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Asymptotic Self-Similarity for Solutions

of Partial Integro-Differential Equations

Hans Engler

Abstract. The question is studied whether weak solutions of linear partial integro-
differential equations approach a constant spatial profile after rescaling, as time goes
to infinity. The possible limits and corresponding scaling functions are identified and
are shown to actually occur. The limiting equations are fractional diffusion equations
which are known to have self-similar fundamental solutions. For an important special
case, is is shown that the asymptotic profile is Gaussian and convergence holds in L

2,
that is, solutions behave like fundamental solutions of the heat equation to leading
order. Systems of integro-differential equations occurring in viscoelasticity are also
discussed, and their solutions are shown to behave like fundamental solutions of a
related Stokes system. The main assumption is that the integral kernel in the equation
is regularly varying in the sense of Karamata.
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1. Introduction

Consider the linear heat equation ut = ∆u in R
n, with fundamental solution

U(x, t) = 1

(4πt)
n
2
e−|x|

2/4t. It is well-known and easy to see from the solution

formula that as t → ∞, u(x, t) = U0U(x, t) + o(t−
n
2 ), where U0 =

∫

Rn
u(·, 0)

is the initial mass of the solution, assumed to be finite. Thus, t
n
2 u(x

√
t, t) →

U0U(x, 1). Similarly, for solutions of the wave equation utt = uxx on R× [0,∞)
with initial data u(·, 0) = u0, ut(·, 0) = 0, the well-known solution formula
u(x, t) = 1

2
(u0(x+ t) + u0(x− t)) implies that tu(xt, t) ∼ 1

2
U0 (δ−1 + δ1) as

t → ∞, in this case in the sense of distributions. For the case of the wave
equation on R

n, the solution formulae that use spherical means imply that
tnu(xt, t)→ U0w, where w is a distribution of dimension dependent order that
is supported on the unit sphere in R

n. In the case of the heat equation, the
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solution depends (up to a multiplicative factor) asymptotically on the similarity

variable ξ = |x|√
t
, and convergence is uniform. In the case of the wave equation,

the similarity variable is ξ = |x|
t
, with convergence in a space of distributions.

In this paper, I investigate whether solutions of integro-differential equations

ut(·, t) = a0∆u(·, t) +
∫ t

0

a(t− s)∆u(·, s)ds

in R
n have similar properties. Here R 3 a0 ≥ 0 is a scalar, and a : [0,∞)→ R

is a scalar kernel. The special cases a0 = 1, a = 0 and a0 = 0, a = 1 correspond
to the heat equation and the wave equation, respectively, and therefore are
included. Thus the question is whether m(t)u(k(t)x, t) ∼ u∞ as t → ∞, in a
suitable sense.

Since all equations in this class are of the form ut + ∇ · q = 0 for some
flux q, the L1-integral of solutions is formally preserved as t varies,

∫

Rn
u(·, t) =

∫

Rn
u0 = U0 . One therefore expects that m(t) = k(t)n, that is k(t)nu(xk(t), t) ∼

U0w∞ for a suitable function k(·) as t → ∞ in a suitable distributional sense,
for a limiting distribution w∞. Then the ”trivial” behavior w∞ = δ0 can always
be achieved by letting k grow to ∞ very rapidly. This trivial behavior must
therefore be excluded. Also, solutions are expected to go to zero locally, so
the trivial case w∞ = 0 is possible if k goes to ∞ too slowly and must also be
excluded. With the right choice of k one hopes to obtain a nontrivial limit w∞.

It turns out that for a large class of such integro-differential equations there
is a choice of k (unique up to an asymptotically constant factor) for which the
limit w∞ is indeed non-trivial. It will be shown that the correct choice is

k(t) =

√

t

(

a0 +

∫ t

0

a(s)ds

)

.

The limiting distributions w∞ will also be identified. They turn out to belong to
a one parameter family, parametrized by β ∈ (−1, 1], with β = 0 corresponding
to the heat equation, β = 1 corresponding to the wave equation, and the cases
of non-integer β corresponding to fundamental solutions of fractional diffusion
equations. The main assumption is that the integrated kernel A(t) = a0 +
∫ t

0
a(s)ds should be regularly varying in the sense of Karamata ([1]), and

the index of variation β then determines the limiting distribution w∞. As an
aside, it should be noted that for the same w∞, there are many types of scaling
functions k possible that are not asymptotically equivalent. It will be shown
that all these possible limiting distributions are actually attained (in the sense
of distribution, or in an important special case in L2).

The literature on self-similar asymptotics is huge, so I only mention the
book [2] by G. Barenblatt. Fractional diffusion equations were discussed in [16]
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and [6], with systematic studies carried out in [5, 7, 11, 12]. Various physical
models leading to fractional diffusion equations are discussed in [9, 10, 18]. The
main reference for integro-differential equations of the type discussed here is
the book [15] by J. Prüss. The idea that regularly varying integral kernels
lead to asymptotically self-similar wave profiles for problems in viscoelasticity
is exploited in [14], for the case of the signalling problem. A related asymptotic
concept is equipartition of energy, discussed for a class of exponential kernels
corresponding to β = 1 in [4].

The plan of this paper is as follows. In the following Section 2, two types
of scaling (introduced at the end of this section) and the relations between
them are discussed. All possible distributional limits and their corresponding
scaling functions k are identified in Section 3. Section 4 is devoted to giving
sufficient conditions such that these distributional limits are actually attained.
In Section 5, the question of asymptotic self-similarity is studied in L2, lead-
ing to results about the time-asymptotic behavior of solutions that are sharp
to leading order. The same question is taken up for three-dimensional linear
homogeneous isotropic viscoelasticity in Section 6. Appendix A contains two
important technical results for families for scalar integral equations, and two
explicit examples for asymptotic behavior outside the theory developed in this
paper are presented in Appendix B.

The notation 〈u, ϕ〉 will be used for the result of applying a distribution
u ∈ D′ to a test function ϕ ∈ D = C∞0 (Rn). The pairing between test functions
Φ ∈ C∞0 (Rn× [0,∞)) and distributions U on R

n× [0,∞) is denoted by 〈〈U,Φ〉〉.
In particular, if U(·, t)t≥0 is a family of distributions in D′ that is measurable and
bounded with respect to the system of seminorms defining the usual topology
on D′, one can write

〈〈U,Φ〉〉 =
∫ ∞

0

〈U(·, t),Φ(·, t)〉dt .

Convolution with respect to t ∈ R is denoted by an asterisk, u ∗ v(t) =
∫ t

0
u(t − s)v(s) ds if u and v are both supported on the positive half axis. The

Fourier transform of a function f ∈ D is denoted by f̂ , f̂(ξ) =
∫

Rn
e−ixξf(x) dx,

and this is extended in the usual way to functions in L1 or in L2 or to dis-
tributions. The Laplace transform of a function a : [0,∞) → R is denoted
by ã(s) =

∫∞
0

e−sta(t)dt if defined, i.e. for s ∈ C such that <s > α for
some α ∈ [−∞,+∞). The usual notation for Lebesgue spaces Lp(Ω) and
for the Sobolev spaces Hs(Rn) is employed, 1 ≤ p ≤ ∞, −∞ < s < ∞.
Vector-valued Lebesgue and Sobolev spaces are denoted in the usual way, e.g.
Lp([0, T ], H1(Rn)) or Hs(R3,R3).

Let R
+ 3 t 7→ u(·, t) be a measurable and locally bounded family of distri-

butions on R
n, and let k : [0,∞)→ R

+ be continuous and increasing to ∞. In
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this paper, the scaled version of u is denoted by uk, defined by

〈uk(·, t), ϕ〉 = 〈u(·, t), ϕ(k(t)−1·)〉

or, in case u(·, t) is a function for almost all t,

uk(x, t) = k(t)nu(k(t)x, t) .

Thus if u(·, t) ∈ L1(Rn), then also uk(·, t) ∈ L1(Rn), and the L1 integral is
unchanged.

There is an alternative scaling uT,k, defined by

〈uT,k(·, t), ϕ〉 = 〈u(·, T t), ϕ(k(T )−1·)〉

or if u(·, t) is a function for almost all t,

uT,k(x, t) = k(T )nu(k(T )x, T t)

for x ∈ R
n and t > 0. The result now depends on k and the parameter T > 0.

This scaling again preserves the spatial L1-integral.

2. Scaling

Let t 7→ u(·, t) be a measurable and locally bounded (with respect to the
usual system of seminorms) family of tempered distributions on R

n, and let
k : [0,∞) → R

+ be continuous and increasing to ∞. Assume that the scaled
family uk(·, t) converges in D′ to some U ∈ D′ as t→∞, that is,

〈uk(·, t), ϕ(·)〉 → 〈U, ϕ〉 ∀ϕ ∈ C∞0 (Rn) . (1)

It is necessary to relate this property to the behavior of the family uT,k as
T → ∞. Using a tensor product argument, one easily sees that for all test
functions Φ ∈ C∞0 (Rn × (0,∞))

∫ ∞

0

〈uT,k(·, τ),Φ(·, τ)〉dτ =

∫ ∞

0

〈

uk(·, T τ),Φ

(

k(Tτ)

k(T )
·, τ
)〉

dτ . (2)

Assuming that (1) holds, the goal is to obtain a nontrivial limit in (2) as T →∞.
Then a natural assumption is that

lim
T→∞

k(Tτ)

k(T )
= p(τ) (3)

exists for all τ ∈ R
+, since in this case Φ

(

k(Tτ)
k(T )

x, τ
)

→ Φ(p(τ)x, τ) uniformly
with all derivatives in x, boundedly in τ , and thus

∫ ∞

0

〈uT,k(·, τ),Φ(·, τ)〉dτ →
∫ ∞

0

〈U,Φ(p(τ)·, τ)〉 dτ.
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A function k that is eventually positive and for which (3) holds for some
function p, for all τ ∈ (0,∞) is called regularly varying ([1]). It is known that
in this case p(τ) = τα for some α ∈ R which is called the index. An equivalent
condition is

lim
T→∞

k(Tτ)

b(T )
= p1(τ)

for some b, p1 and all τ in a neighborhood of τ = 1. In this case, necessarily
p1(τ) = Cτα for some C = p1(1) > 0, and one may choose b(t) = k(t).

Since k is increasing by assumption, α must be non-negative. If (3) holds
merely for τ in a set of positive Lebesgue measure, it must already hold for all
positive τ , and the limit is uniform on closed subintervals of (0,∞) (see [1]).
Moreover, α can be recovered from the limit (which always exists)

α = lim
t→∞

log k(t)

log t
.

Returning to (2) and assuming now that k is regularly varying with index α ≥ 0,
one obtains

∫ ∞

0

〈uT,k(·, τ),Φ(·, τ)〉dτ →
∫ ∞

0

〈U,Φτ (·, τ)〉dτ

where Φτ (x, τ) = Φ(xτα, τ). If U is a locally integrable function, this means

uT,k(x, τ) ∼ τ−nαU(xτ−α) .

in a suitable sense (e.g. pointwise a.e. in (x, τ)), as T → ∞. All this proves
the first statement of the following proposition.

Proposition 2.1. Let t 7→ u(·, t) be a measurable locally bounded family of
tempered distributions on R

n. Let k : [0,∞)→ R
+ be continuous and increasing

to ∞, and regularly varying with index α ≥ 0. Define uk and uT,k as above.

a) If U is a distribution on R
n such that uk(·, τ) → U , then uT,k(·, τ) →

Ū(·, τ) for a.e. τ in D′ as T →∞, where
〈Ū(·, τ), ϕ〉 = 〈U, ϕ(τα·)〉 . (4)

b) Assume that U ∈ Hs(Rn) for some s ∈ R and that uT,k converges to Ū ,
defined in (4), locally uniformly in τ as an Hs-valued function. Then also

uk(·, t) → U in Hs(Rn), as t→∞.
c) Suppose U ∈ Lr(Rn) for some r ∈ [1,∞] and uk(·, t) → U in Lr(Rn).
Set w(x, t) = k(t)−nU(xk(t)−1), then

‖u(·, t)− w(·, t)‖Lr = o
(

k(t)n(r
−1−1)) .

Moreover, if DmU ∈ Lr(Rn) and Dmuk(·, t) → DmU in Lr(Rn) for some
partial derivative Dm of order m, then

‖Dmu(·, t)−Dmw(·, t)‖Lr = o
(

k(t)n(r
−1−1)−m

)

.
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Proposition 2.2. Let k, l be regularly varying functions with index α ≥ 0 such
that limt→∞

l(t)
k(t)

= C ∈ (0,∞), and let U ∈ D′. Suppose that uT,k(·, t)→ Ū(·, t),
defined as in (4), locally uniformly in some Hs with s ∈ R. Then uT,l(·, t) →
V̄ (·, t) in Hs, locally uniformly in t, where for ϕ ∈ D

〈V̄ (·, τ), ϕ〉 = 〈U, ϕ(C−1τα·)〉 .

Thus if U is a function, then

uT,l(x, τ) ∼ Cnτ−nαU(Cxτ−α)

in a suitable sense, and the estimates of part c) of the previous proposition hold.

The easy proofs of the remaining parts of Proposition 2.1 and of Proposi-
tion 2.2 are left to the reader.

If u(·, t)→ 0 in some weak sense as t→∞, then it is possible to find k(·),
going to ∞, such that uT,k → 0 as a distribution on R

n × (0,∞). Similarly,
if u(·, t) ∈ L1 for all t and

∫

Rn
u(·, t) = C is constant, then one expects that

uT,k(·, t)→ Cδ0 if k(·) goes to ∞ sufficiently rapidly. The limiting cases U = 0
and U(·, t) = Cδ0 should be excluded and will be called trivial. Non-trivial
limiting distributions U should be neither zero nor supported on {0}× [0,∞) ⊂
R

n × [0,∞).

3. Identifying asymptotic limits

In this section, I shall classify the types of limiting behavior that are possible
for distributional solutions of the partial integro-differential equation

ut(x, t) = a0∆u(x, t) +

∫ t

0

a(t− s)∆u(x, s)ds (5)

or more shortly ut = a0∆u + a ∗ ∆u for x ∈ R
n, t > 0, with initial data

u(·, 0) = u0. It will be assumed throughout that a0 ≥ 0, the integral kernel a
is bounded on any set [ε,∞) and integrable on (0, 1), and u0 ∈ L1(Rn). Let us
begin by describing the limiting equations and their solutions. For α > 0, the
Mittag-Leffler function Eα is defined as

Eα(z) =
∞
∑

k=0

zk

Γ(1 + αk)
, (6)

see [3]. This is an entire function for any α > 0. Special cases include
E1(z) = ez, E2(z

2) = cosh(z), and E 1

2

(z) = ez
2

erfc(−z), where erfc is the
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complementary error function. For 0 < α < 2, α 6= 1, there is an asymptotic
expansion

Eα(z) =
N
∑

n=1

z−n

Γ(1− αn)
+O

(

|z|−N−1)

as z → ∞ in a sector about the negative real axis, where the reciprocal of the
Γ-function is extended as zero at the poles of Γ. In particular, Eα is bounded
on the negative real axis for all α ≤ 2; see [3] for details and other properties.

For α > 0, λ ∈ R, the function u(t) = Eα(−λtα) is the solution of the scalar
integral equation

u(t) +
λ

Γ(α)

∫ t

0

(t− s)α−1u(s) ds = 1 (7)

as a direct calculation shows.

Let 0 < α ≤ 2. Define wα(·, t) as the tempered distribution on R
n whose

spatial Fourier transform is

ŵα(ξ, t) = Eα

(

− |ξ|2tα
)

(ξ ∈ R
n, t ≥ 0) (8)

for t > 0. If α < 2, the asymptotic behavior of Eα implies that wα(·, t) ∈
Hs(Rn) for s < 2 − n

2
. In particular, if α < 2, with the exception α = 1, then

wα(·, t) ∈ L2(Rn) if and only if n ≤ 3 and wα(·, t) ∈ L∞(Rn) if and only if
n = 1. For α = 2, one has ŵ2(ξ, t) = cos(|ξ|t) and thus w2(·, t) ∈ Hs(Rn) for all
s < −n

2
. If α = 1, then ŵ1(ξ, t) = e−|ξ|

2t, and w1 is the well-known fundamental
solution of the heat equation. Also, wα(·, t) → δ0 as t → 0 for all α, in the
sense of distributions.

The distribution wα solves the integro-differential equation

w(·, t)−∆

(
∫ t

0

Γ(α)−1(t− s)α−1w(·, s) ds
)

= δ0 .

This follows immediately from (7) and (8). If α = 1, this is the heat equation,
and if α = 2, this is the wave equation. For 1 < α < 2, equation (12) can be
differentiated formally, resulting in the fractional heat equation

wt(·, t) = ∆

(
∫ t

0

Γ(α− 1)−1(t− s)α−2w(·, s) ds
)

. (9)

These equations have been studied in [6, 7, 10, 11, 12, 16].

Returning to solutions of (5), let us assume that t 7→ u(·, t) is a function
with values in the set of tempered distributions such that for all test functions
Φ ∈ C∞0 (Rn × [0,∞)) the equation holds
∫ ∞

0

〈

u(·, s),Φt(·, s) + a0∆Φ(·, s) +
∫ ∞

s

a(t− s)Φ(·, t) dt
〉

ds+ 〈u(·, 0),Φ(·, 0)〉= 0.
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With A(t) = a0 +
∫ t

0
a(s), one can write equivalently

u(·, t) = u(·, 0) + ∆

(
∫ t

0

A(t− s)u(·, s) ds
)

in the sense of distributions, or with Φ1(x, s) =
∫∞
s

A(t− s)Φ(x, t) dt

∫ ∞

0

〈u(·, s),Φ(·, s)−∆Φ1(·, s)〉 ds =
〈

u(·, 0),
∫ ∞

0

Φ(·, t)dt
〉

.

Let us consider solutions of (5) with the scaling

uT,k(x, τ) = k(T )nu(k(T )x, Tτ)

introduced earlier, where k is left unspecified for now. Set K = k(T ), then
v = uT,k is seen to be a distributional solution of the problem

v = u0,K +
T

K2
AT ∗∆v

where u0,K = Knu0(Kx) and AT (t) = A(Tt) = a0 +
∫ Tt

0
a(s) ds. Also, the

spatial Fourier transform ûT,k solves

ûT,k(ξ, t) + |ξ|2
T

K2
AT ∗ ûT,k(ξ, t) = û0

( ξ

K

)

(10)

in the sense of distributions. If one wishes to obtain a limiting equation of a
similar form, one is led to assume that there exist functions p,A∞ such

lim
T→∞

AT (t)

p(T )
= A∞(t) .

Let us also assume that A is eventually positive (not necessarily bounded away
from zeros). As explained in the previous section, this implies that A is regularly
varying and that one may choose p(T ) = cA(T ) = cAT (1), A∞(t) = c−1tβ for
some β ∈ R and any constant c > 0. If the kernel A∞ is to be integrable
at t = 0, then one should require β > −1. Since A′ = a was assumed to be
bounded on (1,∞), necessarily β ≤ 1. This motivates the main assumption in
the following result.

Theorem 3.1. Let u be a solution of (5) in the sense described above, and let
A be eventually positive and regularly varying with index β ∈ (−1, 1]. As-
sume that there exist a non-decreasing function k0 : [0,∞) → [0,∞) with
k0(∞) = ∞, a sequence Tn → ∞ and a non-trivial limiting distribution u∞
on R

n × [0,∞), u∞(·, t) ∈ Hs(Rn) for a.e. t for some fixed s > −∞ such that
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uTn,k0
→ u∞ as n → ∞, a.e. boundedly in Hs(Rn). Then one may choose

k(t) =
√

tA(t)Γ(1 + β), and with this choice

uT,k → U0w1+β = u∞

where U0 =
∫

Rn
u0(x) dx and w1+β is the distributional solution of the integro-

differential equation

w(·, t)−∆

(
∫ t

0

Γ(1 + β)−1(t− s)βw(·, s) ds
)

= δ0

defined in (8).

Proof. It should be noted that A is regularly varying with index β iff k is
regularly varying with index 1+β

2
. The assumptions for A imply that

AT (t)

A(T )Γ(1 + β)
→ A∞(t) =

tβ

Γ(1 + β)

as T →∞. Let Φ ∈ C∞0 (Rn,×(0,∞)) be a test function such that

〈〈∆Φ∞, u∞〉〉 6= 0, 〈〈u∞,Φ〉〉 6= U0

∫ ∞

0

Φ(0, t) dx dt,

where Φ∞(x, s) =
∫∞
t

A∞(t − s)Φ(x, t) dt. This is possible since the limit-
ing distribution is non-trivial (not identically equal to zero, not supported
on a subset of R

n × [0,∞) and in some fixed Hs for a.e. t. Set Φn(x, s) =
∫∞
s

A(Tn(t−s))
A(Tn)Γ(1+β)

Φ(x, t) dt. Then Φn → Φ∞ together with all derivatives.

Let us first show that k0 may be replaced with k, i.e., uTn,k → u∞. Indeed,
since

〈〈Φ, uTn,k0
〉〉 =

∫ ∞

0

〈Φ(·, t), u0,k(Tn)〉 dt+
Γ(1 + β)TnA(Tn)

k0(Tn)2
〈〈∆Φn, uTn,k0

〉〉

and all terms except the fraction have limits as n→∞, it follows that

L = lim
n→∞

Γ(1 + β)TnA(Tn)

k0(Tn)2

exists. Of course, L > 0, and after replacing k0 with
√
Lk0, one may assume

without loss of generality that L = 1. One can therefore replace k0 with k(t) =
√

Γ(1 + β)tA(t) and obtain that uTn,k → u∞.

Observe next that (10) now takes the form

ûT,k(ξ, t) +
|ξ|2

A(T )Γ(1 + β)
AT ∗ ûT,k(ξ, t) = û0

( ξ

K

)
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for all ξ. Thus one can write ûT,k(ξ, t) = zT (|ξ|2, t)û0
(

ξ
K

)

, where zT (ρ, ·) solves
the equation

zT (ρ, ·) +
ρ

A(T )Γ(1 + β)
AT ∗ zT (ρ, ·) = 1.

Note that zT (ρ, t) = z(λ, T t), where z(λ, ·) solves

z(λ, ·) + λA ∗ z(λ, ·) = 1 (11)

with λ = ρ
TA(T )Γ(1+β)

.

By Lemma A.2, as T →∞, zT (ρ, t) converges to E1+β(−ρt1+β), locally uni-
formly in ρ and t ≥ 0, and thus ûT,k converges pointwise in ξ, locally uniformly
in t, to v̂(ξ, t) = U0E1+β(−|ξ|2t1+β) = U0w1+β(ξ, t), that is, a solution of the
limiting equation

v̂(ξ, t) + |ξ|2
∫ t

0

(t− s)β

Γ(1 + β)
v̂(ξ, s) ds = U0 .

But for the subsequence Tn, the limit is û∞. Therefore, convergence holds along
the full sequence T → ∞, and the limit is U0ŵ1+β. By Parseval’s identity, the
theorem follows.

To sum up, the possibilities for limiting behavior identified in this result
are the following:

1. Behavior like the fundamental solution of the wave equation (β = 1),
expected if e.g. a(·) ∼ c > 0 or a(t) ∼ (log t)m as t → ∞ for some real
number m. In this case, k(t) ∼ √ct or k(t) ∼ t(log t)

m
2 .

2. Behavior like the fundamental solution of the heat equation (β = 0),
expected if e.g. a(·) is integrable and either a ≥ 0 or

∫∞
0

a(s)ds+a0 > 0, but also

if e.g. a(t) ∼ t−1. If a is integrable, then k(t) ∼
√
At, where A = a0+

∫∞
0

a(s)ds,
while if e.g. a(t) ∼ t−1, then k(t) ∼

√
t log t.

3. Behavior like the fundamental solution of a fractional integro-differential
equation of order 1 + β. If 0 < β < 1, this is expected if e.g. a(t) ∼ tβ−1. If
−1 < β < 0, this may occur if e.g. a is negative and integrable,

∫∞
0

a(s)ds =

−a0, and a(t) ∼ −tβ−1. In each case, k(t) ∼ t
1+β

2 . Of course, the behavior of k
may be modified by additional logarithmic factors also in this case.

4. Asymptotic distributional limits

The purpose of this section is to demonstrate that under mild assumptions,
solutions of (7) do converge to limiting solutions under the scaling u Ã uT,k.
I shall start by stating a general existence result for strong solutions that is
essentially well-known for the Hilbert space case; see [15].
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Proposition 4.1. Let u0 ∈ Hs(Rn) for some s ∈ R and assume that

lim
h↓0

(a0 + <ã(iω + h)) ≥ 0

for all ω ∈ R. Then there exists a unique function u ∈ C([0,∞), H s(Rn)) that
solves (5) in the sense of distributions and for which u(·, 0) = u0. The Fourier
transform û is given by

û(ξ, t) = z(|ξ|2, t)û0(ξ) (12)

where z(λ, ·) is the solution of (11).

The condition for the kernel a is equivalent to the requirement that its cosine
transform is bounded below by −a0 in the sense of measures. Equivalently, the
measure a0δ0 + a(t)dt is required to be positive definite (see [8]). We do not
require that u0 ∈ L1 and cannot assert that u(·, t) ∈ L1 for t > 0.

Proof. Consider the integral equations (11) for λ ≥ 0. By Lemma A.1, the
estimate |z(λ, t)| ≤ 1 holds for all λ and t. Then define u(·, t) as in (12). Using
Parseval’s identity and the bound for z(λ, ·), one obtains ‖u(·, t)‖Hs ≤ ‖u0‖Hs

for all t. Also, û(ξ, t)→ û0(ξ) pointwise a.e., and by construction

∂

∂t
û(ξ, t) + |ξ|2 (a0û(ξ, t) + a ∗ û(ξ, t)) = 0

for almost all ξ. Since z(λ, ·) is continuous, locally uniformly in λ, and uniformly
bounded, û(ξ, ·) is also continuous with values in Hs(Rn). Thus u is a distribu-
tional solution of (5). Uniqueness follows by taking the Fourier transform of a
solution in this class and recognizing that it must have the form (12).

Such solutions converge to the limiting solutions identified in the previous
section under the scaling introduced there, if the primitive A of a is regularly
varying. As explained above, these are natural conditions. From now on u0 will
always be assumed to be integrable.

Theorem 4.2. Assume that u0 ∈ L1(Rn) and that

1. the kernel satisfies limh↓0(a0 + <ã(iω + h)) ≥ 0 for all ω ∈ R,

2. the primitive A(t) = a0 +
∫ t

0
a(s)ds is eventually positive and regularly

varying with index β ∈ (−1, 1].
Set k(t) =

√

tA(t)Γ(1 + β), then for the solution u of (5) found in the previous
proposition

uT,k(·, t) → U0u∞(·, t)
in Hs(Rn), if s < −n

2
. Here

û∞(ξ, t) = E1+β

(

− |ξ|2t1+β
)

, U0 =

∫

Rn

u0(x)dx.

The convergence is uniform on any interval [c, d] ⊂ (0,∞).
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A few remarks can serve to put the result in perspective. First, if β = 1,
then û∞(ξ, t) = cos(|ξ|t), and thus u∞(·, t) /∈ H−n

2 (Rn). Thus for a result that
covers the entire range β ∈ (−1, 1], one cannot expect convergence in better
spaces than Hs(Rn) with s < −n

2
. Also, conditions 1 and 2 in the above result

are independent. For example, the kernel a(t) = cos(t) with A(t) = sin(t)
and ã = 1

2
(δi + δ−i) in the sense of measures on iR satisfies condition 1, but

is not regularly varying. The kernel a(t) = 1 − e−t has the antiderivative
A(t) = a0 + t − 1 + e−t which is regularly varying with β = 1, but since
<ã(iω) = − 1

1+ω2 for ω 6= 0, condition 1 is not satisfied if a0 < 1. Finally, it
should be recalled that L1(Rn) ⊂ Hs(Rn) for s < −n

2
, but not for larger s.

Proof. Let u be the distributional solution in C([0,∞), H s(Rn)) constructed in
Proposition 4.1. Then ûT,k satisfies

ûT,k(ξ, t) +
|ξ|2

A(T )Γ(1 + β)
AT ∗ ûT,k(ξ, t) = û0

(

ξ

k(T )

)

and therefore with k(T ) =
√

TA(T )Γ(1 + β),

ûT,k(ξ, t) = z

( |ξ|2
k2(T )

, T t

)

û0

(

ξ

k(T )

)

where z(λ, ·) solves (11) and therefore vλ(t) = z
(

λ
TA(T )Γ(1+β)

, T t
)

solves (22).
By Lemma A.2, as T →∞,

vλ(t) = z

(

λ

TA(T )Γ(1 + β)
, T t

)

→ E1+β(−λt1+β)

for all λ > 0. Consequently, ûT,k(ξ, t)→ û0(0)E1+β(−|ξ|2t1+β) pointwise for all
ξ, locally uniformly in t.

To prove that convergence holds in Hs(Rn) for s < −n
2
, one invokes again

Lemma A.1 to deduce that |z(λ, t)| ≤ 1 and therefore

|ûT,k(ξ, t)| ≤
∣

∣

∣

∣

û0

(

ξ

k(T )

)∣

∣

∣

∣

≤ C

for all ξ and T . Then for t > 0

‖uT,k(·, t)− U0u∞(·, t)‖2Hs =

∫

Rn

(1 + |ξ|2)s
∣

∣ûT,k(ξ, t)− U0E1+β

(

− |ξ|2+2βt
)∣

∣

2
.

Since 2s < −n, Lebesgue’s dominated convergence theorem implies the conclu-
sion.



Partial Integro-Differential Equations 429

5. Asymptotic limits in L2

In this section, equation (5) will be considered under the scaling uÃ uT,k, with
the goal of proving that limiting solutions are attained in L∞loc(0,∞;L2(Rn)) or
more generally L∞loc(0,∞;Hs(Rn)) with s ≥ 0, provided the initial data are in L2

or Hs. The limiting solutions were identified in Section 2 and are unbounded in
any Lr(Rn), r > 1 as t → 0. Thus one cannot expect uniform convergence up
to t = 0. A convergence result in L2 or in a better space allows one to obtain
the exact asymptotic behavior of solutions of (7) in this space to leading order,
by Proposition 2.1(c).

I only have a result for the case where A is regularly varying with index
β = 0, i.e. 0 < a0 +

∫∞
0

a(t)dt < ∞. The result is independent of the space
dimension. In this case the limiting equation is the heat equation. Note that f
β 6= 0, the limiting distributional solution is in L2(Rn) for t > 0 if and only if
n ≤ 3. Thus a result that holds for all spatial dimensions cannot be expected
if β 6= 0.

Theorem 5.1. Assume that

1. the initial data satisfy u0 ∈ L1(Rn) ∩Hs(Rn) for some s ≥ 0,

2. for some α > 0, ã can be extended to the half plane {s ∈ C | <s ≥ −α}
and either a0 > 0 and a0 + ã(iω)) > 0, or <ã(−α + iω) ≥ 0 for all ω.

Set k(t) =
√

tA(t), then for the solution u of (5) found in Proposition 3.1

uT,k(·, t) → U0u∞(·, t)

in Hs(Rn), where U0 =
∫

Rn
u0(x)dx. Here û∞(ξ, t) = e−|ξ|

2t, that is, u∞ is the
fundamental solution of the heat equation. The convergence is uniform on any

compact subinterval of (0,∞).

Proof. Note that assumption 2 implies that 0 < a0 +
∫∞
0

a(t)dt < ∞. Thus A
is regularly varying with index β = 0. From the proof of Theorem 4.2 one sees
that

ûT,k(ξ, t) = z

( |ξ|2
TA(T )

, T t

)

û0

(

ξ

k(T )

)

= z(λ, T t)û0

(

ξ

k(T )

)

with λ = |ξ|2
TA(T )

. By Lemma A.1, there are therefore estimates, valid for all
sufficiently large T ,

∣

∣

∣

∣

z

( |ξ|2
TA(T )

, T t

)∣

∣

∣

∣

≤
{

2e−c|ξ|2t if |ξ|2 ≤ dT

2e−cdT t if |ξ|2 ≥ dT .
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Here c = ε
2A∞

, d = A∞L
2

are positive constants, and ε, L are as in Lemma A.1.
Now consider

‖uT,k(·, t)− U0u∞(·, t)‖Hs

=

(

∫

(

1 + |ξ|2s
)

∣

∣

∣

∣

z(λ, T t)û0

(

ξ

k(T )

)

− U0e
−|ξ|2t

∣

∣

∣

∣

2

dξ

)
1

2

≤
(

∫

|ξ|≤R

(

1 + |ξ|2s
)

∣

∣

∣

∣

z(λ, T t)û0

(

ξ

k(T )

)

− U0e
−|ξ|2t

∣

∣

∣

∣

2

dξ

)
1

2

+

(

∫

|ξ|≥R

(

1 + |ξ|2s
)

∣

∣

∣

∣

z(λ, T t)û0

(

ξ

k(T )

)
∣

∣

∣

∣

2

dξ

)
1

2

+

(
∫

|ξ|≥R

(

1 + |ξ|2s
)

U2
0 e
−2|ξ|2tdξ

)
1

2

for arbitrary R, where as before λ = |ξ|2
TA(T )

. Then for given δ > 0 and [a, b] ⊂
(0,∞), choose R so large that the last integral is less than δ, uniformly in
t ∈ [a, b], and then choose T large enough such that the first integral is also

bounded by δ, uniformly in t. This is possible because z
( |ξ|2
TA(T )

, T t
)

→ e−|ξ|
2t as

T → ∞ by Lemma A.2, locally uniformly in ξ, and because û0 is continuous.
Then if dT ≥ R2, the second integral in the last expression can be estimated by

· · · ≤
(

∫

|ξ|≥R

(

1 + |ξ|2s
)

e−2cdT t

∣

∣

∣

∣

û0

(

ξ

k(T )

) ∣

∣

∣

∣

2

dξ

)
1

2

≤ e−cdT tk(T )
n
2
+s‖u0‖Hs

which is also smaller than δ, if T is chosen sufficiently large, locally uniformly
in t. The proof of this theorem is therefore complete.

Using Proposition 2.2, one obtains

Corollary 5.2. Under the assumptions of Theorem 5.1, the solution u of (5)
satisfies

‖u(·, t)− w(·, t)‖Hs = o
(

t−
n
4

)

where w(x, t) = U0 (4A∞πt)−
n
2 exp (−|x|2/(4A∞t)) is the solution of the heat

equation

wt = A∞∆w, w(·, 0) = U0δ0

and A∞ = a0 +
∫∞
0

a(s) ds.
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6. Linear viscoelasticity

Consider a viscoelastic material with mass density ρ = 1 occupying all R
3, and

denote the displacement of a material point at position x and time t by u(x, t)
and the velocity at this point by v(x, t) = ∂tu(x, t). Let us assume that the
material is at rest for t < 0 and prescribe an initial velocity field v(·, 0) = v0.
The Boltzmann model for linear isotropic homogeneous viscoelasticity ([13])
leads to the equations of motion

vt = a0∆v +
a0 + 2b0

3
∇∇ · v + a ∗∆v +

a+ 2b

3
∗ ∇∇ · v . (13)

Here a0 ≥ 0, b0 ∈ R, and a, b are suitable scalar-valued functions that describe
the stress response of the material under shear and compression, respectively.

The reader should recall the well-known decomposition into divergence free
and gradient components, as follows. For u ∈ Hs(R3,R3), let Pu, Qu ∈ Hs be
defined by

Pû(ξ) =
ξξT

|ξ|2 û(ξ), Qû(ξ) =

(

1− ξξT

|ξ|2
)

û(ξ) .

Then for an Hs-valued solution v of (13), one obtains that p = Pv and q = Qv
satisfy the equations

pt = β0∆p+ β ∗∆p

qt = a0∆q + a ∗∆q

with β0 =
4a0+2b0

3
and β(t) = 4a(t)+2b(t)

3
and with initial data p(·, 0) = p0 = Pv0

and q(·, 0) = q0 = Qv0 = v0 − p0. In addition, ∇ × p = 0 and ∇ · q = 0
in the sense of distributions. Thus p and q satisfy scalar integro-differential
equations, and as in Proposition 4.1 one obtains an existence result together
with a representation formula for the solution, given next.

Proposition 6.1. Let v0 ∈ Hs(R3,R3) for some s ∈ R and assume that

lim
h↓0

(a0 + <ã(iω + h)) ≥ 0 ∀ω ∈ R

lim
h↓0

(β0 + <β̃(iω + h)) ≥ 0 ∀ω ∈ R .

Then there exists a unique function v = p + q ∈ C([0,∞), H s(R3,R3)) that
solves (13) in the sense of distributions and for which v(·, 0) = v0. The Fourier
transforms p̂, q̂ are given by

p̂(ξ, t) = z1(|ξ|2, t)p̂0(ξ) (14)

q̂(ξ, t) = z(|ξ|2, t)q̂0(ξ) , (15)

where z(λ, ·) is the solution of (11) and z1 solves (11) with a0, a(·) replaced by
β0, β(·).
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Let us now consider the case where a, β ∈ L1, corresponding to a viscoelastic
material with vanishing elastic equilibrium response, i.e., a liquid. In this case,
the limiting behavior is expected to resemble the fundamental solution of the
compressible Stokes system

wt = A∆w + (B − A)∇∇ · w (16)

where A = a0+
∫∞
0

a(s) ds and B = β0+
∫∞
0

β(s) ds. The fundamental solution
is known to be the matrix valued function W (x, t) = U(x,Bt)+V (x,At), where

Û(ξ, t) =
ξξT

|ξ|2 e
−|ξ|2t, V̂ (ξ, t) =

(

E − ξξT

|ξ|2
)

e−|ξ|
2t

with E denoting the identity matrix. In real terms, U and V can be expressed
in terms of error functions (Kummer functions, confluent hypergeometric func-
tions), e.g.

Uij(x) = ∂i∂j

(

1

4π|x|Erf

( |x|√
4t

))

.

A recent derivation of these fundamental solutions in a more general situation
may be found in [17]. Note that these functions are not integrable with respect
to x, since their Fourier transforms are not continuous at ξ = 0; indeed they
behave like O(|x|−3) as |x| → ∞ for fixed t > 0, due to well-known asymptotic
results for the Kummer function. Using the arguments that led to the proof of
Theorem 5.1, one can now describe the asymptotic behavior of solutions of (13)
in terms of U and V . For this purpose, let us assume the following:

– For some s ≥ 0, v0 ∈ L1(R3,R3) ∩Hs(R3,R3).

– For some α > 0, the Laplace transforms ã, β̃ can be extended to the half
plane {z | <z ≥ −α}

– Either a0 > 0 and a0 + ã(iω)) > 0, or <ã(−α + iω) ≥ 0 for all ω.

– The same assumption for β0 and β(·).
As in the previous section, one can then use the representation formulae (14)
and (15) together with the results of Appendix A to prove the following result.

Theorem 6.2. Under these assumptions, the solution v of (13) satisfies

‖v(·, t)− V T
0 U(·, Bt)− V T

0 V (·, At)‖Hs = o
(

t−
n
4

)

,

where V0 =
∫

R3 v0(x) dx ∈ R
3, U and V are the components of the fundamental

solution of the compressible Stokes system (16), and

A = a0 +

∫ ∞

0

a(s)ds, B =
4

3
A+

2

3

(

b0 +

∫ ∞

0

b(s)ds

)

.

The result shows that to leading order for large t, the solution v(·, t) of the
Boltzmann system (13) behaves like the solution of the Stokes system (16)
with distributional initial data w(·, 0) = V0δ0.
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A. Scalar integral equations

In the following, let us assume that z : [0,∞) → R is a solution of the scalar
integro-differential equation

z′(t) + λ (a0z(t) + a ∗ z(t)) = 0, z(0) = 1 (17)

where a0 ≥ 0, λ ≥ 0, and a ∈ L1
loc(0,∞;R), a ∈ L∞(1,∞;R). Let ã be the

Laplace transform of a, defined for <s > 0. Recall that by Parseval’s identity,
a0+<ã(s) ≥ c for all s in the right half plane, for some non-positive constant c,
if and only if

∫ T

0

u(t) (a0u(t) + a ∗ u(t)) dt ≥ c

∫ T

0

|u(t)|2dt

for all real-valued square integrable functions u and all T ; see [8].

Lemma A.1.

1. If limh↓0(a0 +<ã(iω + h)) ≥ 0 for all ω ∈ R, then |z(t)| ≤ 1 for all t and
all λ ≥ 0.

2. Assume that for some α > 0, ã can be extended to {s ∈ C|<s ≥ −α} and
that either a0 > 0 and infω∈R(a0 + ã(iω)) > 0, or that <ã(−α + iω) ≥ 0
for all ω. Then there is a constant ε > 0 such that for all t > 0

|z(t)| ≤ 2e−εmin(λ,1)t .

Proof. Let us consider the more general equation

z′(t) + λ (a0 + a ∗ z(t)) = f(t)

where f ∈ L1
loc(0,∞;R). It will be shown that

a) under the assumptions of part 1, for λ = 1,

|z(t)| ≤ 1 +

∫ t

0

|f(s)|ds ∀t, (18)

b) under the first set of assumptions in part 2, with f = 0,

|z(t)| ≤ e−δt ∀t,

c) under the second set of assumptions and with f = 0,

|z(t)| ≤ 2e−δt ∀t. (19)

Here δ = λmin{ε, 1}, and ε > 0 depends only on a0 and a. Together these
assertions imply the lemma.
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To prove part a), multiply (17) with z(t) and integrate over [0, T ], resulting
in the identity

1

2
|z(T )|2 +

∫ T

0

z(t) (a0z(t) + a ∗ z(t)) dt = 1

2
+

∫ T

0

z(t)f(t)dt .

Since a0 + ã(iω) ≥ 0, the integral on the left is non-negative, and the inequal-

ity 1
2
|z(T )|2 ≤ 1

2
+
∫ T

0
|z(t)||f(t)|dt follows for all T . Bihari’s theorem now

implies (18). Evidently this estimate is independent of λ ≥ 0.

For the proof of b), set zδ(t) = eδtz(t) and aδ(t) = eδta(t), where δ > 0 will
be fixed later. Then zδ satisfies

z′δ(t) + λ
(

(a0 − δλ−1)zδ(t) + aδ ∗ zδ(t)
)

= 0 (20)

and zδ(0) = 1. Note that ãδ(s) = ã(s − δ) whenever δ < α. Since <ã(s) is
bounded on any vertical line <s = β with β > −α, harmonic to the right of
any such line, and bounded away from 0 near <s = −α one can find ε > 0 such
that a0 + <ã(−ε + iω) ≥ ε for all ω ∈ R. Then also a0 + <ã(s) ≥ ε whenever
<s > −ε.

Let now λ ≤ 1. Set δ = λε, then obviously

a0 − δλ−1 + <ãδ(iω) = a0 − ε+ <ã(−δ + iω) ≥ 0 .

If λ > 1, one sets δ = ε and obtains

a0 − δλ−1 + <ãδ(iω) ≥ a0 − ε+ <ã(−ε+ iω) ≥ 0 .

Part a), applied to (20), implies the desired estimate in both cases.

To prove c), note that

<ã(iω) ≥ c1
ω2 + α2

(21)

for all ω, for some c1 > 0, since <ã is harmonic and positive for <s ≥ −α. Also,
arg ã(z) = 0 for <z = 0 and arg ã(−α + iω) ≥ −π

2
for ω ≥ 0 by assumption.

Therefore by the maximum principle for harmonic functions, arg ã(z) ≥ arg(z+
α) for all z with =z ≥ 0, <z ≥ −α. This implies that =ã(iω) ≥ −αω<ã(iω) for
all ω ≥ 0. Now let b(t) = de−αt with d = min{ c1

2α2 ,
1
2α
}, where c1 is as in (21).

Thus b(0) = d, b′ = −αb, and b̃(s) = d
s+α

. Consider the kernel

a1(t) = a(t) + λa ∗ b(t)− αb(t)

with Laplace transform

ã1(s) = ã(s)

(

1 +
λd

s+ α

)

− αd

s+ α



Partial Integro-Differential Equations 435

for 0 ≤ λ ≤ 1. Then ã1 is analytic for <s > −α, and for s = iω, ω ≥ 0 one has

<ã1(iω) = <ã(iω)
(

1 +
λdα

ω2 + α2

)

+ =ã(iω) λdω

ω2 + α2
− α2d

ω2 + α2

>
c1

2(ω2 + α2)
+

1

2
<ã(iω)−<ã(iω) λdαω2

ω2 + α2
− α2d

ω2 + α2
≥ 0

uniformly in λ ∈ [0, 1], by the choice of d. In addition, <ã1(s) is bounded
uniformly in λ and s on the strip −α

2
≤ <s. One can therefore find a positive

γ < α such that whenever <s ≥ −γ, then d
2
+ <a1(s) ≥ 0.

Now the estimate (19) can be proved for small λ, say λ ≤ min{1, 2γ
3d
}.

Forming the convolution of (17) with λb and adding the result to (17), one
obtains the equation

z′(t) + λb ∗ z′(t) + λ (a+ λb ∗ a) ∗ z = 0

or equivalently

z′(t) + λ (dz(t) + a1 ∗ z(t)) = λb(t) = λde−αt ,

where a1 is as above (depending also on λ). Set δ = λd
2

and as before zδ(t) =
eδtz(t), a1,δ(t) = eδta1(t). The resulting equation for zδ is

z′δ(t) + λ

(

d

2
zδ(t) + a1,δ ∗ zδ(t)

)

= λde(δ−α)t, zδ(0) = 1 .

Since <ã1,δ(iω) = <ã1(−δ + iω) ≥ −d
2
, part a) of this proof implies that

|zδ(t)| ≤ 1 +

∫ ∞

0

λde−αt+λdt/2 = 1 +
λd

α− λd
2

≤ 2 ,

where the last inequality follows from λd ≤ 2
3
γ. This implies |z(t)| ≤ 2e−λεt

with ε = d
2
, whenever λ ≤ min{ 2γ

3d
, 1}. Reducing ε if necessary, inequality (19)

is proved for λ ≤ 1.

The proof for λ ≥ 1 is similar. One considers the kernel function

a2(t) = a(t) + a ∗ b(t)− λ−1αb(t)

with Laplace transform

ã2(s) = ã(s)

(

1 +
d

s+ α

)

− λ−1αd

s+ α
.

Then by the same argument, d
2
+<a2(s) ≥ 0 whenever <s ≥ −κ, for some κ > 0

that does not depend on λ ≥ 1. Then form the convolution of (17) with b and
add the result to (17). This yields the equation

z′(t) + dz(t) + λ (a2 ∗ z(t)) = b(t) = de−αt .
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with a2(t) = a(t) + a ∗ b(t) − λ−1αb(t). Set δ = min{κ, d
2
, α − d} and zδ =

eδt, a2,δ = eδta2(t). Then

z′δ(t) + (d− δ)zδ(t) + λ (a2,δ ∗ zδ(t)) = de(δ−α)t, zδ(0) = 1 .

Since <ã2,δ(iω) = <ã2(−δ + iω) ≥ −d
2
, part a) again implies that

|zδ(t)| ≤ 1 +

∫ ∞

0

de(δ−α)t = 1 +
d

α− δ
≤ 2 ,

where the last inequality follows from δ ≤ α − d. Therefore, |z(t)| ≤ 2e−δt ≤
2e−εt if ε as chosen earlier or possibly lowered, whenever λ ≥ 1. The proof is
now complete.

Lemma A.2. Let A∞, An ∈ L1(0, T0;R) for n ≥ 1 such that An → A∞ in L1.

For ρ ≥ 0, let wn(ρ, ·) be the solution of

wn(ρ, t) + ρAn ∗ wn(ρ, t) = 1

for 0 ≤ t ≤ T0. Then wn(ρ, ·) → w∞(ρ, ·) uniformly in t ∈ [0, T0], locally
uniformly in ρ, where w∞(ρ, t)+ρA∞∗w∞(ρ, t) = 1 . In particular, asume that A
is a regularly varying kernel with index β ∈ (−1, 1] and eventually positive, and
set AT (t) = A(Tt). Then the solutions vλ(·) of

vλ(t) +
λ

A(T )Γ(1 + β)
AT ∗ vλ(t) = 1 (22)

converge uniformly in t and locally uniformly in λ to E1+β(−λt1+β).

Proof. The first assertion follows from a standard argument for Neumann se-
ries. Since A(Tt)

A(T )Γ(1+β)
→ tβ

Γ(1+β)
, pointwise in t and also in L1(0, T0), the second

assertion follows as well.

B. Two examples

Here are two explicit examples of integro-differential equations of the form (5)
for which the assumptions in the main results are not satisfied and the conclu-
sions fail as well.

First consider (5) with the kernel a(t) = cos(t) and a0 = 0. Thus ã(s) =
s

s2+1
, and therefore this kernel is positive definite; <ã(s) ≥ 0 for all s in the

right half plane. Since A(t) = sin(t), the kernel is not regularly varying. Taking
the Laplace transform with respect to t and the Fourier transform with respect
to x, one obtains that the Fourier-Laplace transform solution ˆ̃u satisfies

sˆ̃u+
|ξ2|s
s2 + 1

ˆ̃u = û0 .
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After solving for ˆ̃u and inverting the Laplace transform, one obtains

û(ξ, t) =

(

1

|ξ|2 + 1
+

|ξ|2
|ξ|2 + 1

cos
(

√

1 + |ξ|2t
)

)

û0(ξ) .

Thus u(x, t) = u1(x) + u2(x, t), where u1 −∆u1 = u0 and u2 solves the Klein–
Gordon equation u2,tt+u2= ∆u2 with initial data u2(·, 0)= u0−u1, u2,t(·, 0)=0.
Locally in x, u(·, t) → u1 as t → ∞, since the contributions from u2 are radi-
ated off to infinity. There is a nontrivial time-asymptotic limit (attained e.g.
pointwise a.e. for sufficiently smooth initial data) that depends on the initial
data.

As a second example, consider (5) with the kernel a(t) = −e−t and a0 = 1.
Thus a0 + ã(s) = s

s+1
, and this kernel is also positive definite. Here A(t) = e−t,

and the kernel A can be viewed as regularly varying with index β = −∞. As
before, taking the Laplace transform with respect to t and the Fourier transform
with respect to x, one obtains that the Fourier–Laplace transform solution ˆ̃u
satisfies

sˆ̃u+
|ξ2|s
s+ 1

ˆ̃u = û0 .

The equation can be solved for ˆ̃u and the Laplace transform can be inverted,
and the result is

û(ξ, t) =

(

1

|ξ|2 + 1
+

|ξ|2
|ξ|2 + 1

e−(1+|ξ|
2)t

)

û0(ξ) .

In this case therefore u(x, t) = u1(x) + u2(x, t), where as before u1 −∆u1 = u0
and u2 now solves the diffusion equation u2,t + u2 = ∆u2 with initial data
u2(·, 0) = u0 − u1. Again, there is a nontrivial time-asymptotic limit that
depends on the initial data, namely u(·, t)−u1 = O(t−

n
2 e−t) as t→∞, uniformly

in x.

References

[1] Bingham, N. H., Goldie, C. M. and Teugels, J. L., Regular Variation. Cam-
bridge: Cambridge University Press 1989.

[2] Barenblatt, G. I., Scaling, Self-Similarity, and Intermediate Asymptotics. Cam-
bridge: Cambridge University Press 1996.

[3] Erdelyi, A. (ed.), Higher Transcendental Function, Vol. 3. New York: McGraw-
Hill 1955.

[4] Dassios, G. and Zafiropoulos, F., Equipartition of energy in linearized three-
dimensional viscoelasticity. Quart. Appl. Math. 48 (1990), 715 – 730.

[5] Eidelman, S. D. and Kochubei, A. N., Cauchy problem for fractional diffusion
equation. J. Diff. Eq. 199 (2004), 211 – 255.



438 H. Engler

[6] Fujita, Y., Integrodifferential equation which interpolates the heat equa-
tion and the wave equation. Osaka J. Math. 27 (1990)(2), 309–321, and
27 (1990)(4), 797 – 804.

[7] Gorenflo, R., Luchko, Y. and Mainardi, F., Wright functions as scale-invariant
solutions of the diffusion-wave equation. J. Comp. Appl. Math. 118 (2000),
175 – 191.

[8] Gripenberg, G., Londen, S. O. and Staffans, O. J., Volterra Integral and Func-
tional Equations. Cambridge: Cambridge University Press 1990.

[9] Hanyga, A. and Rok, E., Wave propagation in micro-heterogeneous porous
media: A model based on an integro-differential wave equation. J. Acoustical
Soc. America 107 (2000), 2965 – 2972.

[10] Hanyga, A., Multidimensional solutions of time-fractional diffusion-wave equa-
tions. Proc. Royal Soc. London A 458 (2002), 933 – 957.

[11] Mainardi, F., The fundamental solutions for the fractional diffusion-wave equa-
tion. Appl. Math. Letters 9 (1996), 23 – 28.

[12] Mainardi, F. and Gorenflo, R., On Mittag-Leffler type functions in fractional
evolution processes. J. Comp. Appl. Math. 118 (2000), 283 – 299.

[13] Leitman, M. J. and Fisher, G. C., The linear theory of viscoelasticity. In:
Handbuch der Physik VIa/3 (ed.: S. Flügge). New York: Springer 1972,
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