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On the Limiting Regularity Result
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Abstract. We shall prove the limiting regularity W,,” ¥~' (Q) of solutions of some
nonlinear elliptic problems with right hand side in LLog®L(f2) and « > % Also,

an improved regularity is given when a < %
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1. Introduction

We deal with boundary value problems

A(u) := —div(a(-,u,Vu)) = f in Q
{ u=>0 on 0f), (E)

where ) is a regular bounded domain of R¥Y, N > 2,a: 2 x R x RY — R¥ is
a Carathéodory function (that is, measurable with respect to x in 2 for every
(5,€) in R x RN, and continuous with respect to (s,€) in R x RY for almost
every x in §2). We assume that there exist a real positive constant v > 0, a
nonnegative function k in L (Q), p’ = -5, where 2 — ~ < p < N, such that for
almost every x in € , for every s in R, for every ¢ and £* in RV:

a(z, s,8)€ = v|¢l” (1.1)
[(l(ﬂ?, S7€> - CL(:C? 875*)][5 - ’5*] > O? g 7é 5* (12>
la(z, 5,&)| < k(x) + [s["~" +[g[7~ (1.3)

The use of the LLog*L(f2) space to study the problem (E) in the linear case, is
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early introduced by G. Stampacchia in [14] (for the case a = ¥=1), by A. Pas-
sareli di Napoli and C. Sbordonne in [13] (for 0 < o < 1) and recently by
A. Fiorenza and M. Krebec in [7] for the case o > % In the nonlinear case,
the particular situations were given in [4]. Another approach to reach the lim-
iting regularity was given in [3].

Our main result consists in reaching the limiting regularity I/VO1 1Q),q =
% with f belonging to the space LLog®L(Q2), o > % in the nonlinear
case.

For the sake of simplicity, we restrict our studies to the p-Laplacian problem
model, i.e., a(-,u, Vu) = |[Vu[P72Vu.

2. Preliminaries

We list some well known results about Orlicz and Orlicz—Sobolev spaces.

2.1. Let M : Rt — R*' be an N-function, i.e., M is continuous, convex
with M (t) >Of0rt>0,@—>0ast—>0andMT(t) — 00 as t — o0.
Equivalently, M admits the representation M (t) = fg a(s)ds, where a : Rt —
R is nondecreasing, right continuous, with a(0) = 0, a(t) > 0 for ¢ > 0 and
a(t) — oo as t — oo. The N-function M conjugate to M is defined by M (t) =
Joa(s)ds, @:RY — R is given by a(t) = sup{s : a(s) <t} (see [1, 10]). The
N-function is said to satisfy the Ay-condition if, for some k > 0,

M(2t) < kM(t) ¥t >0, (2.1)

If (2.1) holds only for ¢t > t; > 0, then M is said to satisfy the As-condition
near infinity.

We will extend these N-functions into even functions on all R.

2.2. Let Q be an open subset of RY. The Orlicz class K(2) (resp. the Orlicz
space Ly(€2)) is defined as the set of (equivalences classes of) real valued mea-

surable functions v on Q such that [, M(u(z)) dx < +o0 (resp. [, M(@) dr <
+oo for some A > 0). L/(€2) is a Banach space under the norm

|ullar,q = inf {/\ >0: /QM(@) dr < 1}

and Kj/(£2) is a convex subset of L/ (€2).

The closure in Ly (2) of the set of bounded measurable functions with
compact support in  is denoted by Ej(2). The equality Ey(Q) = Ly()
holds if and only if M satisfies the As-condition, for all ¢ or for ¢ large according
to whether €2 has infinite measure or not. The dual of E);(Q2) can be identified
with L37(Q2) by means of pairing [, u(x)v(x)dz and the dual norm on Ly;(Q)
is equivalently to ||ul|7.q-
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The space Ly (Q) is reflexive if and only if M and M satisfy the A,-
condition, for all ¢ or for ¢ large according to whether €2 has infinite measure
or not.

2.3. We now turn to the Orlicz-Sobolev space. WLy () (resp. WIE,(Q) )
is the space of all functions such that v and its distributional derivatives up to
order 1 lie in Ly () (resp. Ep () ). It is a Banach space under the norm

lulliane = Y 1D ullag-

o<1

Thus, WLy (Q) and W Ey () can be identified with subspaces of the product
of N + 1 copies of Ly(€2). Denoting this product by [] Las, we will use the weak
topologies o ([ Las, [[ E57) and o([ ] Lar, [ L7z)-

The space W, Ej(Q) is defined as the (norm) closure of the Schwartz space
D(Q) in W'Ey(Q) and the space W3 Ly (Q) as the o([] Las, [[ E57) closure of
D(Q) in WLy ().

Let W1Li7(Q2) (resp. W1E(€2)) denote the space of distributions on {2
which can be written as sums of derivatives of order < 1 of functions in L37(2)
(resp. E77(92)). It is a Banach space under the usual quotient norm.

If the open set €2 has the segment property, then the space D(£2) is dense in
WLy (9) for the modular convergence and thus for the topology o (][ Las, ] [ L17)
(see [8, 9]). Consequently, the action of a distribution in W~'L7(2) on an
element of W Ly (Q) is well defined.

We denote by LLog®L(2) the Orlicz space Ly(€2) where M(t) ~ t1n*(t)
as t — oo.

The following abstract lemma will be applied in the following.

Lemma 2.1 ([2]). Let F': R — R be uniformly Lipschitzian with F(0) = 0. Let
M be an N-function and let w € WLy () (resp. WiEy (). Then F(u) €
Wi Ly (Q) (resp. Wi En () ). Moreover, if the set of discontinuity points of F'
1s finite, then

o a.e. in {x € Q:u(r)e D}.

aiF(u) _ {F’(u)g—; a.e. in {x € Q:u(zr) ¢ D}

3. Main result
Let M be an N-function such that
K(s) = (M~'(s))" is convex and

J, MoB™! (%) dr < +oo, B(t) =tr1.

r'=N Loga(L)

(H)
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Theorem 3.1. Under the assumptions (1.1)~(1.3), 2 — + <p < N and [ in
LLog™L(Q) with a > X214, there eists at least a weak solution u € Wy(Q) of
problem (E) where § = %. Moreover, if o > 8= then w € Wi Ly () for
every N-function M satisfying (H).

Remark 3.2. The proof of the last theorem allows us to obtain an improved
regularity of the solution u of (E) in the Orlicz-Sobolev spaces. For example,

uEWolLM(Q),M(t):ﬁ?em, forall o > 1— 2 if a € [0, 5]

u € WyLy(Q),M(t) =t"Log° (e + 1), forallo < 2 —1 if o> 8L
For the case a = £=1 p < N, the regularity Wy () is optimal.

1
Hereafter, we denote by X the real number defined by Xy = NC, Cy is
the measure of the unit ball of RY, u(t) = meas {|u| > t}.

The following lemma (see [15] for the general case) plays an essential role
for estimation of the approximate solutions of the problem .

Lemma 3.3. Let u € W,?(Q),1 < p < 4+0c0. Then

1

—

_1 1 d
—p'(t) > Xyp(t)' N<——————7TI;E
XNu(t) N {Jul>t}

Proof of Theorem 3.1. If @ > %,2 — % < p < N, then we consider the
approximate problem

{A(un) = —div(a(-, up, Vuy)) = fn in Q

|Vul? d:c)

3.1
u, € Wy(), (3.1)

where (f,,) is a smooth sequence of functions satisfying f, — f in Ly () for
the modular convergence, H(t) = tLog®(1 +1t) .

Let ¢ be a truncation defined by

0, 0<E<t
HE—1t), t<&E<t+h
_ h
p(§) = 3 £>t4h (3:2)
_90(_5)7 §<07

for all ¢, h > 0. Without loss of generality, we omit the index n. Using v = p(u)
as a test function in (3.1), we obtain

/Qa(~,u,Vu)Vu<p’(u)d:c:/Qfgo(u)da:

1
—/ ]Vu|pdx§0/ fdzx.
h Jge<tul<t+ny {Jul>t+h}
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And letting h — 0, we have
d

IVl dr < c/ iz (3.3)
dt J{uj>1y

{lul>t}

By using Lemma 3.3 we obtain (supposing —p'(¢) > 0 which does not affected
the proof)

1 d 1 d
'(t %/ ‘Vu‘pdl’ S (— ﬁ%/ |Vu|pdx)
w(t) {Ju|>t} Xyp(t) ™ N {Ju|>t}

or equivalently

1 > 1
(,—i/ |Vu|pdx) < (—ﬁi/ |Vu|pdx)
W(t)dt Jgu=e Xyp(t) N At J sy

Let M be an N-function satisfying (H). Jensen’s inequality involves

K (f{t<|u<t+h} ]Vu] > f{t<|u|<t+h}(|vu|)p

]
| [
-

bl
| =
—

—u(t+h)+ p(t —u(t+h)+p(t)

1 d P
— |Vul? dx)

1 d
M—l( —/ M(|Vul) d:c> (
() dt Jqusn (vul p(t)d
1
Therefore we have

d T
( / ]Vu]pdx) )
npu(t) ™ At Sy
d

: 1 d 1
[ mvahas < o (<-4 [ waran)).
{Jul>t} Xyu(t) ¥ {Ju|>t}

Combining with (3.3) and the fact that the function ¢ — f{|u|>t} M(|Vul)dz is
absolutely continuous, we obtain

/QM(Wu])dx - /O+Oo <— %/{u>t}M(|Vu|)dx) dt

§/0+°°(—uf(t))M <M>— )

Xyp(t) ™~

1 [ed1] C p—1
< — M| ———-— dr < oo,
" Jo rl’ﬁLoga(%)

~+

|U\>t}
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where C" = (X—CN)N ', and the last inequality is obtained by using the Hélder

inequality on f{|u|>t} fdx.

Finally, we deduce that (Vu,),so is bounded in (Lp/(Q))" for every
N-function satisfying (H). In particular, (Vu,),>o is bounded in (L9(Q2))V. As
in [4], the almost everywhere convergence of the gradients can be obtained and
the proof of theorem follows with the same way.

We deal now with the case o = % and 2 — % < p < N. We recall that the

authors in [4] have proved some regularity result but by assuming that o = %
and p = N. Consider now the following approximate problems:
1
—div (a(z, un, Vu,)) — = div (|Vu,|¥N 2Vu,) = f, in Q
(af ) = 4 div (VoY Va,) = f o

u, € Wy (9Q) .

The solutions u,, exist thanks to the Leray-Lions theorem (see [11]). Taking
v = u, as test function in the problem (3.4), we have

1
/ VP do + / V™ dz < 20 fullalunlls < Clltnllyprn
Q n Jq 0

where we have used the continuous and optimal injection W™ (Q) — Lz()
with A(t) = e/ — 1 (see [5]). Then we deduce (/[ Vun|N dz) ™~ < C. Let
now ¢ € W, N(Q) as test function, one has

1
[l vuvsds s o [ [Gu 2 vuode = [ fods.
Q nJa Q

SO

/ IV, P2 Vu, Vo dr < ‘1 / IV, |V 2Vu, Vo dr
Q nJa

+ Cll6lyan < Clldllgn

which implies, thanks to [6, Theorem 4.1], that [, |Vu,|?dz < C, where here
and below C' denote positive constants not depending on n. Therefore, we can
see that there exist a measurable function u € W,%(Q) and a subsequence also
denoted (uy,)n,
Up — U weakly in W, %(Q)
Ti(un) — Ti(u) weakly in Wy (Q),
where T}, is the usual truncation defined by T} (s) = max(—Fk, min(k, s)), for all

s € R, for all £ > 0. Let v € D(2) and choose the test function T (u,, —v),n >
k + ||v||oo, in the approximate problem, we have

1
/ |V, P 2Vu, VT (u, —v)dr + — / IV, [N 2V u, VT (u, —v)dr
Q nJa

:/ fuTy(u, —v)dx
Q
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which we rewrite as follows:
/Q (VU [PV, — [Vo[P~*Vo) VT (u, — v) dx
+ /Q |VoP2VoV T (u, — v)dx
+ % /Q (IVun [NV, — V0|V 2 Vo) VT (u, — v) da
+ % /Q VoV 2VoV T (u, —v) dr

:/ foTr(upy, — v) dx .
Q

This obviously gives

/Q|Vvlp2VUVTk(un—v)da:+%/Q|VU]NQVUVTk(un—v)dx S/anTk(un—v)d:z:.

By using the fact that T (u, — v) — Tj(u — v) weakly in W, (), we obtain
/Q Vo2V oV T (1 — v) da < /Q fTo(u—v)dz, Vo€ D),

By the density argument the last inequality remains true for all v € ng P(Q)N
L>(Q).

To prove that u is a weak solution of the problem (E), we follow the tech-
nique used in [12]. Let h and k be positive real numbers, let ¢ belong to (—1, 1)
and let 1 be a function in W, ?(Q) N L*®°(Q). Choose ¢ = Ty (u) + tTy(u — ) in
the previous inequality, we have w is a so-called entropy solution of (E) which
completes the proof of the theorem. O
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