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Interpolation and Transmutation

A. Boumenir

Abstract. We show that the existence of a transmutation between two self-adjoint
operators L1 and L2 is equivalent to the existence of an interpolation operator in the
spectral variable. This equivalence helps construct a transmutation operator between
abstract self-adjoint operators.
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1. Introduction

We are concerned with the existence of a transmutation also known as a trans-
formation operator between two given self-adjoint operators, L1 and L2 that act
in the Hilbert spaces H1 and H2, respectively. Recall that a linear operator W

is said to be a transmutation operator if H2
W7→ H1 and

L1W = WL2 (1)

holds on a dense subspace of the Hilbert space H2. If the operator W is invert-
ible, then L1 = WL2W

−1 and this helps reconstruct the operator L1 from the
knowledge of both L2 andW. The concept of transmutation became an essential
tool for the inverse spectral problem by the Gelfand Levitan theory, see [9, 12].
Further concepts and applications of transmutations can be found in the books
by Carroll, see [5, 6]. Observe that (1) can also be seen as the homogeneous
part of an operator equation in X

L1X −XL2 = Y, (2)

where Y, L1 and L2 are given operators. When L1 and L2 are bounded opera-
tors, one can prove the existence and uniqueness of a solution X, see [2, 13],

X =
1

2πi

∫

Γ

(L1 − λI)−1 Y (L2 − λI)−1 dλ
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and (2) has a unique solution if and only if (1) has the trivial solution. Ob-
serve that equation (1), in the simple case when L1 and L2 are finite matrices
with disjoint spectra, has the trivial solution W = 0, see also the Sylvester-
Rosemblum theorem [2]. A simple way to see this classical result is to assume
that if v is an eigenvector for L2, i.e., L2v = λv where λ ∈ σ2 and σi denotes
the spectrum of Li, for i = 1, 2. Then (1) implies L1Wv = WL2v = λWv, and
so either Wv = 0 or λ ∈ σ1. Since σ1 ∩ σ2 = ∅, we must have Wv = 0 and the
fact that v is an arbitrary eigenvector implies that W = 0.

It is also known that if L1 and L2 are unbounded operators uniqueness may
not hold, see also examples using the shift operator in [2]. Observe that in the
case where operators have continuous spectra, the above simple argument fails
because eigenfunctions are now distributions see [10]. Let us define the linear
operator τ12 by

τ12(X) := L1X −XL2

and thus (2) becomes τ12(X) = Y. Then the existence and uniqueness of a
solutionX to (2) is equivalent to the invertibility of the operator τ12. It turns out
that the spectrum of τ12 always contains the direct sum σ1 − σ2, see [1], and thus
if σ1 ∩ σ2 6= ∅, then it is not invertible. In other words, any nontrivial bounded
operator solution W for (1) belongs to the null space of the operator τ12.

In this note we show that equation (1) has non trivial unbounded solutions
even if σ1 ∩ σ2 = ∅, which means that (2) has no uniqueness in the class of
unbounded operators. More precisely we show that a nontrivial solution W
for (1) exists if and only if a special interpolation operator between the spaces
of the transforms does. When both operators are self-adjoint, the approach
also allows for interpolation on the real line, and more precisely reconstructing
values of a transform on σ1 from its known values on σ2. Most interesting cases
will arise when the spectra are discrete and disjoint as the interpolation reduces
to the well known idea of sampling, see [14, 16].

To motivate the approach, let us explain how to construct an explicit solu-
tion of (1) while σ1 ∩ σ2 = ∅. Consider the unbounded self-adjoint differential
operators

{
L1(f)(x) := −f ′′(x) + q1(x)f(x), x ≥ 0

f ′(0)− h1f(0) = 0

{
L2(f)(x) := −f ′′(x) + q2(x)f(x), x ≥ 0

f ′(0)− h2f(0) = 0
(3)

which act in the Hilbert space H2 = H1 = L2(0,∞). For i = 1, 2, let us denote
their eigenfunctionals by

Li(yi)(x, λ) = λyi(x, λ) (4)
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which we normalize by yi(0, λ) = 1. By the Gelfand–Levitan theory, we can
always construct q1 and q2 such that σ1 and σ2 are discrete and disjoint σ1∩σ2 =
∅, see [8]. On the other hand, we have the existence of transformation operators
such that

yi(x, λ) = cos
(
x
√
λ
)
+

∫ x

0

Ki(x, t) cos
(
t
√
λ
)
dt

cos
(
x
√
λ
)
= yi(x, λ) +

∫ x

0

Hi(x, t)yi(t, λ) dt,

where Ki and Hi are continuous kernels. The next step is to compose the above
mappings, as to eliminate cos(x

√
λ) and write

y2(x, λ) = y1(x, λ) +

∫ x

0

(H1(x, t) +K2(x, t)) y1(t, λ) dt

+

∫ x

0

K2(x, t)

∫ t

0

H1(t, s)y1(s, λ) ds dt

= y1(x, λ) +

∫ x

0

K12(x, t)y1(t, λ) dt, (5)

where K12 is continuous in (x, t), and so we can write

y2(x, λ) = V (y1) (x, λ). (6)

The operator V then is an unbounded operator solution to (1) since L2V = V L1
holds over the set {y1(x, λ)}λ∈σ1

which is a complete set of functionals. To see
the unboundedness of V observe that if λn ∈ σ1, then y1(x, λn) ∈ L2(0,∞)
while y2(x, λn) = V (y1) (x, λn) /∈ L2(0,∞) since the spectra are disjoint. This
adds a simple counter example to the Sylvester-Rosemblum theorem in the case
the operators are unbounded.

2. Notation

We shall assume that L1 and L2 are both unbounded self-adjoint operators
acting in the separable Hilbert spaces H1 and H2, respectively. For the sake of
simplicity, we assume that their respective spectra σ1 and σ2 are simple. Then
by the spectral theorem, [15, p. 31], for i = 1, 2, each operator Li generates an
isomorphism or a transform Fi such that

Hi
Fi7→ L2dρi

with

L2dρi
:=

{
F measurable:

∫ ∞

−∞

|F (λ)|2 dρi (λ) <∞
}

Fi (Lif) (λ) = λFi (f) (λ) and ‖f‖2i =
∫ ∞

−∞

|Fi (f) (λ)|2 dρi(λ),
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where ‖·‖i is the norm in Hi, i = 1, 2. The function ρi is called the spectral
function and defines a Lebesgue-Stieltjes measure dρi. Thus it is non-decreasing,
has a jump discontinuity at an eigenvalue only, is increasing on the continuous
spectrum and its support supp dρi = σi. The existence of a spectral function
guarantees that the spectrum is simple otherwise it is a matrix. In [10], one
can find a more general setting for the spectral theory of operators in rigged
Hilbert spaces, based on fact that when λ is in the continuous spectrum, the
corresponding eigenfunctional is a generalized function.

Let us denote by Dom(W ) the domain of the operator W . We begin with
few definitions.

Definition 2.1. W is a transformation operator ((T.O.) for short) if

i) W : H2 7→ H1 and Dom(W ) = H2;

ii) the set Ω := {f ∈ Dom(W ) and L2f ∈ Dom(W )} is dense in H2;

iii) L1W (f) = WL2 (f) holds for any f ∈ Ω.

The above definition agrees with the definition of a transformation operator
as given in [11], except for its boundedness. We now define the interpolation
operator which connects both transforms.

Definition 2.2. J is an interpolation operator ((I.O.) for short) if

1) is a densely closed linear operator L2dρ2

J7→ L2dρ1
;

2) the set S := {F ∈ Dom(J) and λF (·) ∈ Dom(J)} is dense in L2dρ2
;

3) for any F ∈ S we have λJ (F ) (λ) = J (λF ) (λ).

At first sight the operator J is simply a mapping between two weighted
L2 spaces. The idea of interpolation is contained in the following:

Proposition 2.3. If J is an I.O. then φ(λ)J(F ) (λ) = J (φF ) (λ) holds for any
analytic function φ and F ∈ L2dρ2

with a compact support.

Proof. Let F ∈ L2dρ2
have a compact support then for any n ≥ 0 we have

λnF (λ) ∈ L2dρ2
, λnF (λ) ∈ S and, by condition 3),

λnJ (F ) (λ) = J (λnF ) (λ).

The next step we use the fact that any analytic function about the origin can
be written as a power series φ (λ) =

∑
n≥0 anλ

n and since J is closed operator
we have

∑

n≥0

anλ
nJ (F ) (λ) = J

(∑

n≥0

anλ
nF

)
(λ)

φ(λ)J(F ) (λ) = J (φF ) (λ).
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Also by translation we have (λ− a) J (F ) (λ) = J ((λ− a)F ) (λ) which extends
the argument to any analytic function. While the function φF is known only
over σ2, φ is constructed over a new domain σ1, whenever J(F ) (λ) 6= 0, by the
formula

φ(λ) = J (φF ) (λ)/J(F ) (λ) .

Thus to define φ at different values say λ0, we need to use a function F with
J(F ) (λ0) 6= 0.

On the other hand if J is a sampling operator in the classical sense then
condition 3) λJ (F ) (λ) = J (λF ) (λ) is obvious as shown by the following simple
example of an interpolation operator.

Let σ2 = Z where Z is the set of integers and σ1 = {λn} where λn /∈ Z and
thus σ1 ∩ σ2 = ∅. Let us recall the definition

PWπ =

{
F entire: |F (λ)| ≤Meπ|=(λ)| and

∫ ∞

−∞

|F (x)|2 dx <∞
}
.

The Shannon–Whittacker–Kotelnikov sampling theorem [16] allows us to write
down a mapping explicitly for F ∈ PWπ:

F (µ) :=
∑

n∈Z

F (n)
sin(π(µ− n))

π(µ− n)
for

∑

n∈Z

|F (n)|2 <∞. (7)

Thus take the space L2dρ2
where the measure ρ2(λ) = [λ] represents the greatest

integer function in λ. If {F (n)}n∈Z
is given, then {F (λn)}n∈Z

can be obtained
from

J(F )(λn) :=
∑

k∈Z

F (k)
sin(π(λn − k))

π(λn − k)
. (8)

A mapping L2dρ2

J7→ L2dρ1
can now be defined by the operation in (8) and by (7)

we in fact have J(F )(λn) = F (λn). It remains to see that condition 3) then
holds since, for λF (·) ∈ L2dρ2

, J (λF (·)) (λn) = λnF (λn) = λnJ(F )(λn).

3. Interpolation

We now prove the main result.

Proposition 3.1. Assume that Li is an unbounded self adjoint operators acting

in Hi with spectral functions ρi for i = 1, 2. Let J be a linear operator L2dρ2

J7→
L2dρ1

and define

W = F−11 JF2. (9)

Then W is a T.O. if and only if J is an I.O.
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Proof. It is enough to show that the conditions in Definitions 2.2 and 2.1 are
equivalent in their respective order. Since F1 and F2 are unitary operators it
follows from (9) that W is densely defined if and only if J is densely defined.
For the second point, we need to show that S is dense if and only if Ω is dense.
From (9) we have

ψ ∈ Dom(J)⇐⇒ F−12 (ψ) ∈ Dom(W )

λψ ∈ Dom(J)⇐⇒ L2F
−1
2 (ψ) ∈ Dom(W )

and hence
ψ ∈ S ⇐⇒ F−12 (ψ) ∈ Ω.

In other words S is dense in L2dρ2
if and only if Ω is dense in H2. For the third

condition, let f ∈ Ω, then

L1W (f) = L1F
−1
1 JF2 (f) = F−11 λJF2 (f)

WL2 (f) = F−11 JF2L2 (f) = F−11 JλF2 (f)

which simply says that

L1W (f) = WL2 (f ) ∀f ∈ Ω ⇐⇒ J (λF ) = λJ (F ) ∀F ∈ S.

Therefore W is a T.O. if and only if J is an I.O.

Once the connection between I.O. and T.O. has been established, we now
show how to construct an I.O. in a particular case. For the sake of simplicity,
we shall call upon the well known Gelfand and Levitan theory, see [9] and [8].

From the given kernel defined by (5) define its adjoint W = V ′, i.e., W :
L2(0,∞) 7→ L2(0,∞):

Wf(x) = f(x) +

∫ ∞

x

K(t, x)f(t) dt. (10)

Since the kernel K (x, t) , by the Gelfand-Levitan theory, is a continuous func-
tion in both variables W is densely defined as its domain includes for example
C0(0,∞).

Let us recall that the Gelfand–Levitan theory requires the spectral func-
tion ρ to satisfy the following conditions, where

σ(λ) :=

{
ρ(λ)− 2

π

√
λ if λ ≥ 0

ρ(λ) if λ < 0.

Theorem 3.2 (Gelfand–Levitan–Gasymov). For ρ(λ), a nondecreasing and
right-continuous function to be the spectral function of (3) it is necessary and
sufficient that it satisfies the following conditions:
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(A) for f ∈ L2dx(0,∞) with compact support,

∫ ∞

−∞

|E(f) (λ)|2 dρ(λ) = 0 =⇒ f(x) ≡ 0,

where E(f)(λ) :=
∫∞
0
f(x) cos

(
x
√
λ
)
dx;

(B)
∫ N
−∞

cos(x
√
λ)dσ(λ) converges boundedly to Ψ(x) as N → ∞ and Ψ has

two locally integrable derivatives.

We have

Proposition 3.3. Assume that ρi(λ) satisfy conditions (A) and (B), then the
operator J : L2ρ2

7→ L2ρ1
defined by

J (F ) (λ) :=

∫ ∞

0

W (f) (x)y1(x, λ) dx, (11)

where f(x) :=
∫∞
0
F (λ)y2(x, λ) dρ2(λ) and f ∈ C2

0 [0,∞) is an interpolation
operator in the sense of Definition 2.2.

Proof. Conditions (A) and (B) ensure the existence of potentials qi(x) for the
solution of the inverse spectral problem and the recovered differential opera-
tors (4) generate unitary transforms

Fi : L
2
dx(0,∞) 7→ L2ρi

, i = 1, 2

Fi(f)(λ) :=

∫ ∞

0

f(x)yi(x, λ) dx and f(x) :=

∫
Fi(f)(λ)yi(x, λ) dρi(λ).

The operator J can be defined via L2(0,∞) as in (9):

J := F1WF−12 , (12)

whereW is defined by (10). We now verify that the three conditions for J to be
an I.O. are satisfied. By (12), F ∈ Dom(J) if and only if F−12 (F ) ∈ Dom(W ).
Since F2 is a unitary operator and Dom(W ) is dense in L2 (0,∞) it follows that
J is also densely defined in L2ρ2

.
For the second condition it is enough to show that Ω = {f ∈ Dom(W ) and

P2f ∈ Dom(W )} is dense in L2 (0,∞) . If f ∈ C2
0(0,∞), then f ∈ Dom(W ) and

L2 (f) = −f ′′ + q2f ∈ C0(0,∞) and so L2f ∈ Dom(W ). Thus C2
0 (0,∞) ⊂ Ω,

and from the density of C2
0 (0,∞) it follows that Ω is also dense in L2(0,∞). It

remains to see that S is unitarily equivalent to Ω:

f ∈ Ω⇐⇒ F2 (f) ∈ S

and therefore it is also dense in L2ρ2
.
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The last condition to verify is if F ∈ S then λJ (F ) (λ) = J (λF (·)) (λ).
Let F (λ) := F2 (f) (λ) where f ∈ C2

0 (0,∞). We then have F ∈ S and λF (λ) =
F2 (L2f) (λ), and it follows by (11) and the adjoint of V defined in (10) that

λJ (F ) (λ) = λ

∫ ∞

0

W (f) (x)y1(x, λ) dx

= λ

∫ ∞

0

V ′ (f) (x) y1(x, λ) dx

= λ

∫ ∞

0

f(x) V (y1) (x, λ) dx

= λ

∫ ∞

0

f(x) y2(x, λ) dx

=

∫ ∞

0

f(x) L2 (y2) (x, λ) dx

=

∫ ∞

0

L2 (f) (x) y2(x, λ) dx

=

∫ ∞

0

L2 (f) (x) V (y1) (x, λ) dx

=

∫ ∞

0

WL2 (f) (x) y1(x, λ) dx

= J (λF (·)) (λ).
Corollary 3.4. Let the conditions of Proposition 3 hold, then W is a nontrivial

solution of the operator equation WL2 = L1W.

Proof. Since J is an I.O. operator, it follows from Proposition 2 that W is
a T.O.

We now end this section by observing that if two given abstract self-adjoint
operators P1 and P2 are similar to L1 and L2, in (3), in the sense they have the
same spectral functions, then they “share” the same existing I.O. between L1
and L2. Indeed from the similarities relations

L1 = UP1U
−1, L2 = RP2R

−1 and WL2 = L1W

it follows that WRP2R
−1 = UP1U

−1W, i.e., U−1WRP2 = P1U
−1WR. Thus

U−1WR is the new T.O. for P1 and P2.

Corollary 3.5. Assume that Pi is an unbounded self adjoint operator acting in
Hi with transform F̃i and its spectral function ρi, for i = 1, 2, satisfies conditions
(A) and (B) in the Gelfand–Levitan–Gasymov theorem, then a T.O. W̃ between

P1 and P2 is simply given by

W̃ψ := F̃−11

∫ ∞

0

Wf(x)y1(x, λ) dx and f(x) =

∫
F̃2(ψ)(λ)y2(x, λ) dρ2(λ),

where yi(x, λ) are the eigenfunctionals of Li defined in (4).
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Proof. Since the Gelfand–Levitan theory already provides a standard I.O.,
see (11), it follows by Proposition 2, that

F̃1W̃ F̃−12 = J = F1WF−12 and W̃ = F̃−11 F1WF−12 F̃2,

and thus W̃ (ψ) = F̃−11 F1W (f) where f = F−12 F̃2 (ψ), and W is given by
(10).

Thus we have seen that the use of spectral functions allowed us to extend
the Rosemblum–Sylvester theorem to unbounded operators, and furthermore it
provides a new constructive approach to the solution of operator equation of
type (1).

Acknowledgement. The author sincerely thanks the referee for the valuable
comments.
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