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Conditions for Correct Solvability

of a Simplest Singular Boundary Value Problem

of General Form. II

N. A. Chernyavskaya and L. A. Shuster

Abstract. We consider the singular boundary value problem

−r(x)y′(x) + q(x)y(x) = f(x), x ∈ R (1)

lim
|x|→∞

y(x) = 0, (2)

where f ∈ Lp(R), p ∈ [1,∞] (L∞(R) := C(R)), r is a continuous positive function
on R, 0 ≤ q ∈ Lloc

1 (R). A solution of this problem is, by definition, any absolutely
continuous function y satisfying the limit condition and almost everywhere the dif-
ferential equation. This problem is called correctly solvable in a given space Lp(R) if
for any function f ∈ Lp(R) it has a unique solution y ∈ Lp(R) and if the following
inequality holds with an absolute constant cp ∈ (0,∞) :

‖y‖Lp(R) ≤ cp‖f‖Lp(R), ∀ f ∈ Lp(R).

We find a relationship between r, q, and the parameter p ∈ [1,∞], which guarantees
the correctly solvability of the problem (1) and (2) in Lp(R).
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1. Introduction

We consider the singular boundary value problem

−r(x)y′(x) + q(x)y(x) = f(x), x ∈ R (1.1)

lim
|x|→∞

y(x) = 0. (1.2)
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Here and throughout the sequel, f ∈ Lp(R), p ∈ [1,∞] (L∞(R) := C(R)) and

0 < r ∈ C loc(R), 0 ≤ q ∈ Lloc
1 (R). (1.3)

(In (1.3), we use the symbol C loc(R) to denote the set of functions defined and
continuous in R.) Throughout the paper, we assume that the above conven-
tions are satisfied. We also define a solution of (1.1)–(1.2) as any absolutely
continuous function y satisfying (1.2) and (1.1) almost everywhere on R.

Note that the problem (1.1)–(1.2) was already considered in [1]. In partic-
ular, in [1], there were obtained general (unconditional) criteria for its correct
solvability in Lp(R), p ∈ [1,∞] (see §2 below for the definition of correct solvabil-
ity of problem (1.1)–(1.2).) In the present paper we continue the investigation
started in [1]. Our general goal is as follows: under a certain requirement (in
addition to (1.3)), find conditions for correct solvability of problem (1.1)–(1.2)
which can be expressed solely in terms of the functions r and q. To make this
more precise, let us present one of the main results of [1]:

Theorem 1.1 (§4). Let p ∈ (1,∞), p′ = p(p− 1)−1. Problem (1.1) – (1.2) is
correctly solvable in Lp(R) if and only if the following conditions hold together:

1) Mp <∞. Here Mp = sup
x∈R

Mp(x), where (1.4)

Mp(x) =

[
∫ x

−∞

exp

(

− p

∫ x

t

q(ξ)

r(ξ)
dξ

)

dt

]
1
p

·

[
∫ ∞

x

1

r(t)p′
exp

(

− p′
∫ t

x

q(ξ)

r(ξ)
dξ

)

dt

]
1
p′

, x ∈ R; (1.5)

2) S1 =∞, S1
def
=

∫ 0

−∞

q(t)

r(t)
dt; (1.6)

3) Ap′ <∞. Here Ap′ = sup
x∈R

Ap′(x), where (1.7)

Ap′(x) =

∫ x+d(x)

x−d(x)

dt

r(t)p′
, x ∈ R; (1.8)

d(x) = inf
d>0
{d : Φ(x, d) = 2}, Φ(x, d) =

∫ x+d

x−d

q(t)

r(t)
dt, x ∈ R. (1.9)

It is easy to see that Theorem 1.1 “does not answer” the posed question.
Indeed, in Theorem 1.1, correct solvability (or unsolvability) of problem (1.1)–
(1.2) in Lp(R), p ∈ (1,∞), is determined by the values of the functionals Mp,
S1 and Ap′ in the functions r and q, and we have to make a conclusion looking
at the functions r and q themselves. At the same time, the values of the func-
tionals Mp, S1 and Ap′ are essential for the investigation of problem (1.1)–(1.2)
since Theorem 1.1 is a criterion for its correct solvability. Thus we have to find a
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narrower version of Theorem 1.1 such that the condition 1), 2) and 3) are either
equivalent to certain pointwise conditions for the functions r and q themselves
or are satisfied automatically. We solve this problem in §3 in Theorem 3.2 which
is the main result of the present paper. In addition, we present two additional
assertions which complement the paper [1] (see Theorems 3.1 and 3.3).

Acknowledgement. The authors thank Profs. Z. S. Grinshpun, S. Luckhaus,
and the anonymous referee for useful remarks and suggestions which allowed us
to improve the paper.

2. Preliminaries

Below we present the definition of correct solvability as well as assertions used
in the proofs of the main results of this paper.

Definition 2.1 ([1]). We call the problem (1.1)–(1.2) correctly solvable in a
given space Lp(R) if the following conditions hold:

I) For every function f ∈ Lp(R), there exists a unique solution y ∈ Lp(R) of
(1.1)–(1.2).

II) The solution y ∈ Lp(R) of (1.1)–(1.2) satisfies the following inequality
with an absolute constant cp ∈ (0,∞):

‖y‖p ≤ cp‖f(x)‖p, ∀ f ∈ Lp(R).

Theorem 1.1 contains the criterion for the correct solvability in Lp(R) of
the problem (1.1)–(1.2) in the case p ∈ (1,∞). For the cases p = 1 and p =∞,
see Theorems 2.2 and 2.3 below.

Theorem 2.2 ([1]). Problem (1.1)–(1.2) is correctly solvable in L1(R) if and
only if the following conditions hold together:

1) S1 =∞ (see (1.6)) ; (2.1)

2) r0 > 0, r0 = inf
x∈R

r(x) > 0; (2.2)

3) M1 <∞. Here M1 = sup
x∈R

M1(x) <∞, where (2.3)

M1(x) =
1

r(x)

∫ x

−∞

exp

(

−

∫ x

t

q(ξ)

r(ξ)
dξ

)

dt, x ∈ R.

Theorem 2.3 ([1]). Problem (1.1)–(1.2) is correctly solvable in C(R) if and
only if A0 = 0, where A0 = lim

|x|→∞
A(x). Here

A(x) =

∫ ∞

x

1

r(t)
exp

(

−

∫ t

x

q(ξ)

r(ξ)
dξ

)

dt, x ∈ R. (2.4)

Moreover, if A0 = 0, then S1 =∞ (see (1.6)).
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We note that in §§3–6 below we use some technical assertions and their
formulations from [1]. We give their formulation in the course of our exposition.

3. Main results

Here and throughout the sequel, the symbols c, c(·), c1, c2, . . . denote absolute
positive constants which are not essential for exposition and may differ even
within a single chain of calculations.

The next statement is a useful complement to Theorem 2.3.

Theorem 3.1 (§4). Suppose that the functions r and q satisfy the conditions

1) S1 =∞ (see (1.6)) ;

2) q0 > 0, where q0 = inf
x∈R

q(x) ;

3) q(x)→∞ as |x| → ∞ .

Then problem (1.1)–(1.2) is correctly solvable in C(R).

The main result of the present paper is the following.

Theorem 3.2 (§5). Suppose that the following conditions hold:

1) The functions r and q are positive and continuous on R.

2) There exists a ≥ 1 and b > 0 and an interval (α, β) such that

1

a
≤
r(t)

r(x)
,

q(t)

q(x)
≤ a, for |t− x| ≤ b

r(x)

q(x)
, x /∈ (α, β); (3.1)

and, moreover, γ = γ(a, b) ≤ 1. Here γ = 3a2 exp(− b
a2 ). Then problem

(1.1) – (1.2) is correctly solvable in Lp(R), p ∈ [1,∞], if and only if the
conditions from the following table are satisfied:

Space L1(R) Lp(R), 1 < p <∞ C(R)

Conditions for r0 > 0 σp′ > 0 q(x)→∞

correct solvability q0 > 0 q0 > 0 as |x| → ∞

(3.2)

Here p′ = p
p−1
for p ∈ (1,∞) and

r0 = inf
x∈R

r(x), q0 = inf
x∈R

q(x), σp′ = inf
x∈R

r(x)
1
p q(x)

1
p′ . (3.3)

The next statement is a useful complement to Theorems 1.1, 2.2, and 2.3.
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Theorem 3.3 (§6). Suppose that the following conditions are satisfied:

1) S1 = S2 =∞, where S1 =

∫ 0

−∞

q(t)

r(t)
dt, S2 =

∫ ∞

0

q(t)

r(t)
dt; (3.4)

2) there exists δ > 0 such that, for x ∈ R, (see (1.9))

d(t) ≥ δd(x), for |t− x| ≤ d(x). (3.5)

Then if

lim
x→−∞

q(x) = 0 or lim
x→∞

q(x) = 0

holds, problem (1.1)–(1.2) cannot be correctly solvable in Lp(R) for any
p ∈ [1,∞].

This theorem needs an explanation; for this we use the following lemma.

Lemma 3.4 ([1]). Let S1 = ∞ (see (3.4)). Then the function d(x) is defined
for x ∈ R. Moreover, d(x) is continuous and positive on R, and the following
estimates hold:

|d(x+ h)− d(x)| ≤ |h| if |h| ≤ d(x), x ∈ R. (3.6)

From (3.6) it follows that for any ε ∈ [0, 1] and for every x ∈ R the following
estimates hold:

(1− ε)d(x) ≤ d(t) ≤ (1 + ε)d(x) for |t− x| ≤ εd(x). (3.7)

Indeed, let h = t−x. Then |h| ≤ εd(x) ≤ d(x), t = x+h; and, in view of (3.6), we

obtain |d(t)−d(x)| = |d(x+h)−d(x)| ≤ |h| ≤ εd(x), which implies
∣

∣

d(t)
d(x)
−1
∣

∣ ≤ ε

and hence (3.7). Thus, we see that inequality (3.5) slightly strengthens the a
priori property (3.7), and therefore Theorem 3.3 can be applied to a broad class
of problems (1.1)–(1.2).

4. Proof of the theorem on correct solvability in C(R)

Proof of Theorem 3.1. Let us check that A(x)→ 0 as |x| → ∞ (see (2.4)). Fix
ε > 0. Then there is an interval (x1, x2) such that q(x) ≥ 3

ε
for x /∈ (x1, x2). To

estimate A(x) for x /∈ (x1, x2), we consider the cases a) x ≥ x2 and b) x ≤ x1

separately. In case a) we have (see (2.4)):

A(x) ≤
ε

3

∫ ∞

x

q(t)

r(t)
exp

(

−

∫ t

x

q(ξ)

r(ξ)
dξ

)

dt ≤
ε

3
< ε.
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To estimate A(x) in case b), we write A(x) in the following form:

A(x) =

∫ x1

x

1

r(t)
exp

(

−

∫ t

x

q(ξ)

r(ξ)
dξ

)

dt+

∫ x2

x1

1

r(t)
exp

(

−

∫ t

x

q(ξ)

r(ξ)
dξ

)

dt

+

∫ ∞

x2

1

r(t)
exp

(

−

∫ t

x

q(ξ)

r(ξ)
dξ

)

dt

Now we estimate each summand of A(x) separately. We get, for x ≤ x1,

A1(x) :=

∫ x1

x

1

r(t)
exp

(

−

∫ t

x

q(ξ)

r(ξ)
dξ

)

dt ≤
ε

3

∫ x1

x

q(t)

r(t)
exp

(

−

∫ t

x

q(ξ)

r(ξ)
dξ

)

dt ≤
ε

3

and

A2(x) :=

∫ x2

x1

1

r(t)
exp

(

−

∫ t

x

q(ξ)

r(ξ)
dξ

)

dt ≤
1

q0
exp

(

−

∫ x1

x

q(ξ)

r(ξ)
dξ

)

.

Since S1 =∞, there is x0 = x0(ε)¿ x1 such that 1
q0
exp

(

−
∫ x1

x
q(ξ)
r(ξ)

dξ
)

≤ ε
3
for

x ≤ x0, hence A2(x) ≤ 3−1ε for x ≤ x0. Finally, from

A3(x) :=

∫ ∞

x2

1

r(t)
exp

(

−

∫ t

x

q(ξ)

r(ξ)
dξ

)

dt ≤
ε

3

∫ ∞

x2

q(t)

r(t)
exp

(

−

∫ t

x2

q(ξ)

r(ξ)
dξ

)

dt

it follows A3(x) ≤
ε
3
. Hence for x /∈ (x0, x2), we have

A(x) = A1(x) + A2(x) + A3(x) ≤ ε, x /∈ (x0, x2),

which implies lim|x|→∞A(x) = 0. It remains to refer to Theorem 2.3.

5. Proof of the main result

To prove Theorem 3.2, we need some lemmas. When stating them, we assume
that the hypotheses of Theorem 3.2 are satisfied. Below we often use an obvious
statement which, for convenience, is formulated as a separate assertion.

Lemma 5.1 ([1]). Let ϕ(x) and ψ(x) be positive and continuous functions for
x ∈ R. If there exist a constant c ∈ [1,∞) and an interval (x1, x2) such that

c−1ψ(x) ≤ ϕ(x) ≤ cψ(x) for x /∈ (x1, x2), (5.1)

then equalities (5.1) remain true for all x ∈ R, possibly after the replacement
of c by a bigger constant.
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Proof. The function f(x) = ϕ(x)
ψ(x)

is continuous and positive for x ∈ [x1, x2].

Hence its minimum m and maximum M on the segment [x1, x2] are finite pos-
itive numbers. Let c1 = max{c, 1

m
,M}. Then 1

c1
ψ(x) ≤ ϕ(x) ≤ c1ψ(x) for

x ∈ R.

Lemma 5.2. Let x ∈ R be given. Let a sequence {xk}
∞
k=−∞ be given as follows:

x0 = x, xk+1 = xk + b
r(xk)

q(xk)
for k = 0, 1, 2, . . . (5.2)

x0 = x, xk−1 = xk − b
r(xk)

q(xk)
for k = 0,−1,−2, . . . . (5.3)

Here b is taken from (3.1). Then we have

lim
k→−∞

xk = −∞, lim
k→∞

xk =∞. (5.4)

Proof. Both limits in (5.4) are checked in a similar way. Let us prove, for
example, the second one. Assume the contrary. The sequence (5.2) is, by
construction, monotone increasing. If (5.4) does not hold, then there is z <∞
such that xk < z for k ≥ 0. Then the sequence (5.2) has a limit z0 ≤ z.Moreover,

∞ > z − x ≥
∑∞

k=0(xk+1 − xk) = b
∑∞

k=0
r(xk)
q(xk)

, which implies limk→∞
r(xk)
q(xk)

= 0,

in contradiction to limk→∞
r(xk)
q(xk)

= r(z0)
q(z0)
6= 0.

Lemma 5.3. Let θ ∈ [0, b] (see (3.1)). Denote

ω(+)(x) =

[

x, x+ θ
r(x)

q(x)

]

, ω(−)(x) =

[

x− θ
r(x)

q(x)
, x

]

, x ∈ R. (5.5)

Then for x /∈ (α, β) (see (3.1)), the following inequalities hold:

θ

a2
≤

∫

ω(+)(x)

q(t)

r(t)
dt,

∫

ω(−)(x)

q(t)

r(t)
dt ≤ θa2. (5.6)

Proof. The inequalities (5.6) follow from (3.1):

∫

ω(+)(x)

q(t)

r(t)
dt =

∫

ω(+)(x)

q(t)

q(x)
·
q(x)

r(x)
·
r(x)

r(t)
dt ≥

1

a2
·
q(x)

r(x)
· θ
r(x)

q(x)
=

θ

a2

∫

ω(+)(x)

q(t)

r(t)
dt =

∫

ω(+)(x)

q(t)

q(x)
·
q(x)

r(x)
·
r(x)

r(t)
dt ≤ a2 ·

q(x)

r(x)
· θ
r(x)

q(x)
= θa2.

Lemma 5.4. We have (see (3.4))

S1 = ∞, S2 =∞. (5.7)
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Proof. In (5.2), set x0 = 0. By Lemma 5.2, there is k0 À 1 such that the
points xk for k ≥ k0 are outside the interval (α, β) from condition (3.1). Then
by Lemma 5.3, we have

∞ ≥ S2 ≥

∫ ∞

xk0

q(t)

r(t)
dt =

∞
∑

k=k0

∫ xk+1

xk

q(t)

r(t)
dt ≥

∞
∑

k=k0

b

a2
=∞

which implies S2 = ∞. The equality S1 = ∞ can be checked in a similar
way.

Lemma 5.5. Let a ≥ 1, b > 0, and γ ≤ 1 (see Theorem 3.2). Then b ≥ a2.

Proof. If b < a2, then 3 ≤ 3a2 ≤ eb/a
2
≤ e, a contradiction.

Lemma 5.6 ([1]). Let S1 = ∞ (see (3.4)). Then the function d(x) is defined
for x ∈ R (see (1.9) and Lemma 3.4). Moreover, the inequality η ≥ d(x) (resp.,
0 ≤ η ≤ d(x)) holds if and only if

∫ x+η

x−η

q(t)

r(t)
dt ≥ 2

(

resp.,

∫ x+η

x−η

q(t)

r(t)
dt ≤ 2

)

.

Lemma 5.7. For a given x ∈ R, the equation in d ≥ 0
∫ x+d

x−d

q(ξ)

r(ξ)
dξ = 2

has a unique positive solution d = d(x). Moreover,

1

a2

r(x)

q(x)
≤ d(x) ≤ a2 r(x)

q(x)
for x /∈ (α, β), (5.8)

c−1 r(x)

q(x)
≤ d(x) ≤ c

r(x)

q(x)
, x ∈ R. (5.9)

Proof. According to (5.7) and by Lemma 5.6, we only have to prove the es-

timates (5.8) and (5.9). Let η1(x) =
1
a2

r(x)
q(x)

, x /∈ (α, β). Since b ≥ a2 ≥ a−2

because of Lemma 5.5, from (5.5) it follows that
∫ x+η1(x)

x−η1(x)

q(t)

r(t)
dt =

∫ x

x−η1(x)

q(t)

r(t)
dt+

∫ x+η1(x)

x

q(t)

r(t)
dt ≤ a2 1

a2
+ a2 1

a2
= 2.

Hence d(x) ≥ η1(x) by Lemma 5.6. Let now η2(x) = a2 r(x)
q(x)

, x /∈ (α, β). Since

b ≥ a2 by Lemma 5.5, from (5.5) it follows that
∫ x+η2(x)

x−η2(x)

q(t)

r(t)
dt =

∫ x

x−η2(x)

q(t)

r(t)
dt+

∫ x+η2(x)

x

q(t)

r(t)
dt ≥ a2 1

a2
+ a2 1

a2
= 2.

Hence d(x) ≤ η2(x) by Lemma 5.6, which implies (5.8). Since the function d(x)
is continuous and positive (see Lemma 3.4), the inequalities (5.9) follows from
Lemma 5.1.
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Lemma 5.8. Let x /∈ (α, β) (see (3.1)), and let {xk}
∞
k=−∞ be the sequence from

Lemma 5.2. Then the following inequalities hold:

∫ xk

x0

q(t)

r(t)
dt ≥

bk

a2
for x ≥ β, k = 0, 1, 2, . . . (5.10)

∫ x0

xk

q(t)

r(t)
dt ≥

b|k|

a2
for x ≤ α, k = 0,−1,−2, . . . . (5.11)

Proof. If k = 0, relation (5.10) is obvious. For k ≥ 1 it follows from Lemmas 5.2
and 5.3:

∫ xk

x0

q(t)

r(t)
dt =

k−1
∑

`=0

∫ x`+1

x`

q(t)

r(t)
dt ≥

k−1
∑

`=0

b

a2
=

b

a2
k.

Inequality (5.11) can be checked in a similar way.

Lemma 5.9. Let x /∈ (α, β) (see (3.1)), and let {xk}
∞
k=−∞ be the sequence from

Lemma 5.2. Then the following inequalities hold:

a−k ≤
r(xk)

r(x0)
,

q(xk)

q(x0)
≤ ak for x ≥ β, k = 1, 2, . . . (5.12)

a−|k| ≤
r(xk)

r(x0)
,

q(xk)

q(x0)
≤ a|k| for x ≤ α, k = −1,−2, . . . . (5.13)

Proof. Let x ≥ β. Then from (3.1) and (5.2), it follows that

1

a
≤

r(x`)

r(x`−1)
,

q(x`)

q(x`−1)
≤ a for ` = 1, 2, . . . , k; k ≥ 1.

After multiplying these inequalities, we obtain (5.12). Estimates (5.13) can be
checked in a similar way.

Lemma 5.10. For p ∈ [1,∞) and x ∈ R, the following inequalities hold:

c−1 r(x)

q(x)
≤ Ip(x) =

∫ x

−∞

exp

(

− p

∫ x

t

q(ξ)

r(ξ)
dξ

)

dt ≤ c
r(x)

q(x)
, c = c(p). (5.14)

Proof. The proof of the lower bound in (5.14) is based on Lemma 5.7:

Ip(x) ≥

∫ x

x−d(x)

exp

(

−p

∫ x

t

q(ξ)

r(ξ)
dξ

)

dt

≥ d(x) exp

(

− p

∫ x+d(x)

x−d(x)

q(ξ)

r(ξ)
dξ

)

≥ c−1 r(x)

q(x)
.
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To prove the upper bound in (5.14), consider two separate cases: 1) x ≤ α;
2) x ≥ β. In case 1), we use below the sequence (5.3), relations (5.11), (5.13)
and the inequality γ ≤ 1 (see Theorem 3.2 and (5.14):

Ip(x) =
0
∑

k=−∞

∫ xk

xk−1

exp

(

−p

∫ x0

t

q(ξ)

r(ξ)
dξ

)

dt

≤

0
∑

k=−∞

(xk − xk−1) exp

(

−p

∫ x0

xk

q(ξ)

r(ξ)
dξ

)

≤ b

0
∑

k=−∞

r(xk)

q(xk)
exp

(

−p
b

a2
|k|

)

= b
r(x0)

q(x0)

0
∑

k=−∞

r(xk)

r(x0)

q(x0)

q(xk)
exp

(

−p
b

a2
|k|

)

≤ b
r(x)

q(x)

0
∑

k=−∞

a2|k| exp

(

−p
b

a2
|k|

)

≤ c
r(x)

q(x)
.

Consider now case 2). Let us write Ip(x) in the form

Ip(x) = exp

(

−p

∫ x

0

q(ξ)

r(ξ)
dξ

)
∫ x

−∞

exp

(

p

∫ t

0

q(ξ)

r(ξ)
dξ

)

dt

= exp

(

−p

∫ x

0

q(ξ)

r(ξ)
dξ

)

f(x)

where

f(x)
def
=

∫ x

−∞

exp

(

p

∫ t

0

q(ξ)

r(ξ)
dξ

)

dt, x ≥ β. (5.15)

From (5.15) and case 1) above, it follows that the integral Ip(x) exists for x ≥ β.
Moreover, according to (5.7), we have the equality

lim
x→∞

f(x) = lim
x→∞

∫ x

−∞

exp

(

p

∫ t

0

q(ξ)

r(ξ)
dξ

)

dt =∞. (5.16)

Let us define the integral Ip(x, β):

Ip(x, β) =

∫ x

β

exp

(

−p

∫ x

t

q(ξ)

r(ξ)
dξ

)

dt, x ≥ β,
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and write for Ip(x, β) an analogue of the representation (5.15):

Ip(x, β) = exp

(

−p

∫ x

0

q(ξ)

r(ξ)
dξ

)
∫ x

β

exp

(

p

∫ t

0

q(ξ)

r(ξ)
dξ

)

dt

= exp

(

−p

∫ x

0

q(ξ)

r(ξ)
dξ

)

fβ(x)

where

fβ(x)
def
=

∫ x

β

exp

(

p

∫ t

0

q(ξ)

r(ξ)
dξ

)

dt, x ≥ β. (5.17)

Here, according to (5.7), we have

lim
x→∞

fβ(x) = lim
x→∞

∫ x

β

exp

(

p

∫ t

0

q(ξ)

r(ξ)
dξ

)

dt =∞. (5.18)

From (5.15), (5.16), (5.17), (5.18) and L’Hôpital’s rule, it follows that

lim
x→∞

Ip(x)

Ip(x, β)
= lim

x→∞

f(x)

fβ(x)
= 1.

Let m ≥ β be such that for x ≥ m, the following inequality holds:

Ip(x) ≤ 2Ip(x, β), x ≥ m ≥ β. (5.19)

Consider the sequence (5.3). By Lemma 5.2, for x ≥ m ≥ β there is ` ≤ 0
such that

x` ≥ β, x`−1 ≤ β. (5.20)

Let us show that here one can choose m so that for all x ≥ m the number `
in (5.20) satisfies the inequality ` ≤ −1. Assume the contrary. Let {ms}

∞
s=1 be

any monotone sequence increasing to infinity with m1 > β. By the assumption,

for every ms, s ≥ 1, there is x(s) ≥ ms such that x(s) − b r(x
(s))

q(x(s))
≤ β. This

means that inequalities (3.1) can be extended to the interval [β, x(s)] because

[β, x(s)] ⊆
[

x(s) − b r(x
(s))

q(x(s))
, x(s)

]

, and hence

∫ x(s)

β

q(t)

r(t)
dt =

∫ x(s)

β

q(t)

q(x(s))
·
q(x(s))

r(x(s))
·
r(x(s))

r(t)
dt ≤ a2b.

Since here x(s) ≥ ms → ∞ as s → ∞, the integral S2 converges (see (5.7)), a
contradiction. Therefore, in the sequel we choose m big enough so that m > β,
(5.19) holds, and for all x ≥ m we always have ` ≤ −1 in (5.20).
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To estimate Ip(x, β), we use the sequence (5.3), relations (5.20), (5.11),
(5.13) and inequality γ ≤ 1 (see Theorem 3.2):

Ip(x, β) =

∫ x

β

exp

(

−p

∫ x

t

q(ξ)

r(ξ)
dξ

)

dt

=
0
∑

k=`+1

∫ xk

xk−1

exp

(
∫ x0

t

q(ξ)

r(ξ)
dξ

)

dt+

∫ x`

β

exp

(

−p

∫ x0

t

q(ξ)

r(ξ)
dξ

)

dt

≤
0
∑

k=`+1

(xk − xk−1) exp

(

−p

∫ x0

xk

q(ξ)

r(ξ)
dξ

)

+ (x` − β) exp

(

−p

∫ x0

x`

q(ξ)

r(ξ)
dξ

)

≤ b
0
∑

k=`

r(xk)

q(xk)
exp

(

−p
b

a2
|k|

)

= b
r(x0)

q(x0)

0
∑

k=`

r(xk)

r(x0)
·
q(x0)

q(xk)
exp

(

−p
b

a2
|k|

)

≤ b
r(x)

q(x)

|`|
∑

k=0

a2k exp

(

−p
b

a2
k

)

≤ b
r(x)

q(x)

∞
∑

k=0

[

a2 exp

(

−
b

a2

)]k

= c
r(x)

q(x)
. (5.21)

From (5.21) and (5.19), we obtain the estimates (5.14) for x ≥ m. Thus in-
equalities (5.14) are proved for x /∈ (α,m). To complete the proof of (5.14), it
remains to apply Lemma 5.1.

Proof of Theorem 3.2 for p = 1. Necessity. Suppose that problem (1.1)–(1.2) is
correctly solvable in L1(R). Then r0 > 0 and M1 <∞ because of Theorem 2.2
(see (2.2)–(2.3)). From (2.3) and (5.14), it follows that

M1 = sup
x∈R

1

r(x)

∫ x

−∞

exp

(

−

∫ x

t

q(ξ)

r(ξ)
dξ

)

dt = sup
x∈R

1

r(x)
I1(x) ≥ c−1 sup

x∈R

1

q(x)

which implies that

q0 = inf
x∈R

q(x) ≥

(

sup
x∈R

1

q(x)

)−1

≥
c−1

M1

> 0.

Proof of Theorem 3.2 for p = 1. Sufficiency. Since S1 = ∞ (see (5.7)) and
r0 > 0 (see (3.3)), in the space L1(R) correct solvability of problem (1.1)–
(1.2) is guaranteed by the inequality M1 < ∞ (see Theorem 2.2). Below we
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use Lemma 5.10 and condition q0 > 0 (see (3.3)) to check this requirement (see
(2.3), (5.14) and (3.3)):

M1 = sup
x∈R

1

r(x)

∫ x

−∞

exp

(

−

∫ x

t

q(ξ)

r(ξ)
dξ

)

dt = sup
x∈R

I1(x)

r(x)
≤ c sup

x∈R

1

q(x)
<∞.

Proof of Theorem 3.2 for p ∈ (1,∞). Necessity. Suppose that for some p ∈
(1,∞), problem (1.1)–(1.2) is correctly solvable in Lp(R). Then Mp < ∞ by
Theorem 1.1 (see (1.4)–(1.5)). Let x ∈ R be arbitrary. In the following rela-
tions, we use Lemmas 5.4 and 5.7 (see (1.4)–(1.5)):

Mp(x) =

[
∫ x

−∞

exp

(

−p

∫ x

t

q(ξ)

r(ξ)
dξ

)

dt

]
1
p

·

[
∫ ∞

x

1

r(t)p′
exp

(

−p′
∫ t

x

q(ξ)

r(ξ)
dξ

)

dt

]

1
p′

≥

[
∫ x

x−d(x)

exp

(

−p

∫ x

t

q(ξ)

r(ξ)
dξ

)

dt

]
1
p

·

[
∫ x+d(x)

x

1

r(t)p′
exp

(

−p′
∫ t

x

q(ξ)

r(ξ)
dξ

)

dt

]
1
p′

= exp

(

−

∫ x+d(x)

x−d(x)

q(ξ)

r(ξ)
dξ

)

d(x)
1
p

[
∫ x+d(x)

x

dt

r(t)p′

]
1
p′

= e−2d(x)
1
p

[
∫ x+d(x)

x

dt

r(t)p′

]
1
p′

.

(5.22)

Below we assume that x /∈ (α, β) (see(3.1)) and continue estimate (5.22) using
(3.1) and (5.8):

∞ > e2Mp ≥ d(x)
1
p

[
∫ x+d(x)

x

dt

r(t)p′

]
1
p′

≥

(

1

a2
·
r(x)

q(x)

)
1
p
[
∫ x+a−2 r(x)

q(x)

x

(

r(x)

r(t)

1

r(x)

)p′

dt

]
1
p′

≥
1

a3q(x)

which implies q(x) ≥ (e2a3Mp)
−1 for x /∈ (α, β), hence q0 > 0.

Furthermore, by Theorem 1.1, Ap′ is also finite (see (1.7)–(1.8)). In the
following relations we use (3.1) and Lemma 5.6 for x /∈ (α, β):

∞ > Ap′ ≥

∫ x+d(x)

x−d(x)

dt

r(t)p′
≥

∫ x+
r(x)

a2q(x)

x−
r(x)

a2q(x)

(

r(x)

r(t)

1

r(x)

)p′

dt ≥
2

ap′+2

1

r(x)p′−1q(x)
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which implies r(x)
1
p q(x)

1
p′ ≥ A

− 1
p′

p′
1
a3 and hence σp′ > 0.

Proof of Theorem 3.2 for p ∈ (1,∞). Sufficiency. Below we need the following
assertion.

Lemma 5.11. Let σp′ > 0 (see (3.3)). Then the following inequalities hold:

c−1 ≤ r(x)p
′−1q(x)Kp(x) ≤ c, x ∈ R. (5.23)

Here p′ ≥ 1, and

Kp(x)
def
=

∫ ∞

x

1

r(x)p′
exp

(

−p′
∫ t

x

q(ξ)

r(ξ)
dξ

)

dt, x ∈ R. (5.24)

Proof. Let us first verify that the integral (5.24) converges for every x ∈ R.

Indeed, from the condition σp′ > 0 follows r(t)
1
p q(t)

1
p′ ≥ σp′ > 0, t ∈ R, and

hence r(t)p
′−1q(t) ≥ σp

′

p′ for t ∈ R which implies

1

r(t)p′
≤

1

σp
′

p′

·
q(t)

r(t)
, t ∈ R. (5.25)

From (5.25) and (5.7) for x ∈ R, we now obtain (see (5.24))

Kp(x) ≤
1

σp
′

p′

∫ ∞

x

q(t)

r(t)
exp

(

−p′
∫ t

x

q(ξ)

r(ξ)
dξ

)

dt =
1

p′σp
′

p′

<∞.

To check the lower bound from (5.23), we assume x /∈ (α, β). Then according
to (5.8) and (3.1), we have

Kp(x) ≥

∫ x+d(x)

x

1

r(t)p′
exp

(

−p′
∫ t

x

q(ξ)

r(ξ)
dξ

)

dt

≥ exp

(

− p′
∫ x+d(x)

x−d(x)

q(ξ)

r(ξ)
dξ

)
∫ x+d(x)

x

dt

r(t)p′

≥ e−2p′
∫ x+

r(x)

a2q(x)

x

(

r(x)

r(t)

1

r(x)

)p′

dt

≥
e−2p′

ap′+2

1

r(x)p′−1q(x)
.

Taking into account Lemma 5.1, the latter inequality gives the lower bound
from (5.23) for all x ∈ R. To prove the upper bound from (5.23), we consider
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separate cases: 1) x ≥ β and 2) x ≤ α. In case 1) we use below the sequence
{xk}

∞
k=0 (see (5.2)) and inequalities (5.10), (5.12), (3.1) and γ ≤ 1:

Kp(x) ≤
∞
∑

k=0

∫ xk+1

xk

1

r(t)p′
exp

(

−p′
∫ xk

x0

q(ξ)

r(ξ)
dξ

)

dt

≤
∞
∑

k=0

e−p
′ b

a2 k

∫ xk+1

xk

(

r(xk)

r(t)

1

r(xk)

)p′

dt

≤ ap
′

b

∞
∑

k=0

e−p
′ b

a2 k

r(xk)p
′−1q(xk)

=
c1

r(x0)p
′−1q(x0)

∞
∑

k=0

(

r(x0)

r(xk)

)p′−1(
q(x0)

q(xk)

)

e−p
′ b

a2 k

≤
c2

r(x)p′−1q(x)

∞
∑

k=0

(

ae−
b

a2

)kp′

≤
c

r(x)p′−1q(x)
.

Thus estimate (5.23) holds for x ≥ β.

Consider case 2). Let us introduce the function

Kp(x, α) =

∫ α

x

1

r(t)p′
exp

(

−p′
∫ t

x

q(ξ)

r(ξ)
dξ

)

dt, x ≤ α.

Let x ≤ m < α (we shall choose m later). Then

Kp(x) = Kp(x, α) + exp

(

−p′
∫ α

x

q(ξ)

r(ξ)
dξ

)

Kp(α)

≤ Kp(x, α) +
1

p′σp
′

p′

exp

(

−p′
∫ α

x

q(ξ)

r(ξ)
dξ

)

= Kp(x, α)

{

1 +
c

Kp(x, α)
exp

(

−p′
∫ α

x

q(ξ)

r(ξ)
dξ

)}

. (5.26)

Here we have

exp

(

p′
∫ α

x

q(ξ)

r(ξ)
dξ

)

Kp(x, α) =

∫ α

x

1

r(t)p′
exp

(

p′
∫ α

t

q(ξ)

r(ξ)
dξ

)

dt

≥

∫ α

m

dt

r(t)p′
. (5.27)

Denote

C(α) =

∫ α

−∞

dt

r(t)p′
, δ(m) =

∫ α

m

dt

r(t)p′
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and choose m as follows:

m =

{

θ1 if C(α) =∞ and
∫ α

θ1

dt
r(t)p′

= 1

θ2 if C(α) <∞ and
∫ α

θ2

dt
r(t)p′

= C(α)
2
.

With such a choice of m, from (5.26) and (5.27) it follows that

Kp(x) ≤ cKp(x, α), x ≤ m, c = 1 +
δ(m)−1

p′σp
′

p′

. (5.28)

Let now x ≤ m. For x0 = x consider the sequence (5.2). By Lemma 5.2, for
x ≤ m ≤ α, there is ` ≥ 0 such that

x` ≤ α, x`+1 > α. (5.29)

Let us show that m can be chosen so small that for all x ≤ m the number `
in the inequalities (5.29) satisfies the inequality ` ≥ 1. Assume the contrary.
Let {ms}

∞
s=1 be any monotone sequence decreasing to −∞ with m1 < α. By

the assumption, for every ms, s ≥ 1, there is xs ≤ ms such that xs+ b
r(xs)
q(xs)

≥ α.

This means that the inequalities (3.1) can be extended to the interval [xs, α]

because [xs, α] ⊆
[

xs, xs + b r(xs)
q(xs)

]

and hence
∫ α

xs

q(t)

r(t)
dt =

∫ α

xs

q(t)

q(xs)
·
q(xs)

r(xs)
·
r(xs)

r(t)
dt ≤ a2b <∞;

and since here xs ≤ ms → −∞ as s→∞, the integral S1 converges (see (5.7)),
a contradiction. Therefore, belowm is chosen so small thatm < α, (5.28) holds,
and in the inequalities (5.29) we always have ` ≥ 1. When estimating Kp(x, α),
we use sequences (5.2) and relations (5.29) with ` ≥ 1, (3.1) with γ ≥ 1 and
(5.13):

Kp(x, α)

≤

`−1
∑

k=0

∫ xk+1

xk

1

r(t)p′
exp

(

−p′
∫ xk

x0

q(ξ)

r(ξ)
dξ

)

dt+

∫ α

x`

1

r(t)p′
exp

(

−p′
∫ x`

x0

q(ξ)

r(ξ)
dξ

)

dt

≤

`−1
∑

k=0

e−p
′ b

a2 k

∫ xk+1

xk

(

r(xk)

r(t)

1

r(xk)

)p′

dt+ e−p
′ b

a2 `

∫ α

x`

(

r(x`)

r(t)

1

r(x`)

)p′

dt

≤ ap
′

b

[ `−1
∑

k=0

1

r(xk)p−1q(xk)
e−p

′ b

a2 k

]

+ ap
′ (α− x`)

r(x`)p
′
e−p

′` b

a2

≤ ap
′

b

[ `−1
∑

k=0

1

r(xk)p−1q(xk)
e−p

′ b

a2 k

]

+ ap
′ x`+1 − x`
r(x`)p

′
e−p

′ b

a2 k

=
c1

r(x0)p
′−1q(x0)

∑̀

k=0

(

r(x0)

r(xk)

)p′−1(
q(x0)

q(xk)

)

e−p
′ b

a2 k.
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We get

Kp(x, α) ≤ c1
1

r(x)p′−1q(x)

∑̀

k=0

akp
′

ep
′ b

a2 k
≤

c2
r(x)p′−1q(x)

.

Thus the upper bound from (5.23) holds for x /∈ (m,β). To finish the proof of
(5.23), it remains to apply Lemma 5.1.

Let us now go to the proof of the theorem. Here we use Theorem 1.1. Since
S1 = ∞ (see (5.7) and (1.6)), to apply Theorem 1.1 it is enough to prove that
Mp < ∞ and Ap′ < ∞ (see (1.4) and (1.7)). In the next estimate for Mp we
use Lemmas 5.10 and 5.11 and condition (3.2):

Mp = sup
x∈R

(Ip(x))
1
p (Kp(x))

1
p′ ≤ c sup

x∈R

(

r(x)

q(x)

)
1
p 1

r(x)
1
p q(x)

1
p′

≤
c

q0
<∞.

To check the inequality Ap′ < ∞, let us first estimate the function Ap′(x)
for x /∈ (α, β) (see (1.7) and (3.1)). Below we use Lemmas 5.7 and 5.5, (3.2)
and (3.1):

Ap′(x) =

∫ x+d(x)

x−d(x)

dt

r(t)p′
≤

∫ x+a2 r(x)
q(x)

x−a2 r(x)
q(x)

(

r(x)

r(t)

1

r(x)

)p′

dt ≤ 2ap
′+2 1

r(x)p′−1q(x)
≤

c

σp
′

p′

and hence

sup
x/∈(α,β)

Ap′(x) <∞. (5.30)

Note that the function Ap′(x) is continuous for x ∈ R because so is d(x) (see
Lemma 3.4). Therefore, Ap′(x) is bounded on [α, β]. Together with (5.30), this
leads to the inequality Ap′ < ∞. Thus problem (1.1)–(1.2) is correctly solvable
in Lp(R) for p ∈ (1,∞) by Theorem 1.1.

Proof of Theorem 3.2 for p =∞. Necessity. Suppose that problem (1.1)–(1.2)
is correctly solvable in C(R). Then equality A0 = 0 holds, and S1 = ∞ (see
Theorem 2.3). For x ∈ R, Lemma 5.7 implies (see (2.4))

A(x) ≥

∫ x+d(x)

x

1

r(t)
exp

(

−

∫ t

x

q(ξ)

rξ)
dξ

)

dt > 0. (5.31)

From the equality A0 = 0 and (5.31), it follows that

lim
|x|→∞

∫ x+d(x)

x

1

r(t)
exp

(

−

∫ t

x

q(ξ)

r(ξ)
dξ

)

dt = 0. (5.32)
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Furthermore, for x /∈ (α, β), using (3.1) and (5.8) we obtain

∫ x+d(x)

x

1

r(t)
exp

(

−

∫ t

x

q(ξ)

r(ξ)
dξ

)

dt ≥ exp

(

−

∫ x+d(x)

x−d(x)

q(ξ)

r(ξ)
dξ

)

∫ x+d(x)

x

dt

r(t)

= e−2

∫ x+d(x)

x

dt

r(t)

≥ e−2

∫ x+
r(x)

a2q(x)

x

r(x)

r(t)

dt

r(x)

≥
e−2

a3

1

q(x)
> 0. (5.33)

From (5.32) and (5.33) we get lim
|x|→∞

1
q(x)

= 0. Hence q(x)→∞ as |x| → ∞.

Proof of Theorem 3.2 for p =∞. Sufficiency. In this case the statement of the
theorem is an obvious consequence of Lemma 5.4 and Theorem 3.1.

6. Proof of the theorem on correct unsolvability in Lp

Proof of Theorem 3.3. We consider the cases 1) p = 1; 2) p ∈ (1,∞), and
3) p = ∞, separately. Since the cases x → −∞ and x → +∞ are treated
similarly, let us, for example, consider q(x)→ 0 as x→∞.

Case 1): Let p = 1. Assume the contrary: problem (1.1)–(1.2) is correctly
solvable in L1(R). Then M1 <∞ (see (2.3)), and for any t ∈ R, we get

M1 ≥M1(t) ≥
1

r(t)

∫ t

t−d(t)

exp

(

−

∫ t

ξ

q(s)

r(s)
ds

)

dξ ≥
d(t)

r(t)
exp

(

−

∫ t+d(t)

t−d(t)

q(s)

r(s)
ds

)

which implies

d(t)

r(t)
≤ e2M1, t ∈ R. (6.1)

Let us integrate inequality (6.1) along the interval [x − d(x), x + d(x)], x ∈ R

and use (3.5) to get

2e2M1d(x) ≥

∫ x+d(x)

x−d(x)

d(t)

r(t)
dt ≥ δd(x)

∫ x+d(x)

x−d(x)

dt

r(t)
, x ∈ R

so that

sup
x∈R

∫ x+d(x)

x−d(x)

dt

r(t)
≤ 2e2δ−1M1 <∞. (6.2)
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Let ε be a given positive number. Then q(x) ≤ ε for x ≥ c(ε) À 1. Since
S2 = ∞, then x − d(x) → ∞ as x → ∞ (see [1, (3.18)]). Therefore, there is
x0(ε) ≥ c(ε) À 1 such that x − d(x) ≥ c(ε) for x ≥ x0(ε). For x ≥ x0(ε), we

get from 2 =
∫ x+d(x)

x−d(x)
q(t)
r(t)
dt ≤ ε

∫ x+d(x)

x−d(x)
dt
r(t)

that

lim
x→∞

∫ x+d(x)

x−d(x)

dt

r(t)
=∞. (6.3)

This leads to a contradiction between (6.2) and (6.3).

Case 2): Let p ∈ (1,∞). Assume the contrary: problem (1.1)–(1.2) is
correctly solvable in Lp(R) and Mp <∞ (see (1.4)). Denote z1(x) = x− d(x),
z2(x) = x+ d(x). Below we use (1.4), (1.5), (1.9) and (3.5):

Mp ≥

[
∫ z1(x)

−∞

exp

(

− p

∫ z1(x)

t

q(ξ)

r(ξ)
dξ

)

dt

]
1
p

·

[
∫ ∞

z1(x)

1

r(t)p′
exp

(

−p′
∫ t

z1(x)

q(ξ)

r(ξ)
dξ

)

dt

]

1
p′

≥

[
∫ z1(x)

z1(x)−d(z1(x))

exp

(

− p

∫ z1(x)

t

q(ξ)

r(ξ)
dξ

)

dt

]
1
p

·

[
∫ z2(x)

z1(x)

1

r(t)p′
exp

(

− p′
∫ t

z1(x)

q(ξ)

r(ξ)
dξ

)

dt

]
1
p′

≥ exp

(

−

∫ z1(x)+d(z1(x))

z1(x)−d(z1(x))

q(ξ)

r(ξ)
dξ

)

· exp

(

−

∫ z2(x)

z1(x)

q(ξ)

r(ξ)
dξ

)

· d(z1(x))
1
p

[
∫ z2(x)

z1(x)

dt

rt)p′

]
1
p′

≥ e−4δ
1
pd(x)

1
p

[
∫ x+d(x)

x−d(x)

dt

r(t)p′

]
1
p′

.

This implies

sup
x∈R

d(x)
1
p

[
∫ x+d(x)

x−d(x)

dt

r(t)p′

]
1
p′

≤ δ−
1
p e4Mp <∞, x ∈ R. (6.4)

On the other hand, let ε > 0 be given. Below x ≥ x0(ε) (see the proof
of (6.3)) it holds

2 =

∫ x+d(x)

x−d(x)

q(t)

r(t)
dt ≤ ε

∫ x+d(x)

x−d(x)

dt

r(t)
≤ 2

1
p εd(x)

1
p

[
∫ x+d(x)

x−d(x)

dt

r(t)p′

]
1
p′
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so that

lim
x→∞

d(x)
1
p

[
∫ x+d(x)

x−d(x)

dt

r(t)p′

]
1
p′

=∞. (6.5)

This leads to a contradiction between (6.4) and (6.5).

Case 3): Let p =∞. Assume the contrary: problem (1.1)–(1.2) is correctly
solvable in C(R). We have x− d(x)→∞ as x→∞ (see case 1) above). Since

∫ ∞

x−d(x)

1

r(t)
exp

(

−

∫ t

x−d(x)

q(ξ)

r(ξ)
dξ

)

dt

≥

∫ x+d(x)

x−d(x)

1

r(t)
exp

(

−

∫ t

x−d(x)

q(ξ)

r(ξ)
dξ

)

dt

≥ exp

(

−

∫ x+d(x)

x−d(x)

q(ξ)

r(ξ)
dξ

)

∫ x+d(x)

x−d(x)

dt

r(t)

= e−2

∫ x+d(x)

x−d(x)

dt

r(t)
> 0. (6.6)

Then from (6.6) and Theorem 2.3 it follows that

lim
x→∞

∫ x+d(x)

x−d(x)

dt

r(t)
= 0. (6.7)

On the other hand, let ε > 0 be given. Below x ≥ x0(ε) (see the proof
of (6.3)):

2 =

∫ x+d(x)

x−d(x)

q(t)

r(t)
dt ≤ ε

∫ x+d(x)

x−d(x)

dt

r(t)
⇒ lim

x→∞

∫ x+d(x)

x−d(x)

dt

r(t)
=∞. (6.8)

This leads to a contradiction between (6.7) and (6.8).
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