On the Limiting Regularity Result of some Nonlinear Elliptic Equations

M. Kbiri Alaoui, D. Meskine and A. Souissi

Abstract. We shall prove the limiting regularity $W_0^{1,\frac{N(p-1)}{N-1}}(\Omega)$ of solutions of some nonlinear elliptic problems with right hand side in $LLog^{\alpha}L(\Omega)$ and $\alpha \geq \frac{N-1}{N}$. Also, an improved regularity is given when $\alpha < \frac{N-1}{N}$.

Keywords. Orlicz–Sobolev spaces, truncations, regularity of solutions. **Mathematics Subject Classification (2000).** Primary 49N60, secondary 74G40, 35B65.

1. Introduction

We deal with boundary value problems

$$\begin{cases} \mathcal{A}(u) := -\operatorname{div}(a(\cdot, u, \nabla u)) = f & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
 (E)

where Ω is a regular bounded domain of $\mathbb{R}^N, N \geq 2, a: \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N$ is a Carathéodory function (that is, measurable with respect to x in Ω for every (s,ξ) in $\mathbb{R} \times \mathbb{R}^N$, and continuous with respect to (s,ξ) in $\mathbb{R} \times \mathbb{R}^N$ for almost every x in Ω). We assume that there exist a real positive constant $\nu > 0$, a nonnegative function k in $L^{p'}(\Omega), p' = \frac{p}{p-1}$, where $2 - \frac{1}{N} , such that for almost every <math>x$ in Ω , for every s in \mathbb{R} , for every s and s in s.

$$a(x, s, \xi)\xi \ge \nu |\xi|^p \tag{1.1}$$

$$[a(x, s, \xi) - a(x, s, \xi^*)][\xi - \xi^*] > 0, \quad \xi \neq \xi^*$$
(1.2)

$$|a(x, s, \xi)| \le k(x) + |s|^{p-1} + |\xi|^{p-1}. \tag{1.3}$$

The use of the $LLog^{\alpha}L(\Omega)$ space to study the problem (E) in the linear case, is

M. Kbiri Alaoui: LERMA, Ecole Mohammadia d'Ingénieurs Avenue Ibn Sina B.P. 765, Agdal, Rabat, Maroc; mka_la@yahoo.fr

D. Meskine: Ecole Supérieure de Technologie Essaouira, BP 383, Essaouira, Maroc; driss.meskine@laposte.net

A. Souissi: GAN, Département de Mathématiques et d'Informatique, Faculté des Sciences, Avenue Ibn Battouta, B.P 1014 Rabat, Maroc; souissi@fsr.ac.ma

early introduced by G. Stampacchia in [14] (for the case $\alpha = \frac{N-1}{N}$), by A. Passareli di Napoli and C. Sbordonne in [13] (for $0 < \alpha \le 1$) and recently by A. Fiorenza and M. Krebec in [7] for the case $\alpha \ge \frac{N-1}{N}$. In the nonlinear case, the particular situations were given in [4]. Another approach to reach the limiting regularity was given in [3].

Our main result consists in reaching the limiting regularity $W_0^{1,\bar{q}}(\Omega), \bar{q} = \frac{N(p-1)}{N-1}$ with f belonging to the space $LLog^{\alpha}L(\Omega), \alpha \geq \frac{N-1}{N}$ in the nonlinear case.

For the sake of simplicity, we restrict our studies to the *p*-Laplacian problem model, i.e., $a(\cdot, u, \nabla u) = |\nabla u|^{p-2} \nabla u$.

2. Preliminaries

We list some well known results about Orlicz and Orlicz-Sobolev spaces.

2.1. Let $M: \mathbb{R}^+ \to \mathbb{R}^+$ be an N-function, i.e., M is continuous, convex with M(t) > 0 for t > 0, $\frac{M(t)}{t} \to 0$ as $t \to 0$ and $\frac{M(t)}{t} \to \infty$ as $t \to \infty$. Equivalently, M admits the representation $M(t) = \int_0^t a(s) \, ds$, where $a: \mathbb{R}^+ \to \mathbb{R}^+$ is nondecreasing, right continuous, with a(0) = 0, a(t) > 0 for t > 0 and $a(t) \to \infty$ as $t \to \infty$. The N-function \overline{M} conjugate to M is defined by $\overline{M}(t) = \int_0^t \overline{a}(s) \, ds$, $\overline{a}: \mathbb{R}^+ \to \mathbb{R}^+$ is given by $\overline{a}(t) = \sup\{s: a(s) \le t\}$ (see [1, 10]). The N-function is said to satisfy the Δ_2 -condition if, for some k > 0,

$$M(2t) \le kM(t) \quad \forall t \ge 0. \tag{2.1}$$

If (2.1) holds only for $t \geq t_0 > 0$, then M is said to satisfy the Δ_2 -condition near infinity.

We will extend these N-functions into even functions on all \mathbb{R} .

2.2. Let Ω be an open subset of \mathbb{R}^N . The *Orlicz class* $K_M(\Omega)$ (resp. the *Orlicz space* $L_M(\Omega)$) is defined as the set of (equivalences classes of) real valued measurable functions u on Ω such that $\int_{\Omega} M(u(x)) dx < +\infty$ (resp. $\int_{\Omega} M(\frac{u(x)}{\lambda}) dx < +\infty$ for some $\lambda > 0$). $L_M(\Omega)$ is a Banach space under the norm

$$||u||_{M,\Omega} = \inf \left\{ \lambda > 0 : \int_{\Omega} M\left(\frac{u(x)}{\lambda}\right) dx \le 1 \right\}$$

and $K_M(\Omega)$ is a convex subset of $L_M(\Omega)$.

The closure in $L_M(\Omega)$ of the set of bounded measurable functions with compact support in $\overline{\Omega}$ is denoted by $E_M(\Omega)$. The equality $E_M(\Omega) = L_M(\Omega)$ holds if and only if M satisfies the Δ_2 -condition, for all t or for t large according to whether Ω has infinite measure or not. The dual of $E_M(\Omega)$ can be identified with $L_{\overline{M}}(\Omega)$ by means of pairing $\int_{\Omega} u(x)v(x)\,dx$ and the dual norm on $L_{\overline{M}}(\Omega)$ is equivalently to $||u||_{\overline{M},\Omega}$.

The space $L_M(\Omega)$ is reflexive if and only if M and \overline{M} satisfy the Δ_2 condition, for all t or for t large according to whether Ω has infinite measure
or not

2.3. We now turn to the Orlicz–Sobolev space. $W^1L_M(\Omega)$ (resp. $W^1E_M(\Omega)$) is the space of all functions such that u and its distributional derivatives up to order 1 lie in $L_M(\Omega)$ (resp. $E_M(\Omega)$). It is a Banach space under the norm

$$||u||_{1,M,\Omega} = \sum_{|\alpha| \le 1} ||D^{\alpha}u||_{M,\Omega}.$$

Thus, $W^1L_M(\Omega)$ and $W^1E_M(\Omega)$ can be identified with subspaces of the product of N + 1 copies of $L_M(\Omega)$. Denoting this product by $\prod L_M$, we will use the weak topologies $\sigma(\prod L_M, \prod E_{\overline{M}})$ and $\sigma(\prod L_M, \prod L_{\overline{M}})$.

The space $W_0^1 E_M(\Omega)$ is defined as the (norm) closure of the Schwartz space $\mathcal{D}(\Omega)$ in $W^1 E_M(\Omega)$ and the space $W_0^1 L_M(\Omega)$ as the $\sigma(\prod L_M, \prod E_{\overline{M}})$ closure of $\mathcal{D}(\Omega)$ in $W^1 L_M(\Omega)$.

Let $W^{-1}L_{\overline{M}}(\Omega)$ (resp. $W^{-1}E_{\overline{M}}(\Omega)$) denote the space of distributions on Ω which can be written as sums of derivatives of order ≤ 1 of functions in $L_{\overline{M}}(\Omega)$ (resp. $E_{\overline{M}}(\Omega)$). It is a Banach space under the usual quotient norm.

If the open set Ω has the segment property, then the space $\mathcal{D}(\Omega)$ is dense in $W_0^1 L_M(\Omega)$ for the modular convergence and thus for the topology $\sigma(\prod L_M, \prod L_{\overline{M}})$ (see [8, 9]). Consequently, the action of a distribution in $W^{-1} L_{\overline{M}}(\Omega)$ on an element of $W_0^1 L_M(\Omega)$ is well defined.

We denote by $LLog^{\alpha}L(\Omega)$ the Orlicz space $L_M(\Omega)$ where $M(t) \sim t \ln^{\alpha}(t)$ as $t \to \infty$.

The following abstract lemma will be applied in the following.

Lemma 2.1 ([2]). Let $F : \mathbb{R} \to \mathbb{R}$ be uniformly Lipschitzian with F(0) = 0. Let M be an N-function and let $u \in W_0^1 L_M(\Omega)$ (resp. $W_0^1 E_M(\Omega)$). Then $F(u) \in W_0^1 L_M(\Omega)$ (resp. $W_0^1 E_M(\Omega)$). Moreover, if the set of discontinuity points of F' is finite, then

$$\frac{\partial}{\partial x_i} F(u) = \begin{cases} F'(u) \frac{\partial u}{\partial x_i} & a.e. \ in \ \{x \in \Omega : u(x) \notin D\} \\ 0 & a.e. \ in \ \{x \in \Omega : u(x) \in D\}. \end{cases}$$

3. Main result

Let M be an N-function such that

$$\text{(H)} \quad \left\{ \begin{array}{l} K(s) = \left(M^{-1}(s)\right)^p \text{ is convex and} \\ \int_0^{\cdot} M \circ B^{-1} \left(\frac{1}{r^{1-\frac{1}{N}}Log^{\alpha}(\frac{1}{r})}\right) dr < +\infty, \ B(t) = t^{p-1}. \end{array} \right.$$

Theorem 3.1. Under the assumptions (1.1)–(1.3), $2 - \frac{1}{N} and <math>f$ in $LLog^{\alpha}L(\Omega)$ with $\alpha \geq \frac{N-1}{N}$, there exists at least a weak solution $u \in W_0^{1,\bar{q}}(\Omega)$ of problem (E) where $\bar{q} = \frac{N(p-1)}{N-1}$. Moreover, if $\alpha > \frac{N-1}{N}$, then $u \in W_0^1L_M(\Omega)$ for every N-function M satisfying (H).

Remark 3.2. The proof of the last theorem allows us to obtain an improved regularity of the solution u of (E) in the Orlicz–Sobolev spaces. For example,

$$u \in W_0^1 L_M(\Omega), M(t) = \frac{t^{\bar{q}}}{Log^{\sigma}(e+t)}, \quad \text{for all } \sigma > 1 - \frac{\alpha N}{N-1} \quad \text{if } \alpha \in [0, \frac{N-1}{N}[$$

$$u \in W_0^1 L_M(\Omega), M(t) = t^{\bar{q}} Log^{\sigma}(e+t), \quad \text{for all } \sigma < \frac{\alpha N}{N-1} - 1 \quad \text{if } \alpha > \frac{N-1}{N}.$$

For the case $\alpha = \frac{N-1}{N}, p < N$, the regularity $W_0^{1,\bar{q}}(\Omega)$ is optimal.

Hereafter, we denote by \mathcal{X}_N the real number defined by $\mathcal{X}_N = NC_N^{\frac{1}{N}}$, C_N is the measure of the unit ball of \mathbb{R}^N , $\mu(t) = \text{meas}\{|u| > t\}$.

The following lemma (see [15] for the general case) plays an essential role for estimation of the approximate solutions of the problem .

Lemma 3.3. Let $u \in W_0^{1,p}(\Omega), 1 . Then$

$$-\mu'(t) \ge \mathcal{X}_N \mu(t)^{1-\frac{1}{N}} \left(-\frac{1}{\mathcal{X}_N \mu(t)^{1-\frac{1}{N}}} \frac{d}{dt} \int_{\{|u|>t\}} |\nabla u|^p \, dx \right)^{-\frac{1}{p-1}}.$$

Proof of Theorem 3.1. If $\alpha > \frac{N-1}{N}, 2 - \frac{1}{N} , then we consider the approximate problem$

$$\begin{cases} \mathcal{A}(u_n) := -\operatorname{div}(a(\cdot, u_n, \nabla u_n)) = f_n & \text{in } \Omega \\ u_n \in W_0^{1,p}(\Omega), \end{cases}$$
(3.1)

where (f_n) is a smooth sequence of functions satisfying $f_n \to f$ in $L_H(\Omega)$ for the modular convergence, $H(t) = tLog^{\alpha}(1+t)$.

Let φ be a truncation defined by

$$\varphi(\xi) = \begin{cases}
0, & 0 \le \xi \le t \\
\frac{1}{h}(\xi - t), & t < \xi < t + h \\
1, & \xi \ge t + h \\
-\varphi(-\xi), & \xi < 0,
\end{cases}$$
(3.2)

for all t, h > 0. Without loss of generality, we omit the index n. Using $v = \varphi(u)$ as a test function in (3.1), we obtain

$$\int_{\Omega} a(\cdot, u, \nabla u) \nabla u \varphi'(u) \, dx = \int_{\Omega} f \varphi(u) \, dx$$
$$\frac{1}{h} \int_{\{t < |u| < t + h\}} |\nabla u|^p \, dx \le C \int_{\{|u| \ge t + h\}} f \, dx \, .$$

And letting $h \to 0$, we have

$$-\frac{d}{dt} \int_{\{|u|>t\}} |\nabla u|^p \, dx \le C \int_{\{|u|\ge t\}} f \, dx \,. \tag{3.3}$$

By using Lemma 3.3 we obtain (supposing $-\mu'(t) > 0$ which does not affected the proof)

$$\frac{1}{\mu'(t)} \frac{d}{dt} \int_{\{|u|>t\}} |\nabla u|^p \, dx \le \left(-\frac{1}{\mathcal{X}_N \mu(t)^{1-\frac{1}{N}}} \frac{d}{dt} \int_{\{|u|>t\}} |\nabla u|^p \, dx \right)^{\frac{p}{p-1}}$$

or equivalently

$$\left(\frac{1}{\mu'(t)}\frac{d}{dt}\int_{\{|u|>t\}} |\nabla u|^p \, dx\right)^{\frac{1}{p}} \le \left(-\frac{1}{\mathcal{X}_N \mu(t)^{1-\frac{1}{N}}}\frac{d}{dt}\int_{\{|u|>t\}} |\nabla u|^p \, dx\right)^{\frac{1}{p-1}}$$

Let M be an N-function satisfying (H). Jensen's inequality involves

$$K\left(\frac{\int_{\{t<|u|$$

Then

$$M^{-1} \left(\frac{1}{\mu'(t)} \frac{d}{dt} \int_{\{|u| > t\}} M(|\nabla u|) \, dx \right) \le \left(\frac{1}{\mu'(t)} \frac{d}{dt} \int_{\{|u| > t\}} |\nabla u|^p \, dx \right)^{\frac{1}{p}}$$

$$\le \left(-\frac{1}{\mathcal{X}_N \mu(t)^{1 - \frac{1}{N}}} \frac{d}{dt} \int_{\{|u| > t\}} |\nabla u|^p \, dx \right)^{\frac{1}{p - 1}}.$$

Therefore we have

$$-\frac{d}{dt} \int_{\{|u|>t\}} M(|\nabla u|) \, dx \le (-\mu'(t)) M\left(\left(-\frac{1}{\mathcal{X}_N \mu(t)^{1-\frac{1}{N}}} \frac{d}{dt} \int_{\{|u|>t\}} |\nabla u|^p \, dx\right)^{\frac{1}{p-1}}\right).$$

Combining with (3.3) and the fact that the function $t \to \int_{\{|u|>t\}} M(|\nabla u|) dx$ is absolutely continuous, we obtain

$$\int_{\Omega} M(|\nabla u|) dx = \int_{0}^{+\infty} \left(-\frac{d}{dt} \int_{\{|u|>t\}} M(|\nabla u|) dx \right) dt$$

$$\leq \int_{0}^{+\infty} (-\mu'(t)) M\left(\left(\frac{C \int_{\{|u|\geq t\}} f dx}{\mathcal{X}_{N} \mu(t)^{1-\frac{1}{N}}} \right)^{\frac{1}{p-1}} \right) dt$$

$$\leq \frac{1}{C'} \int_{0}^{C'|\Omega|} M\left(\left(\frac{C}{r^{1-\frac{1}{N}} Log^{\alpha}(\frac{1}{r})} \right)^{\frac{1}{p-1}} \right) dr < \infty,$$

where $C' = (\frac{\chi_N}{C})^{N'}$, and the last inequality is obtained by using the Hölder inequality on $\int_{\{|u|>t\}} f \, dx$.

Finally, we deduce that $(\nabla u_n)_{n\geq 0}$ is bounded in $(L_M(\Omega))^N$ for every N-function satisfying (H). In particular, $(\nabla u_n)_{n\geq 0}$ is bounded in $(L^{\bar{q}}(\Omega))^N$. As in [4], the almost everywhere convergence of the gradients can be obtained and the proof of theorem follows with the same way.

We deal now with the case $\alpha = \frac{N-1}{N}$ and $2 - \frac{1}{N} . We recall that the authors in [4] have proved some regularity result but by assuming that <math>\alpha = \frac{N}{N-1}$ and p = N. Consider now the following approximate problems:

$$\begin{cases}
-\operatorname{div}\left(a(x, u_n, \nabla u_n)\right) - \frac{1}{n}\operatorname{div}\left(|\nabla u_n|^{N-2}\nabla u_n\right) = f_n & \text{in } \Omega \\
u_n \in W_0^{1,N}(\Omega).
\end{cases}$$
(3.4)

The solutions u_n exist thanks to the Leray-Lions theorem (see [11]). Taking $v = u_n$ as test function in the problem (3.4), we have

$$\int_{\Omega} |\nabla u_n|^p dx + \frac{1}{n} \int_{\Omega} |\nabla u_n|^N dx \le 2||f_n||_A ||u_n||_{\bar{A}} \le C||u_n||_{W_0^{1,N}},$$

where we have used the continuous and optimal injection $W_0^{1,N}(\Omega) \hookrightarrow L_{\bar{A}}(\Omega)$ with $\bar{A}(t) = e^{t^{N'}} - 1$ (see [5]). Then we deduce $\frac{1}{n} (\int_{\Omega} |\nabla u_n|^N dx)^{\frac{N-1}{N}} \leq C$. Let now $\phi \in W_0^{1,N}(\Omega)$ as test function, one has

$$\int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \nabla \phi \, dx + \frac{1}{n} \int_{\Omega} |\nabla u_n|^{N-2} \nabla u_n \nabla \phi \, dx = \int_{\Omega} f_n \phi \, dx \,,$$

SC

$$\int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \nabla \phi \, dx \le \left| \frac{1}{n} \int_{\Omega} |\nabla u_n|^{N-2} \nabla u_n \nabla \phi \, dx \right| + C \|\phi\|_{W_0^{1,N}} \le C \|\phi\|_{W_0^{1,N}}$$

which implies, thanks to [6, Theorem 4.1], that $\int_{\Omega} |\nabla u_n|^{\bar{q}} dx \leq C$, where here and below C denote positive constants not depending on n. Therefore, we can see that there exist a measurable function $u \in W_0^{1,\bar{q}}(\Omega)$ and a subsequence also denoted $(u_n)_n$,

$$u_n \to u$$
 weakly in $W_0^{1,\bar{q}}(\Omega)$
 $T_k(u_n) \to T_k(u)$ weakly in $W_0^{1,p}(\Omega)$,

where T_k is the usual truncation defined by $T_k(s) = \max(-k, \min(k, s))$, for all $s \in \mathbb{R}$, for all $k \geq 0$. Let $v \in \mathcal{D}(\Omega)$ and choose the test function $T_k(u_n - v)$, $n > k + ||v||_{\infty}$, in the approximate problem, we have

$$\int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \nabla T_k(u_n - v) \, dx + \frac{1}{n} \int_{\Omega} |\nabla u_n|^{N-2} \nabla u_n \nabla T_k(u_n - v) \, dx$$
$$= \int_{\Omega} f_n T_k(u_n - v) \, dx$$

which we rewrite as follows:

$$\int_{\Omega} (|\nabla u_n|^{p-2} \nabla u_n - |\nabla v|^{p-2} \nabla v) \nabla T_k(u_n - v) dx
+ \int_{\Omega} |\nabla v|^{p-2} \nabla v \nabla T_k(u_n - v) dx
+ \frac{1}{n} \int_{\Omega} (|\nabla u_n|^{N-2} \nabla u_n - |\nabla v|^{N-2} \nabla v) \nabla T_k(u_n - v) dx
+ \frac{1}{n} \int_{\Omega} |\nabla v|^{N-2} \nabla v \nabla T_k(u_n - v) dx
= \int_{\Omega} f_n T_k(u_n - v) dx.$$

This obviously gives

$$\int_{\Omega} |\nabla v|^{p-2} \nabla v \nabla T_k(u_n - v) dx + \frac{1}{n} \int_{\Omega} |\nabla v|^{N-2} \nabla v \nabla T_k(u_n - v) dx \le \int_{\Omega} f_n T_k(u_n - v) dx.$$

By using the fact that $T_k(u_n - v) \to T_k(u - v)$ weakly in $W_0^{1,p}(\Omega)$, we obtain

$$\int_{\Omega} |\nabla v|^{p-2} \nabla v \nabla T_k(u-v) \, dx \le \int_{\Omega} f T_k(u-v) \, dx, \quad \forall v \in \mathcal{D}(\Omega),$$

By the density argument the last inequality remains true for all $v \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$.

To prove that u is a weak solution of the problem (E), we follow the technique used in [12]. Let h and k be positive real numbers, let t belong to (-1,1) and let ψ be a function in $W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$. Choose $\phi = T_h(u) + tT_k(u - \psi)$ in the previous inequality, we have u is a so-called entropy solution of (E) which completes the proof of the theorem.

References

- [1] Adams, R., Sobolev spaces. New York: Academic Press 1975.
- [2] Benkirane, A. and Elmahi, A., Almost everywhere convergence of the gradients of solutions to elliptic equations in Orlicz spaces and application. *Nonlin. Anal.* 28 (1997)(11), 1769 1784.
- [3] Benkirane, A. and Kbiri Alaoui, M., Sur certaines équations elliptiques non linéaires à second membre mesure. Forum Math. 12 (2000)(4), 385 395.
- [4] Boccardo, L. and Gallouët, T., Nonlinear elliptic equations with right-hand side measures. *Comm. Partial Diff. Eqs.* 17 (1992)(3,4), 641 655.
- [5] Cianchi, A., Optimal Orlicz–Sobolev embedding. Rev. Mat. Iberoamericana 20 (2004)(2), 427 474.

- [6] de Figueiredo, D. G., do Ó, J. M. and Ruf, B., An Orlicz space approach to superlinear elliptic systems. J. Funct. Anal. 224 (2005), 471 496.
- [7] Fiorenza, A. and Krbec, M., Fiorenza, A. On an optimal decomposition in Zygmund spaces. *Georgian Math. J.* 9 (2002)(2), 271 286.
- [8] Gossez, J.-P., Some approximation properties in Orlicz–Sobolev spaces. *Studia Math.* 74 (1982), 17 24.
- [9] Gossez, J.-P., Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients. *Trans. Amer. Math. Soc.* 190 (1974), 163-205.
- [10] Krasnoselśkiĭ, M. A. and Rutickiĭ, Ja. B., Convex Functions and Orlicz Spaces. Groningen: P. Noordhoff 1969.
- [11] Leray, J. and Lions, J.-L., Quelques résultats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder. *Bull. Soc. Math. France* 93 (1965), 97 107.
- [12] Minty, G. J., On a monotonicity method for the solution of non-linear equations in Banach spaces. *Proc. Nat. Acad. Sci. U.S.A.* 50 (1963), 1038 1041.
- [13] Passarelli di Napoli, A. and Sbordone, C., Elliptic equations with right hand side in $LLog^{\alpha}L$. Rend. Accad. Sci. Fis. Mat. Napoli 62 (1995), 301 314.
- [14] Stampacchia, G., Some limit cases of L^p estimates for solutions of second order elliptic equations. Comm Pure Appl. Math. 16 (1963), 505 510.
- [15] Talenti, G., Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces. Ann. Mat. Pura Appl. 120 (1979)(4), 159 184.

Received November 24, 2005; revised March 9, 2007