
Zeitschrift für Analysis und ihre Anwendungen c© European Mathematical Society
Journal for Analysis and its Applications
Volume 26 (2007), 391–406

Multiplicative Perturbation by Contractions

and Uniform Stability

P. C. M. Vieira and C. S. Kubrusly

Abstract. Let T be an arbitrary bounded linear transformation of a Hilbert space
into itself. We investigate classes of contractions S for which the spectral radius
r(ST ) of the product ST is less than one. The main result gives a collection of neces-
sary and sufficient conditions for r(ST ) < 1 when T is multiplicatively perturbed by
compact contractions S. We also give either necessary or sufficient conditions for per-
turbation by other classes of Hilbert space contractions, such as those that include the
symmetries (e.g., involutions, unitary operators, self-adjoint, normal and normaloid
contractions) or the orthogonal projections (e.g., nonnegative contractions).
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1. Introduction

A Hilbert space operator T (i.e., a bounded linear transformation of a Hilbert
space into itself) is uniformly stable if the power sequence {T n} converges uni-
formly (or converges in the uniform topology, or in the operator norm topology)
to the null operator (i.e., if ‖T n‖ → 0). The term “stable operator” is reminis-
cent of discrete-time dynamical systems: a discrete time-invariant free bounded
linear system modeled by the following autonomous homogeneous difference
equation

xn+1 = Txn, with x0 = x, for every integer n≥ 0

is uniformly stable if the Hilbert-space-valued state sequence {xn} converges
to zero uniformly for all initial conditions x. That is, if sup‖x‖=1 ‖T

nx‖ → 0,
which means that ‖T n‖ → 0. In this case, both the above (linear) model and
the (linear) operator T are said to be uniformly (asymptotically) stable.

P. C. M.Vieira: National Laboratory for ScientificComputation, 25651-070,Petrópolis,
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Uniform stability for infinite-dimensional systems has been under the spot-
light for more than three decades (for finite-dimensional systems many more
decades are to be added on the top of it). Necessary and sufficient conditions
for uniform stability in an infinite-dimensional setup can be found in, for in-
stance, [10, 14, 15] and the references therein. More recently, still motivated by
(asymptotic) stability of discrete-time (linear) systems, attention has been di-
rected to multiplicative perturbations that stabilize the system. This may be
synthesized by the question: given a model as above, which class of operators S
is able to make the system

xn+1 = STxn, with x0 = x, for every integer n≥ 0

uniformly stable? In other words, which class of operators S ensures uniform
stability for ST (i.e., ensures that ‖(ST )n‖ → 0)? In an infinite-dimensional
setting, this problem has been investigated in [4] and [2], where the original
operator T is perturbed by some familiar classes of operators S. Generalizations
of the finite-dimensional results from [1] were considered in [3], where specific
convex sets of operators have been considered.

The present paper addresses multiplicative perturbations. Notational pre-
liminaries are considered in Section 2. Section 3 focuses on sup properties for
operators perturbed by contractions, which provide the main tools for prov-
ing multiplicative perturbation results. There we consider the classes of plain,
nonstrict, strict and uniformly stable contractions (Theorem 3.2), the class of
partial isometries (Theorem 3.6), and the classes of finite-rank or compact con-
tractions (Theorem 3.7). The classes of symmetries, orthogonal projections,
and nonnegative operators are also considered among other classes of Hilbert
space perturbing contractions. Uniform stability for multiplicatively perturbed
operators (perturbed by those classes of contractions investigated in Section 3)
are obtained in Section 4. The paper closes with a collection of necessary and
sufficient conditions for compact perturbation (Corollary 4.9), after exhibiting
a counterexample on the perturbation by symmetries (Remark 4.6).

2. Preliminaries

Notation, terminology and basic results are posed in this section. By basic
results we mean well-known standard propositions from single operator theory
that will be required in the sequel. These are summarized below in order to
settle the pertinent definitions and recall the necessary elementary facts only.
Proofs of all stated assertions (on single operator theory) can be found in current
literature (see e.g., [5, 8] or [11] among other sources).

Let 〈 ; 〉 denote the inner product in a complex infinite-dimensional (not
necessarily separable) Hilbert space H. By a subspace of H we mean a closed
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linear manifold of H, and by an operator on H we mean a bounded linear
transformation of H into itself. For any operator T on H put N (T ) = T −1{0}
(the kernel or null space of T, which is a subspace of H) and R(T ) = T (H)
(the range of T, which is a linear manifold of H). Let B[H] be the unital
Banach algebra of all operators on H and let T ∗∈ B[H] stand for the adjoint of
T ∈ B[H]. The same notation ‖ · ‖ is used for the norm onH and for the induced
(uniform) norm on B[H]. An invertible element from B[H] is an operator T with
an inverse in B[H] which, by the Inverse Mapping Theorem, means that T is
injective and surjective (i.e., N (T ) = {0} and R(T ) = H).

A self-adjoint is an operator T on H for which T ∗ = T. A self-adjoint oper-
ator Q is nonnegative (O ≤ Q), positive (O < Q) or strictly positive (O ≺ Q)
if 0 ≤ 〈Qx ;x〉 for every x in H, 0 < 〈Qx ;x〉 for every nonzero x in H, or
α‖x‖2 ≤ 〈Qx ;x〉 for every x in H and some positive α, respectively — i.e.,
Q ∈ B[H] is strictly positive if and only if it is positive and invertible, which
means that it has a (bounded) strictly positive inverse in B[H]. Recall that ev-
ery nonnegative operator Q in B[H] has a unique nonnegative square root Q

1
2

in B[H] and ‖Q
1
2‖2 = ‖Q‖. Also recall that T ∗T is a nonnegative operator and

‖T‖2 = ‖T ∗T‖ for every T ∈ B[H] (standard notation: |T | = (T ∗T )
1
2 so that

‖|T |‖ = ‖T‖).

A contraction is an operator T onH such that ‖T‖ ≤ 1 (i.e., ‖Tx‖ ≤ ‖x‖ for
every x in H; equivalently, T ∗T ≤ I). If ‖Tx‖ < ‖x‖ for every nonzero x in H
(equivalently, if T ∗T < I), then T is a proper contraction. A strict contraction
is an operator T such that ‖T‖ < 1 (i.e., sup‖x‖=1 ‖Tx‖ < 1 or, equivalently,
T ∗T ≺ I, which means that T ∗T ≤ αI for some α ∈ (0, 1)). These are related
by proper inclusion: Strict Contraction ⊂ Proper Contraction ⊂ Contraction. A
nonstrict contraction is a contraction T with ‖T‖ = 1 and a nonproper contrac-
tion is a contraction T for with ‖Tx‖ = ‖x‖ for some nonzero x in H (equiva-
lently, for some x in H with ‖x‖ = 1). Every nonproper contraction is nonstrict.
A nonnegative (or positive, or strictly positive) contraction is precisely an op-
erator Q on H such that O ≤ Q ≤ I (or O ≤ Q < I, or O ≤ Q ≺ I), where I
stands for the identity of B[H].

An isometry on H is an operator V such that ‖V x‖ = ‖x‖ for every x

in H or, equivalently, such that V ∗V = I. Every isometry is injective. A
coisometry is an operator whose adjoint is an isometry. A unitary operator is
an invertible isometry or, equivalently, a surjective isometry, which means that
an operator U on H is unitary if and only if it is invertible and U ∗ = U−1 or,
still equivalently, if and only if it is an isometry and also a coisometry. An or-
thogonal projection P on H is an idempotent operator (i.e., P 2 = P ) whose
range and kernel are orthogonal to each other, which is precisely a nonnegative
idempotent (i.e., O ≤ P = P 2); equivalently, a self-adjoint idempotent (i.e.,
P ∗ = P = P 2). An involution on H is an invertible operator J that coincides
with its inverse (i.e., J = J−1), which means that J2 = I. A partial isometry
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is an operator W on H that acts isometrically on the orthogonal complement
of its kernel (i.e., ‖Wx‖ = ‖x‖ for every x in N (W )⊥). These are nonstrict
contractions: isometries (and coisometries), unitaries, (nonzero) orthogonal pro-
jections, involutions and (nonzero) partial isometries all have norm equal to 1
(i.e., ‖V ‖ = ‖U‖ = ‖P‖ = ‖J‖ = ‖W‖ = 1). Moreover, these operators also
have a closed range (i.e., their ranges are subspaces of H). A symmetry S is a
unitary involution or, equivalently, a self-adjoint involution or, still equivalently,
a self-adjoint unitary (i.e., S∗ = S = S−1), which is a nonstrict contraction with
closed range as well. It is readily verified that S is a symmetry (i.e., S is a self-
adjoint involution) if and only if S = I − 2P for some orthogonal projection P
(i.e., for some self-adjoint idempotent P ).

Let ρ(T ) = {λ ∈ C : λI − T has an inverse in B[H]} be the resolvent set of
an operator T on H. Its complement σ(T ) = C\ρ(T ) is the spectrum of T
and the spectral radius is the nonnegative number r(T ) = supλ∈σ(T ) |λ| =
maxλ∈σ(T ) |λ|. The Gelfand–Beurling formula says that r(T ) = limn ‖T

n‖
1
n.

If r(T ) = 0, then T is called quasinilpotent. The numerical radius w(T ) =
sup‖x‖=1 |〈Tx ;x〉| is a positive number (0 < w(T ) if T 6= O, defining another
norm in B[H]) with w(T ∗T ) = ‖T‖. Spectral radius, numerical radius and the
induced (uniform) norm are related as follows: 0 ≤ r(T ) ≤ w(T ) ≤ ‖T‖ ≤
2w(T ) for every T in B[H]. An operator T is normaloid if r(T ) = ‖T‖, and
spectraloid if r(T ) = w(T ). Every normaloid is spectraloid and T is normaloid
if and only if w(T ) = ‖T‖. Among the normaloid are the self-adjoint and,
in particular, the nonnegative operators so that r(T ∗T ) = ‖T‖2, and hence
r(|T |) = ‖T‖. An operator T is uniformly stable if limn ‖T

n‖ = 0, which is pre-
cisely an operator T ∈ B[H] with r(T ) < 1. The point spectrum is the subset
σP (T ) =

{

λ ∈ C : N (λI − T ) 6= {0}
}

of σ(T ) consisting of all eigenvalues of T.

3. Sup properties

Recall that r(ST ) = r(TS) for every pair of operators T, S in B[H] but, in
general, r(ST ) 6≤ r(S) r(T ) [7, pp. 43, 48]. However, r(ST ) ≤ ‖ST‖ ≤ ‖S‖ ‖T‖
for every T, S in B[H]. In particular, r(ST ) ≤ ‖T‖ for every operator T and
every contraction S. Thus supS∈S r(ST ) ≤ ‖T‖ for every T ∈ B[H] and every
class of contractions S.

Definition 3.1. A class S of contractions in B[H] has the norm sup property if
supS∈S r(ST ) = ‖T‖ for every operator T in B[H].

The purpose of the first part of this section is to investigate norm sup
property by assuming that the perturbing operator S belongs to some specific
classes of contractions (plain, strict, nonstrict and uniformly stable contractions;
symmetries; involutions; unitary operators; self-adjoint, normal and normaloid
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contractions; partial isometries). In particular, by assuming that the perturbing
operator S belongs to the classes of finite-rank or compact contractions. No
assumption is imposed on the operator T.

Theorem 3.2. The classes of all nonstrict contractions and of all contractions

in B[H] have the norm sup property. In fact, more is true. For every T ∈B[H],

max
‖S‖=1

r(ST ) = max
‖S‖≤1

r(ST ) = ‖T‖.

Moreover, the classes of all strict contractions and of all uniformly stable con-

tractions in B[H] also have the norm sup property.

Proof. Nonstrict contractions are considered in part (a), contractions are con-
sidered in part (b), strict contractions in part (c), and uniformly stable contrac-
tions in part (d). Since the results are all trivial for T = O, take an arbitrary
T 6= O in B[H].

(a) Put S1 = ‖T‖
−1T ∗ in B[H], which is a nonstrict contraction (‖S1‖ = 1), and

get ‖T‖ = ‖T‖−1r(T ∗T ) = r(S1T ). Thus the identity max ‖S‖=1 r(ST ) = ‖T‖
follows at once because r(ST ) ≤ ‖T‖ for every contraction S.

(b) According to (a) we get ‖T‖ = max ‖S‖=1 r(ST ) ≤ max ‖S‖≤1 r(ST ) ≤ ‖T‖.

(c) Take an arbitrary α ∈ (0, 1), put Sα = α‖T‖−1T ∗, which is a strict contrac-
tion (‖Sα‖ = α < 1), and get r(SαT ) = α‖T‖−1r(T ∗T ) = α‖T‖. Therefore,

‖T‖ = sup
α∈(0,1)

α‖T‖ = sup
α∈(0,1)

r(SαT ) ≤ sup
‖S‖<1

r(ST ) ≤ ‖T‖.

(d) This follows by items (b) and (c):

‖T‖ = sup
‖S‖<1

r(ST ) ≤ sup
r(S)<1 , ‖S‖≤1

r(ST ) ≤ sup
‖S‖≤1

r(ST ) ≤ ‖T‖. ¤

There are smaller classes of contractions that also have the norm sup prop-
erty. For instance, the class of symmetries, a proper subclass of nonstrict con-
tractions. The argument of the proof below is similar to that in [4, Lemmas 4.11
and 4.12].

Proposition 3.3. The class of all symmetries has the norm sup property.

Proof. Take an arbitrary operator T in B[H] and an arbitrary unit vector x
in H (i.e., x in H such that ‖x‖ = 1). If Tx = 0, then 0 = ‖Tx‖ ∈ σP (T ) —
i.e., ‖Tx‖ is an eigenvalue of T — and the trivial symmetry Sx = I is such that

‖Tx‖ ≤ r(SxT ).
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Now suppose Tx 6= 0 and put yx = ‖Tx‖
−1Tx in H, which also is a unit vector.

If yx = γx for some γ in the unit circle (i.e., γ ∈ C with |γ| = 1), then Tx =
γ‖Tx‖x so that γ‖Tx‖ ∈ σP (T ) and again, for the trivial symmetry Sx = I,

‖Tx‖ ≤ r(SxT ).

If yx 6= γx for all γ in the unit circle, then put γx= |〈yx ;x〉|
−1〈yx ;x〉 if 〈yx ;x〉 6= 0

or γx = 1 otherwise, which lies in the unit circle. Set ux = yx − γxx 6= 0, and
consider the unit vector ex = ‖ux‖

−1ux in H. Let Pex in B[H] be the (rank-one)
orthogonal projection whose range is the one-dimensional space spanned by
{ex} (i.e., Pexz = 〈z ; ex〉ex for every z ∈ H), and consider the symmetry Sx =
I − 2Pex. Set vx = yx + γxx. Since γx = |〈yx ;x〉|

−1〈yx ;x〉 if 〈yx ;x〉 6= 0, we get
vx ⊥ ux and so vx ⊥ ex. This ensures that 2Sxyx = Sxux + Sxvx = vx − ux =
2γxx, and hence γxx = Sxyx = ‖Tx‖

−1SxTx so that γx‖Tx‖ ∈ σP (SxT ). There-
fore Sx is such that

‖Tx‖ ≤ r(SxT ).

Outcome: For every unit vector x ∈ H there is a symmetry Sx ∈ B[H] for which
‖Tx‖ ≤ r(SxT ). Thus (with S denoting the class of all symmetries from B[H]),

‖T‖ = sup
‖x‖=1

‖Tx‖ ≤ sup
‖x‖=1

r(SxT ) ≤ sup
S∈S

r(ST ) ≤ ‖T‖. ¤

Remark 3.4. The classes of all involutions, of all unitaries, of all self-adjoint

nonstrict contractions, and of all self-adjoint contractions from B[H] also have

the norm sup property. Indeed, recall that a symmetry is precisely a unitary in-
volution, which coincides with the class of all self-adjoint involutions, which in
turn coincides with the class of all self-adjoint unitary operators. Since symme-
tries have the norm sup property, and since r(ST ) ≤ ‖T‖ for all contractions S,
it follows that every class of contractions that contains the symmetries also has
the norm sup property.

Remark 3.5. If the classes of all self-adjoint contractions and of all unitary
operators from B[H] have the norm sup property, then so has every class of
contractions that includes any of these classes. For instance, the classes of all

normal nonstrict contractions and of all normal contractions (and so any class of
contractions including them, such as the classes of all normaloid nonstrict con-
tractions (r(S)= ‖S‖=1) and of all normaloid contractions (r(S) = ‖S‖≤ 1)
also have the norm sup property. Similarly, the classes of all isometries, and of

all coisometries have the norm sup property.

Since the class of isometries is included in the class of partial isometries
(an isometry is precisely an injective partial isometry), it follows that the class
of all partial isometries also has the norm sup property. However, for partial
isometries the norm sup property holds with “sup” strengthened to “max”.
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Theorem 3.6. The class of all partial isometries from B[H] has the norm sup

property. In fact, more is true. If S stands for the class of all partial isometries

from B[H] then, for every T ∈ B[H],

max
S∈S

r(ST ) = ‖T‖.

Proof. Take an arbitrary T in B[H] and let T =W |T | be its polar decomposi-
tion, where W is a partial isometry and |T | = (T ∗T )

1
2 is nonnegative, both in

B[H]. Recall that |T | = W ∗T . Now put S = W ∗ and also recall that W ∗ is a
partial isometry wheneverW is. Thus r(ST ) = r(W ∗T ) = r(|T |) = ‖T‖ and we
get the claimed result once partial isometries are contractions and r(ST ) ≤ ‖T‖
whenever S is a contractions for every operator T. ¤

It is worth noticing that the norm max property , as in Theorems 3.2 and 3.6,
was recently investigated for Banach space operators in [9], where it was shown
that if Xn are finite-dimensional normed spaces, then every operator on the
Banach space

(
⊕

nXn

)

p , p > 1, has the norm max property attained for a
nonstrict contraction.

An operator is finite-rank if its range is finite-dimensional and compact if it
maps bounded sets into relatively compact sets. Since every finite-rank operator
in B[H] is compact, it follows that if finite-rank contractions have the norm sup
property, then so do the compact contractions (because plain contractions have
it). The next result deals with finite-rank (and compact) contractions. Note
that the symmetry I − 2Pex in the proof of Proposition 3.3 is never finite-rank
(Pex is a finite-rank projection and the identity I is not even compact on an
infinite-dimensional space).

Theorem 3.7. The class of all finite-rank contractions has the norm sup prop-

erty, and so does the class of all compact contractions.

Proof. Take any T in B[H] and an arbitrary unit vector x in H. If Tx = 0, then
for any finite-rank contraction (actually, for any operator) Sx in B[H],

‖Tx‖ ≤ r(SxT ).

If Tx 6= 0, then put yx = ‖Tx‖
−1Tx. If yx = γx for some γ in the unit circle,

then set Sx = Pyx in B[H], the orthogonal projection whose range is the one-
dimensional space spanned by {yx}, which is a rank-one nonnegative contrac-
tion. Thus SxTx = 〈Tx ; yx〉yx = Tx = ‖Tx‖yx = γ‖Tx‖x so that γ‖Tx‖ lies
in σP (SxT ), and therefore

‖Tx‖ ≤ r(SxT ).

If yx 6= γx for all γ in the unit circle, then put γx = |〈yx ;x〉|
−1〈yx ;x〉 if

〈yx ;x〉 6= 0 or γx=1 otherwise, which lies in the unit circle. Set ux= yx− γxx 6= 0
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and vx = yx + γxx 6= 0, and put ex = ‖ux‖
−1ux and fx = ‖vx‖

−1vx. Let Pex and
Pfx be the orthogonal projections whose ranges are the one-dimensional spaces
spanned by {ex} and {fx}, respectively (Pexz = 〈z ; ex〉ex and Pfxz = 〈z ; fx〉fx
for every z ∈ H). Set Sx = Pfx− Pex in B[H]. Since ux ⊥ vx, and so ex ⊥ fx, it
follows that Pex and Pfx are mutually orthogonal (i.e., PexPfx = PfxPex = O).
This implies that S2

x = Pfx+ Pex , the orthogonal projection whose range is the
two-dimensional space spanned by {ex, fx}. However, Sx itself is just a rank-two
(self-adjoint, but not nonnegative) contraction. Indeed, since Pex and Pfx are
mutually orthogonal, ‖Sxz‖

2 = ‖Pfxz‖
2+ ‖Pexz‖

2 ≤ ‖z‖2 for every z ∈ H. Mu-
tual orthogonality also implies that 2Sxyx = Sxux + Sxvx = vx − ux = 2γxx,
and hence γxx = Sxyx = ‖Tx‖

−1SxTx so that γx‖Tx‖ lies in σP (SxT ). There-
fore,

‖Tx‖ ≤ r(SxT ).

Outcome: For every unit vector x in H there is a finite-rank contraction Sx
such that ‖Tx‖ ≤ r(SxT ). Thus (with S denoting the class of all finite-rank
contractions from B[H]) it follows that

‖T‖ = sup
‖x‖=1

‖Tx‖ ≤ sup
‖x‖=1

r(SxT ) ≤ sup
S∈S

r(ST ) ≤ ‖T‖. ¤

Norm sup property will be strengthened to numerical radius sup property
below. Now we assume that the perturbing operators S belong to the classes of
orthogonal projections, nonnegative, positive and strictly positive contractions.
As before, no assumption is imposed on the operator T.

Definition 3.8. A class S of contractions from B[H] has the numerical radius
sup property if supS∈S r(ST ) = w(T ) for every operator T in B[H].

The argument in parts (b) and (c) of the proof below are similar to those
in the infinite-dimensional versions of [4, Lemmas 4.4 and 4.6].

Proposition 3.9. The classes of all orthogonal projections, of all nonnegative

contractions, of all positive contractions, and of all strictly positive contractions

have the numerical radius sup property.

Proof. Take an arbitrary T in B[H].We shall show in part (a) that w(T )≤ r(P T )
for all orthogonal projections P in B[H], in part (b) that w(T ) ≤ r(QT ) for all
strictly positive contractions Q in B[H] and, in part (c), that r(QT ) ≤ w(T )
for all nonnegative contractions Q in B[H]. Thus

w(T ) ≤ sup
O≤P=P 2

r(P T ) ≤ sup
O≤Q≤I

r(QT ) ≤ w(T ),

w(T ) ≤ sup
O≺Q≤I

r(QT ) ≤ sup
O<Q≤I

r(QT ) ≤ sup
O≤Q≤I

r(QT ) ≤ w(T ).
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(a) Take an arbitrary unit vector x in H and consider the (unique) orthogo-
nal projection Px in B[H] whose range is the one-dimensional space spanned
by {x}; that is, Pxy = 〈y ;x〉x for every y ∈ H so that PxTx = 〈Tx ;x〉x. Thus
〈Tx ;x〉 ∈ σP (PxT ) — i.e., 〈Tx ;x〉 is an eigenvalue of PxT — and therefore
|〈Tx ;x〉| ≤ r(PxT ). Hence,

w(T ) = sup
‖x‖=1

|〈Tx ;x〉| ≤ sup
‖x‖=1

r(PxT ) ≤ sup
O≤P=P 2

r(P T ).

(b) Consider the setup of item (a) where x is an arbitrary unit vector in H. Set
Qx(n) =

n
n+1

Px+
1

n+1
I in B[H] for each positive integer n. {Qx(n)} is a sequence

of strictly positive contractions (O ≺ 1
n+1

I ≤ Qx(n) ≤ I) such that Qx(n)→ Px

in the uniform topology (‖Qx(n)− Px‖ ≤
2

n+1
) and hence Qx(n)T → PxT. Since

the spectrum of PxT is totally disconnected (PxT is a rank-one operator because
Px is, and so σ(PxT ) is finite), it follows that PxT is a point of spectral continuity.
Then the above uniform convergence implies that r(Qx(n)T )→ r(PxT ) [7, p. 57].
Therefore, since 〈Tx ;x〉 ∈ σP (PxT ),

|〈Tx ;x〉| ≤ r(PxT ) = lim
n

r(Qx(n)T ) ≤ sup
O≺Q≤I

r(QT ).

Since this holds for all unit vectors x in H, we get

w(T ) = sup
‖x‖=1

|〈Tx ;x〉| ≤ sup
O≺Q≤I

r(QT ).

(c) Take an arbitrary nonnegative contraction Q in B[H]. If r(QT ) = 0, then
r(QT ) ≤ w(T ) trivially. Thus suppose r(QT ) 6= 0 and let R = Q

1
2 be its

unique nonnegative square root (which is again a contraction) so that r(QT ) =
r(R2T ) = r(RTR). Since the spectrum of any operator in B[H] is compact,
there exists a λ in σ(QT ) such that |λ| = r(QT ) = r(RTR). This λ lies in
the boundary of σ(RTR), and hence in the approximate point spectrum of
RTR, which means that there is a sequence {xn} of unit vectors in H such that
(λI −RTR)xn → 0. Therefore,

λ = lim
n

〈RTRxn ;xn〉

because |λ− 〈RTRxn ;xn〉| = |〈(λI −RTR)xn ;xn〉| ≤ ‖(λI −RTR)xn‖ (as
‖xn‖ = 1), which in turn implies that

lim inf
n

‖Rxn‖ 6= 0

(reason: if lim infn ‖Rxn‖ = 0, then limn〈RTRxn ;xn〉 = 0 so that λ = 0, which
contradicts the assumption r(QT ) 6= {0} ). Thus 0 < ‖Rxn‖ for every n ≥ n0,
for some integer n0. Since R is self-adjoint, ‖Rxn‖

−2〈RTRxn ;xn〉 = 〈Tun ;un〉
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where each un = ‖Rxn‖
−1Rxn also is a unit vector in H, for each n ≥ n0.

Hence, recalling that ‖Rxn‖ ≤ 1 (because R is a contraction), we get

r(QT ) = |λ| = lim
n

|〈RTRxn ;xn〉| ≤ lim sup
n

‖Rxn‖
2 |〈Tun ;un〉|

≤ lim sup
n

|〈Tun ;un〉| ≤ sup
‖x‖=1

|〈Tx ;x〉| = w(T ). ¤

Definition 3.10. A class S of contractions from B[H] has the spectral radius
sup property if supS∈S r(ST ) = r(T ) for every operator T in B[H].

Let {T}′ denote the commutant of an operator T ∈ B[H] (the unital sub-
algebra of B[H] consisting of all operators that commute with T ). A direct
consequence of the Gelfand–Beurling formula for the spectral radius is that
r(ST ) ≤ r(S)r(T ) whenever S ∈ {T}′ (see e.g., [7, p. 48]). Recall that a scalar
operator is a multiple of the identity (i.e., an operator S = αI on H for some
α ∈ C). The class of all scalar operators is a unital subalgebra of the commu-
tant of every operator T, and it is trivially verified that the class of all scalar

contractions from B[H] has the spectral radius sup property. Indeed, for every
T ∈ B[H],

max
S=αI, |α|≤1

r(ST ) = r(T ).

Does there exist another class of contractions (not a subclass of scalar con-
tractions) that has the spectral radius sup property? Note that the class of
all quasinilpotent (in particular, of all nilpotent) operators from B[H] does
not have any of the sup properties of Definitions 3.1, 3.8 and 3.10. Indeed, if
T = I ∈ B[H], then r(T ) = w(T ) = ‖T‖ = 1 and r(ST ) = r(S) = 0 for all
quasinilpotent operator S ∈ B[H].

4. Uniform stability

Recall that an operator T in B[H] is uniformly stable if the power sequence
{T n} converges uniformly to the null operator (i.e., if ‖T n‖ → 0). There is
a myriad of equivalent conditions for uniform stability (see e.g., [10] and the
references therein); among them, ‖T n‖ → 0 if and only if r(T ) < 1: an operator
is uniformly stable if an only if its spectrum is included in the open unit disc.

The theorems were proved in the previous section. Now we harvest the
corollaries by providing necessary and/or sufficient conditions for ST to be
uniformly stable when T is perturbed by operators S belonging to those classes
of contractions considered in Section 3.
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Corollary 4.1. Take S, T in B[H]. The following assertions are equivalent.

(a) ST is uniformly stable for every contraction S.

(b) ST is uniformly stable for every nonstrict contraction S.

(c) ST is uniformly stable for every partial isometry S.

(d) T is a strict contraction.

Proof. Let S be any class of contractions such that max
S∈S

r(ST ) = ‖T‖ for
every operator T in B[H]. If T ∈ B[H], then

r(ST ) < 1 ∀ S ∈ S ⇐⇒ ‖T‖ < 1.

Therefore, according to Theorems 3.2 and 3.6, it follows that (a), (b), (c) and
(d) are pairwise equivalent. ¤

Corollary 4.2. Let S and T be operators in B[H]. The assertion

(d) T is a strict contraction

implies each of the assertions below:

(e) ST is uniformly stable for every S in any class of contractions that in-

cludes all strict contractions.

(f) ST is uniformly stable for every S in any class of contractions that in-

cludes all finite-rank contractions.

(g) ST is uniformly stable for every S in any class of contractions that in-

cludes all symmetries.

Moreover, each of the above assertions implies that

(h) T is a contraction.

Proof. Let C be the class of all contractions in B[H]. Let S be any class of con-
tractions that includes a class S0 of contractions that has the norm sup property.
That is, S0 ⊆ S ⊆ C where ‖T‖ = supS∈S0

r(ST ). Since supS∈S r(ST ) ≤ ‖T‖,

sup
S∈S0

r(ST ) = sup
S∈S

r(ST ) = ‖T‖

for every operator T in B[H]. Thus take any T ∈ B[H] and observe that

‖T‖<1 ⇔ sup
S∈S

r(ST )<1 ⇒ r(ST )<1 ∀S∈S ⇒ sup
S∈S

r(ST )≤1 ⇔ ‖T‖≤1.

Therefore, (d) implies that ST is uniformly stable for every S in every class S
that includes S0, which implies that ST is uniformly stable for every S in some
class S that includes S0, which in turn implies (h). In particular, according to
Theorems 3.2, 3.7 and Proposition 3.3, this holds whenever S0 is the class of
all strict contractions, the class of all symmetries, or the class of all finite-rank
contractions. ¤
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Corollary 4.3. Take S, T in B[H]. The following assertions are equivalent.

(i) ST is uniformly stable for every strict contraction S.

(h) T is a contraction.

Proof. If ‖T‖≤1 and ‖S‖<1, then r(ST )≤‖ST‖≤‖S‖ ‖T‖<‖T‖≤1 so that
(h) implies (i). By Corollary 4.2 (e) implies (h). In particular (i) implies (h). ¤

Corollary 4.4. Let S and T be operators in B[H]. The assertion

(f) ST is uniformly stable for every S in any class of contractions that in-

cludes all finite-rank contractions

implies that

(j) T is a proper contraction.

Proof. By Corollary 4.2 (f) implies (h). Thus T is a contraction (‖T‖ ≤ 1) if (f)
holds. The outcome in the proof of Theorem 3.7 says that for every unit vector x
in H there is a finite-rank contraction Sx in B[H] for which ‖Tx‖ ≤ r(SxT ). If
the contraction T is not proper, then there is a unit vector u in H such that
1 = ‖u‖ = ‖Tu‖, and so 1 ≤ r(SuT ) < 1, which is a contradiction: r(SxT ) < 1
for every unit vector x if (f) holds. Thus (j): T is a proper contraction. ¤

Corollary 4.5. Let S and T be operators in B[H]. The assertion

(g) ST is uniformly stable for every S in any class of contractions that in-

cludes all symmetries

implies that

(k) w(T ) < 1 and T is a proper contraction.

Proof. Suppose assertion (g) holds. Since the identity I is a symmetry, it follows
that r(T ) < 1. Moreover, ‖T‖ ≤ 1 because (g) implies (h) in Corollary 4.2. The
outcome in the proof of Proposition 3.3 reads as follow: for every unit vector x
in H there is a symmetry Sx in B[H] for which ‖Tx‖ ≤ r(SxT ). But r(SxT ) < 1
for every unit vector x if (g) holds. If the contraction T is not proper, then there
is a unit vector u in H such that 1 = ‖u‖ = ‖Tu‖, and hence 1 ≤ r(SuT ) < 1,
which is a contradiction. Thus T is a proper contraction. Recall that w(T ) ≤ 1
(because ‖T‖ ≤ 1). If w(T ) = 1, then w(T ) = ‖T‖ = 1, which implies that T
is normaloid so that r(T ) = ‖T‖ = 1; another contradiction (since r(T ) < 1).
Therefore, w(T ) < 1. Thus (g) implies (k). ¤

Remark 4.6. Assertion (k) says that T is either a strict contraction or a non-
normaloid nonstrict proper contraction. This is a necessary condition for uni-
form stability of multiplicative perturbation by symmetries. However, asser-
tion (k) is not sufficient. In other words, according to Corollary 4.5 the asser-
tion

(l) ST is uniformly stable for every symmetry S
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implies (k) but, as we shall see next, (k) does not imply (l). Indeed, we shall
exhibit a nonnormaloid nonstrict proper contraction T and a symmetry S such
that r(ST ) = 1. Take T0 =

1√
2

(

−1 −1
1 1

)

and S0 =
(

−1 0
0 1

)

in B[C2], where S0 is a
symmetry, T0 is a quasinilpotent nonstrict contraction (r(T0) = 0 and ‖T0‖ = 1),
and S0T0 =

1√
2

(

1 1
1 1

)

is a nonnegative (thus normaloid) nonstrict contraction,

r(S0T0) = w(S0T0) = ‖S0T0‖ = ‖T0‖ = 1.

Then w(T0) 6= ‖T0‖ (otherwise T0 would be normaloid) so that

0 = r(T0) < w(T0) < w(S0T0) = ‖T0‖ = 1.

Now consider the direct sums T =
⊕∞

n=1
n

n+1
T0 and S =

⊕∞
n=1 S0 on H =

`2+(C
2), the Hilbert space made up of all square summable C

2-valued sequences.
Clearly, S is a symmetry and ‖T‖ = supn≥1

∥

∥

n
n+1

T0

∥

∥ = 1. Note that ST =
⊕∞

n=1
n

n+1
S0T0 is again a nonnegative nonstrict contraction,

r(ST ) = w(ST ) = ‖ST‖ = ‖T‖ = 1.

Claim: r(T ) = 0. In fact, take n≥1 and λ 6= 0 arbitrary. Since σ
(

n
n+1

T0

)

= {0}

we get λ ∈ ρ
(

n
n+1

T0

)

, and so
(

λI − n
n+1

T0

)

has a bounded inverse, namely,

(

λI − n
n+1

T0

)

−1 = n√
2 (n+1)λ2

(
√

2 (n+1)λ

n
− 1 −1

1
√

2 (n+1)λ

n
+ 1

)

(since A−1 = 1
βα2

(

α−1 −1
1 α+1

)

whenever A = β
(

α+1 1
−1 α−1

)

for any nonzero α and β).

Observe that
∥

∥

(

λI − n
n+1

T0

)

−1
∥

∥ ≤ n√
2 (n+1)|λ|2

(√
2 (n+1)|λ|

n
+ 2

)

<
|λ|+

√
2

|λ|2
and hence

supn≥1
∥

∥

(

λI − n
n+1

T0

)

−1
∥

∥ <∞. This implies that λI − T =
⊕∞

n=1

(

λI − n
n+1

T0

)

also has a bounded inverse (λI − T )−1 =
⊕∞

n=1

(

λI − n
n+1

T0

)

−1. Thus λ ∈ ρ(T ),
and therefore T is quasinilpotent: σ(T ) = {0}. Again, since T is a quasi-
nilpotent nonstrict contraction, w(T ) 6= ‖T‖ so that

0 = r(T ) < w(T ) < w(ST ) = ‖T‖ = 1.

Finally, we verify that T is a proper (nonstrict) contraction. Actually, for an
arbitrary nonzero x = {xn}

∞
n=1 in `

2
+(C

2),

‖Tx‖2 =
∞
∑

n=1

∥

∥

n
n+1

T0 xn
∥

∥

2
<

∞
∑

n=1

‖T0 xn‖
2 ≤

∞
∑

n=1

‖xn‖
2 = ‖x‖2.

Then T satisfies (k) but (l) fails once r(ST ) = 1 for the symmetry S.

What is behind the above example is the fact that the numerical radius
w(ST ) of a product ST may be larger than the product w(T )‖S‖. (For more
on numerical radius properties see e.g., [6, 7] and [8].)
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Remark 4.7. If w(T ) < 1, then r(ST ) < 1 for every S in any class of contrac-
tions that has the numerical radius sup property. Thus, by Proposition 3.9,

(m) w(T ) < 1

implies that

(n) ST is uniformly stable for every orthogonal projection S,

(o) ST is uniformly stable for every nonnegative contraction S,

(p) ST is uniformly stable for every positive contraction S,

(q) ST is uniformly stable for every strictly positive contraction S,

and each of these, in turn, implies that

(r) w(T ) ≤ 1 and T is uniformly stable.

Indeed, if any of (n) to (q) holds, then w(T ) ≤ 1 by Proposition 3.9 and, since
the identity is an orthogonal projection (thus nonnegative) as well as a strictly
positive (thus positive) contraction, it also follows that r(T ) < 1. However, un-
like the case of Remark 4.6, the necessary condition (r) is sufficient for uniform
stability of multiplicative perturbation by strictly positive contractions. This
is a result from [2] which we summarize below for completeness and for the
reader’s convenience.

Corollary 4.8. [2]Take S, T in B[H]. The following assertions are equivalent:

(q) ST is uniformly stable for every strictly positive contraction S.

(r) w(T ) ≤ 1 and T is uniformly stable.

Proof. [2] We saw in Remark 4.7 that (q) implies (r). Conversely, suppose (r)
holds for an operator T. If (q) fails for this T, then there exists an opera-
tor Q such that O ≺ Q ≤ I and r(QT ) = 1. Consider the setup in the proof
of Proposition 3.9, part (c), where R = Q

1
2 (so that O ≺ R ≤ I), λ ∈ σ(QT )

with |λ| = r(QT ) = 1, and

(λI −RTR)xn → 0 which implies 〈RTRxn ;xn〉 → λ

for a sequence {xn} of unit vectors in H (see proof of Proposition 3.9). Write

(∗) ‖(λI − T )Rxn‖ = ‖R
−1
[

λ(Q− I) + (λI −RTR)
]

xn‖

≤ ‖R−1‖
(

‖(I −Q)xn‖+ ‖(λI −RTR)xn‖
)

.

If w(T ) ≤ 1, then |〈Tx ;x〉| ≤ ‖x‖2 for every nonzero x in H, and so

|〈RTRxn ;xn〉| = |〈TRxn ;Rxn〉| ≤ ‖Rxn‖
2 ≤ ‖R‖ ≤ 1.

Recall that |〈RTRxn ;xn〉| → |λ| = 1. Thus ‖Rxn‖ → 1 by above inequality,
which in turn implies that ‖(I −Q)xn‖ → 0 because

‖(I −Q)xn‖
2 = ‖xn‖

2 − 2Re〈Qxn, xn〉+ ‖Qxn‖
2

≤ 1− 2‖Rxn‖
2 + ‖R‖2‖Rxn‖

2

≤ 1− ‖Rxn‖
2.
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Since ‖(I −Q)xn‖ → 0 and ‖(λI −RTR)xn‖ → 0, we get ‖(λI − T )Rxn‖ → 0
according to (∗). Set un = ‖Rxn‖

−1Rxn, which is again a unit vector in H.
Since ‖Rxn‖ → 1, it also follows that ‖(λI − T )un‖ → 0. This means that λ is
in the approximate point spectrum of T, and hence λ ∈ σ(T ) so that 1 = |λ| ≤
r(T ), which is a contradiction (r(T ) < 1 if (r) holds). Thus (r) implies (q). ¤

We close the paper with a collection of necessary and sufficient conditions
for uniform stability of multiplicative perturbations by compact contractions.
Recall that an operator T in B[H] is strongly stable if the power sequence {T n}
converges strongly to the null operator (i.e., ‖T nx‖ → 0 for every x ∈ H); and
weakly stable if {T n} converges weakly to the null operator (i.e., if 〈T nx ; y〉 → 0
for every x, y ∈ H or, equivalently, 〈T nx ;x〉 → 0 for every x ∈ H since H is a
complex Hilbert space). Uniform stability implies strong stability, which implies
weak stability. The next result ensures that ST is uniformly stable for every

compact contraction S if and only if T is a proper contraction.

Corollary 4.9. Take S, T in B[H]. The following assertions are equivalent.

(s) ST is weakly stable for every compact contraction S.

(t) ST is uniformly stable for every compact contraction S.

(u) The eigenvalues of ST lie in the open unit disc for every compact contrac-

tion S.

(j) T is a proper contraction.

(v) ST is a proper contraction for every compact contraction S.

(w) ST is a strict contraction for every compact contraction S.

Proof. Since the class of all compact operators from B[H] is a two-sided ideal of
B[H], it follows that ST is compact for every operator T whenever S is compact.
However, the concepts of weak, strong and uniform stabilities coincide for a com-
pact operator on a complex Hilbert space (see e.g., [12, p. 80]). Therefore ST
is uniform stable if and only if ST is weakly stable whenever S is compact con-
traction so that (s) and (t) are equivalent. Moreover, σ(ST )\{0} = σP (ST )\{0}
whenever ST is compact (Fredholm Alternative) so that σ(ST )⊆ D if and only
if σP (ST ) ⊆ D, where D denotes the open unit disc (centered about the origin
of the complex plane). Hence (t) and (u) are equivalent. That (t) implies (j) is
a particular case of Corollary 4.4 (which is a consequence of Theorem 3.7), since
every finite-rank operator in B[H] is compact. But if (j) holds, then ST is a
proper contraction for every contraction S, and hence the compact contraction
ST is, in fact, a strict contraction: the concepts of proper and strict contractions
coincide for compact operators [13]. Thus (v) and (w) are equivalent assertions,
which are implied by (j). Finally, (w) implies (t) since r(ST ) ≤ ‖ST‖. ¤

Note that the above equivalent assertions imply their finite-rank counter-
part, which are still equivalent according to the same argument.
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