1 + Θ(δ)
|ϕ|

)

− fη

(

1− Θ(δ)
|ϕ|

) =
Θ(τδ)

Θ(δ)

(

rϕ,δ
sϕ,δ

)2η

,
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where rϕ,δ and sϕ,δ are real numbers such that

|rϕ,δ − 1| <
Θ(τδ)

|ϕ| ≤ 1 and |sϕ,δ − 1| <
Θ(δ)

|ϕ| ≤
1

τ
,

so that we get

Fη(ϕ, δ) ≤
Θ(τδ)

Θ(δ)

(

2τ

τ − 1

)2η

for 0 < δ < 2
τ
and |ϕ| > Θ(τδ). Since we also have

Fη(ϕ, δ) ≤
fη(2Θ(τδ))

2fη(Θ(δ))
= 4η

(

Θ(τδ)

Θ(δ)

)2η+1

if |ϕ| ≤ Θ(τδ), the desired conclusion follows easily.
The following covering lemma will be used in the proofs of Theorems 2.4

and 3.1.

Lemma 2.2. If E is the union of a finite collection Φ of arcs B ⊂ S1, then Φ
has a disjoint subcollection Γ satisfying

E ⊂
⋃

Γ

3B (5)

and

m(E) ≤ A(3)
∑

Γ

m(B). (6)

Proof. Write the members Bn of Φ as B(ζn, δn) and index them so that δn ≥
δn+1. Set n1 = 1. Assume that p ≥ 1, n1 < . . . < np are chosen and
Bn1

, . . . , Bnp are pairwise disjoint. If Bn intersects ∪p
l=1Bnl for any n > np,

stop; if not, let np+1 be the first index such that Bnp+1
is disjoint from ∪p

l=1Bnl .
This process stops because Φ is finite, and we thus get a disjoint subcollection
Γ = {Bn1

, . . . , Bnq} of Φ.
Now consider an arc Bn ∈ Φ. Let p be the largest integer between 1 and q

such that n ≥ np. Then there is l ∈ {1, . . . , p} such that Bn intersects Bnl ,
and δn ≤ δnl , so that Bn ⊂ 3Bnl . Hence (5) holds, and, combined with the
definition of A(3), gives (6).

Remark 2.3. The maximal function Mµ of a complex Borel measure µ on S1

is lower semicontinuous. Indeed, for fixed δ > 0, ζ 7→ m(B(ζ, δ)) is continu-
ous on S1 by the definition of m, and ζ 7→ |µ|(B(ζ, δ)) is lower semicontinu-
ous because if ζ0 ∈ S1, δ′ ∈ (0, δ) and ζ ∈ B(ζ0, δ

′), we have |µ|(B(ζ, δ)) ≥
|µ|(B(ζ0, δ)) − |µ|(B(ζ0, δ)\B(ζ0, δ − δ′)). It follows that for fixed δ > 0, the
quotient in formula (1) is a lower semicontinuous function of ζ, and so is Mµ,
as the supremum of a collection of lower semicontinuous functions.
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Theorem 2.4. If µ is a complex Borel measure on S1, then for any t > 0,

m
(

{ζ ∈ S1 : (Mµ)(ζ) > t}
)

≤ A(3) t−1‖µ‖. (7)

Proof. Fix µ and t. Write Ut for the set {ζ ∈ S1 : (Mµ)(ζ) > t}, which is open
by Remark 2.3, and let K be a compact subset of Ut. For each ζ ∈ K we have
an arc B centered at ζ such that

|µ|(B) > tm(B), (8)

by the definition ofMµ. Cover K by the union of a finite collection Φ of arcs B
that satisfy (8). Applying Lemma 2.2 to Φ, we obtain a collection Γ of pairwise
disjoint arcs B satisfying (8), such that m(∪ΦB) ≤ A(3)

∑

Γm(B). It follows
that

m(K) ≤ A(3)
∑

Γ

m(B) < A(3) t−1
∑

Γ

|µ|(B) ≤ A(3) t−1‖µ‖.

Taking the supremum over all compacts K ⊂ Ut gives us (7).

Define the maximal functionMf of a function f ∈ L1(m) to be the maximal
function of the measure f dm, that is,

(Mf)(ζ) = sup
δ>0

1

m(B(ζ, δ))

∫

B(ζ,δ)

|f | dm (ζ ∈ S1).

Proof of Theorem 1.1. Set

Lf (ζ) = lim sup
δ→0

1

m(B(ζ, δ))

∫

B(ζ,δ)

|f − f(ζ)| dm

for ζ ∈ S1. Let t > 0 and let ε > 0. There is a continuous function u on S1

such that ‖f−u‖L1(m) < ε. Setting v = f−u, we obviously have Lf ≤ Lu+Lv,
and Lv ≤ |v| +Mv. Moreover, Lu = 0 because u is continuous, so that we get
Lf ≤ |v|+Mv, which implies that {ζ ∈ S1 : Lf (ζ) > t} ⊂ Et,ε, where

Et,ε =

{

ζ ∈ S1 : |v(ζ)| > t

2

}

∪
{

ζ ∈ S1 : (Mv)(ζ) >
t

2

}

.

It follows from Theorem 2.4 that

m(Et,ε) ≤
2

t
‖v‖L1(m) + A(3)

2

t
‖v‖L1(m) < 2(1 + A(3))t

−1ε.

We thus have

{ζ ∈ S1 : Lf (ζ) > 0} ⊂
∞
⋃

p=1

∞
⋂

n=1

E 1

p
, 1
n

with m
(
⋃∞

p=1

⋂∞
n=1E 1

p
, 1
n

)

= 0, so that Lf (ζ) = 0 almost everywhere, which

concludes the proof.
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Proof of Theorem 1.2. Since µ ⊥ m if and only if |µ| ⊥ m, we may assume that
µ ≥ 0. Choose t > 0 and ε > 0. There is a Borel set E ⊂ S1 such thatm(E) = 0
and µ(E) = ‖µ‖. Choose a compact K ⊂ E satisfying µ(K) > µ(E) − ε. Let
µ1 denote the restriction of µ to K, and put µ2 = µ− µ1. Then

‖µ2‖ < ε. (9)

Set
(Dµ)(ζ) = lim sup

δ→0

µ

m
(B(ζ, δ)) (ζ ∈ S1).

It follows from the definition of µ1 that if ζ /∈ K, then µ1

m
(B(ζ, δ))→ 0 as δ → 0,

which implies that (Dµ)(ζ) = (Dµ2)(ζ). We therefore have, writing Ut for the
set {ζ∈S1 : (Dµ)(ζ)>t},

K ∪ Ut ⊂ K ∪
{

ζ ∈ S1 : (Dµ2)(ζ) > t
}

⊂ K ∪
{

ζ ∈ S1 : (Mµ2)(ζ) > t
}

,

and since m(K) = 0, we get, using Theorem 2.4 and (9),

m(Ut) ≤ m
(

{ζ ∈ S1 : (Mµ2)(ζ) > t}
)

≤ A(3) t−1‖µ2‖ < A(3) t−1ε.

Letting ε tend to 0 then yields m(Ut) = 0, and since t was arbitrary, this finally
shows that limδ→0

µ

m
(B(ζ, δ)) = 0 almost everywhere with respect to m.

3. The maximal function and the class L log L

We first prove the following result:

Theorem 3.1. Let µ be a complex Borel measure on S1. If dµ = f dm + dµs

with f ∈ L1(m) and µs ⊥ m, then

|µs|({ζ ∈ S1 : (Mµ)(ζ) <∞}) = 0. (10)

Proof. Since {ζ ∈ S1 : (Mµ)(ζ) < ∞} = ⋃∞
n=1En where En = {ζ ∈ S1 :

(Mµ)(ζ) ≤ n}, (10) will be proved once we show that |µs|(En) = 0 for every
positive integer n.

Fix such an integer n. Since µs ⊥ m, there is a Borel set E ⊂ S1 such that
m(E) = 0 and |µs|(E) = ‖µs‖. We have |µs|(En) = |µs|(En∩E) = |µ|(En∩E),
so that it is enough to prove that |µ|(K) = 0 for any compact K ⊂ En with
m(K) = 0.

Consider such a compact K and let ε > 0. There is an open set V ⊃ K
satisfying m(V ) < ε. Cover K by the union of a finite collection Φ of arcs
B ⊂ V , with centers in K. For each arc B ∈ Φ, 3B is an arc with center in
K ⊂ En, so that the definition of Mµ implies that |µ|(3B) ≤ nm(3B). By the
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Covering Lemma 2.2, Φ has a subcollection Γ of pairwise disjoint arcs such that
⋃

ΦB ⊂
⋃

Γ 3B. Consequently, we have

|µ|(K)≤
∑

Γ

|µ|(3B)≤ n
∑

Γ

m(3B)≤A(3)n
∑

Γ

m(B)≤A(3)nm(V )<A(3)n ε.

Since ε was arbitrary, we get |µ|(K) = 0, which completes the proof.

Theorem 3.1 will be needed in the proof of Theorem 1.4, as well as the
following covering lemma.

Lemma 3.2. Let µ be a complex Borel measure on S1. If t > ‖µ‖, then there

exist arcs Bn and pairwise disjoint Borel sets Vn ⊂ Bn such that

(i) {ζ ∈ S1 : (Mµ)(ζ) > t} ⊂ ⋃nBn =
⋃

n Vn;

(ii) m(Bn) ≤ A(4) t−1|µ|(Bn);

(iii) |µ|(Vn) < A(4) tm(Vn).

Proof. Set Ut = {ζ ∈ S1 : (Mµ)(ζ) > t}. For fixed ζ ∈ Ut, the assumption
that ‖µ‖ < t allows us to define δ = max{% > 0 : |µ|(B(ζ, %)) ≥ tm(B(ζ, %))}.
Setting Q = B(ζ, δ), we thus have

|µ|(Q) ≥ tm(Q), (11)

and
|µ|(4Q) < tm(4Q). (12)

One can therefore cover Ut by a collection Γ1 of arcs Q satisfying (11) and (12).

Let ρ1 = sup{ρ(Q) : Q ∈ Γ1}, where ρ(Q) denotes the radius of the arc Q,
and choose Q1 ∈ Γ1 such that ρ(Q1) > 3

4
ρ1. Let Γ2 be the collection of the arcs

Q ∈ Γ1 that are disjoint from Q1, set ρ2 = sup{ρ(Q) : Q ∈ Γ2}, and choose
Q2 ∈ Γ2 such that ρ(Q2) > 3

4
ρ2. Let Γ3 be the collection of the arcs Q ∈ Γ2

that are disjoint from Q2, etc. If Γn = ∅ for some n, this process stops; if not,
it continues through the natural numbers.

The arcs Qn we thus obtain are pairwise disjoint. Set Bn = 4Qn, and

Vn = Qn ∪
[

Bn\
(

⋃

l<n

Bl ∪
⋃

l 6=n

Ql

)]

;

then it can easily be seen that the Borel sets Vn are pairwise disjoint, that for
each n we have

Qn ⊂ Vn ⊂ Bn, (13)

and that
⋃

n Vn =
⋃

nBn.

For each Q ∈ Γ1, there is an index n such that Q ∈ Γn\Γn+1 since otherwise
there are necessarily infinitely many Γl, and Q ∈ Γl for each l, so that ρ(Q) ≤ ρl
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for every integer l ≥ 1; then the definition of Ql implies that ρ(Ql) >
3
4
ρ(Q)

for each l ≥ 1, but this is impossible because of the disjointness of {Ql}. If
Q ∈ Γn\Γn+1, then Q intersects Qn, and ρ(Q) <

4
3
ρ(Qn), so that Q ⊂ Bn, since

1 + 4
3
+ 4

3
< 4. Hence Ut ⊂ ∪nBn, which completes the proof of (i).

It follows from the definition of A(4) and (11) that

m(Bn) ≤ A(4)m(Qn) ≤ A(4) t−1|µ|(Qn),

which gives (ii). By (12) and (13), we have

|µ|(Vn) ≤ |µ|(Bn) < tm(Bn) ≤ t A(4)m(Qn) ≤ t A(4)m(Vn),

so that (iii) is proved.

Proof of Theorem 1.4. Since Mµ = M |µ| and since there is a Borel function u
with |u| = 1 such that dµ = u d|µ|, we can suppose that µ ≥ 0. We may also
assume that ‖µ‖ = 1.

For t > 1, let Ut = {ζ ∈ S1 : (Mµ)(ζ) > t}. We are first going to show that

µ(Ut) ≤ A(4) t ψ(t) (t > 1), (14)

where ψ(t) = m({ζ ∈ S1 : A(4)2(Mµ)(ζ) ≥ t}). Fix t > 1 and choose Bn, Vn

as in Lemma 3.2. Using parts (i) and (iii) of that lemma, and the disjointness
of {Vn}, we get

µ(Ut) ≤
∑

n

µ(Vn) < A(4) t
∑

n

m(Vn) = A(4) t m

(

⋃

n

Bn

)

. (15)

If w ∈ Bn and if δn denotes the radius of Bn, we have Bn ⊂ B(w, 2δn) ⊂ 4Bn,
so that it follows from the definition of A(4) and part (ii) of Lemma 3.2 that

(Mµ)(w) ≥ µ

m
(B(w, 2δn)) ≥

µ(Bn)

A(4)m(Bn)
≥ t

A(4)2
.

Combined with (15), this proves (14).

We have
∫ ∞

0

ψ(t) dt =

∫ ∞

0

m
(

{ζ ∈ S1 : A(4)2(Mµ)(ζ) ≥ t}
)

dt

= A(4)2
∫

S1

(Mµ) dm <∞,

(16)

and ψ is decreasing; this implies that t ψ(t)→ 0 as t→∞, and then

µ(Ut)→ 0 (t→∞), (17)
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by (14). Write dµ = f dm + dµs with f ∈ L1(m) and µs ⊥ m. Note that
f ≥ 0 and µs ≥ 0, since µ ≥ 0. By (17), µs

(

{ζ ∈ S1 : (Mµ)(ζ) = ∞}
)

=
µs

(
⋂

t>1 Ut

)

= 0, and by Theorem 3.1, µs

(

{ζ ∈ S1 : (Mµ)(ζ) < ∞}
)

= 0.
Hence µs = 0, so that dµ = f dm, and

Mf =Mµ. (18)

It follows from Theorem 1.1 that f ≤Mf almost everywhere with respect to m.
Using (18), we thus get f ≤ t almost everywhere outside Ut, that is, {ζ ∈ S1 :
f(ζ) > t} ⊂ Ut ∪W for some Borel set W with m(W ) = 0. Consequently,

∫

{ζ∈S1 : f(ζ)>t}
f dm ≤ µ(Ut) ≤ A(4) t ψ(t) (t > 1),

by (14). Applying Fubini’s theorem, we therefore obtain

A(4)

∫ ∞

1

ψ(t) dt ≥
∫ ∞

1

1

t

(
∫

{ζ∈S1 : f(ζ)>t}
f dm

)

dt =

∫

S1

f log+ f dm,

and the proof is completed by using (16).

4. Nontangential limits

The following lemma will be used in the proof of Theorem 1.5.

Lemma 4.1. If ζ ∈ S1 and γ > 1, then for all z ∈ Ωγ(ζ) and all w ∈ S1,

P (z, w) ≤ (kγ + 2)2α+2P (rζ, w),

where r = |z|.

Proof. If z ∈ Ωγ(ζ) and r = |z|, then |w − rζ| ≤ (γ + 2)|w − z| for all w ∈ S1,
and since we also have zk ∈ Ωkγ(ζ

k), we get |wk − rkζk| ≤ (kγ + 2)|wk − zk|
and |wk− rkζk| ≤ (kγ+2)|wk− zk| for all w ∈ S1. Then the desired conclusion
follows from formula (2).

Proof of Theorem 1.5. Since Mµ =M |µ|, it suffices to prove (3) for positive µ.
By Lemma 4.1, it is then enough to show that there is a constant C <∞ such
that

sup
0≤r<1

∫

S1

P (rζ, w)h(w)2dµ(w) ≤ C(Mµ)(ζ)

for every finite positive Borel measure µ on S1 and every ζ ∈ S1.
Fix µ, ζ, and r, 0 ≤ r < 1. For w ∈ S1, set

a(w) = |1− rkζkwk|2 and b(w) = |1− rkζkwk|2.
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We consider the integral
∫

S1 P (rζ, w)h(w)
2dµ(w) in several pieces: put s = 1−r,

set
V1 = {w ∈ S1 : b(w) ≤ 2 a(w)},

denote by V2 the complement of V1, and set

W0 = B(ζ, s), Wl = {w ∈ S1 : 2l−1s ≤ |w − ζ| < 2ls},

for l = 1, 2, . . . , until 2ls > 2; then

∫

S1

P (rζ, w)h(w)2dµ(w) =
2
∑

j=1

∑

l≥0
Ij,l

where

Ij,l =

∫

Vj∩Wl

1− r2

B(α, α + 1)|1− rζw|2
∫ 1

0

uα−1(1− u)αdu

[(1− u)a(w) + u b(w)]α
h(w)2 dµ(w).

For any w ∈ S1, we have |wk − wk| ≤
√

a(w) +
√

b(w), so that if w ∈ V1,

we get h(w)2 ≤
(

1+
√
2

2

)2α
a(w)α. Set κ = 1

B(α,α+1)
(

1+
√
2

2

)2α
. Since 1−r2

|1−rζw|2 ≤ 2
s
,

I1,0 ≤
2κ

αs
µ(B(ζ, s)).

Moreover, m(B(ζ, s)) ≤ cα,0πs since (sin
2 kt)α ≤ 1, so that µ(B(ζ, s)) ≤

(Mµ)(ζ)m(B(ζ, s)) ≤ cα,0 π(Mµ)(ζ)s. Thus

I1,0 ≤
2κ cα,0 π

α
(Mµ)(ζ).

Since |w − ζ| ≤ 2|w − rζ| for any w ∈ S1, we have, for l ≥ 1,

I1,l ≤
8κs

α (2l−1s)2
µ(B(ζ, 2ls)) ≤ 32κ cα,0 π

α

(Mµ)(ζ)

2l
.

If w ∈ V2, then h(w)
2 ≤

(1+ 1
√

2

2

)2α
b(w)α, and for u ∈ [0, 1], (1 − u)a(w) +

u b(w) ≥ a(w) + u b(w)
2
, so that

∫ 1

0

uα−1(1− u)αdu

[(1− u)a(w) + u b(w)]α
h(w)2 ≤

(

1 + 1√
2

2

)2α
b(w)α

a(w)α

∫ 1

0

uα−1

[1+ u c(w)]α
du

=

(

1 +
√
2

2

)2α
∫ c(w)

0

tα−1

(1 + t)α
dt ,

where c(w) = b(w)
2a(w)

> 1.
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If l ≥ 0 and w ∈ B(ζ, 2ls), we have
√

b(w) ≤ k|w−rζ| ≤ k(2l+1)s ≤ 2l+1ks
and

√

a(w) ≥ 1− rk ≥ s, so that c(w) ≤ 22l+1k2. It follows that

I2,0 ≤
2κ

s
µ(B(ζ, s))

∫ 2k2

0

tα−1

(1 + t)α
dt ≤ 2κ cα,0 π(Mµ)(ζ)

∫ 2k2

0

tα−1

(1 + t)α
dt,

and since
∫ c(w)

1
tα−1

(1+t)α
dt ≤ ln(c(w)) for any w ∈ V2,

I2,l ≤
8κs

(2l−1s)2

(
∫ 1

0

tα−1

(1 + t)α
dt+ (2l + 1) ln 2 + 2 ln k

)

µ(B(ζ, 2ls))

≤ 32κ cα,0 π
(
∫ 1

0

tα−1

(1 + t)α
dt+ (2l + 1) ln 2 + 2 ln k

)

(Mµ)(ζ)

2l

for l ≥ 1, which completes the proof of the theorem.

Proof of Theorem 1.6. If f ∈ L1(dθ) is given, it suffices to show that for any
ε > 0, there exists a Borel set Eε ⊂ S1 satisfying m(Eε) ≤ ε, such that for
every ζ ∈ S1\Eε and every γ > 1, lim supz→ζ, z∈Ωγ(ζ) |P [f ](z)− f(ζ)| ≤ D(γ)ε,
where D(γ) is a finite constant depending only on γ.

Let ε > 0. Put g = f

h2 , and write g = g1 + g2, where g1 is continuous on S
1

and ‖g2‖L1(m) ≤ ε2

A(3)
. It follows from Theorem 1.1 that |g2(ζ)| ≤ (Mg2)(ζ) for

almost every ζ ∈ S1. By Theorem 2.4,

m({ζ ∈ S1 : (Mg2)(ζ) > ε}) ≤ A(3) ε−1‖g2‖L1(m) ≤ ε.

Consequently, there is Eε ⊂ S1 with m(Eε) ≤ ε, such that if ζ ∈ S1\Eε and
γ > 1, we have for any z ∈ Ωγ(ζ),

|P [f ](z)− f(ζ)| ≤ |P [g1h2](z)− (g1h2)(ζ)|+ |P [g2h2](z)|+ |(g2h2)(ζ)|
≤ |P [g1h2](z)− (g1h2)(ζ)|+ C(γ)(Mg2)(ζ) + (Mg2)(ζ)

≤ |P [g1h2](z)− (g1h2)(ζ)|+ (C(γ) + 1)ε,

where the constant C(γ) is given by Theorem 1.5. By Theorem 1.1 in [7],

lim
z→ζ

P [g1h
2](z) = (g1h

2)(ζ),

so that we obtain lim supz→ζ, z∈Ωγ(ζ) |P [f ](z) − f(ζ)| ≤ (C(γ) + 1)ε, and the
proof is complete.
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