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On the Limiting Regularity Result

of some Nonlinear Elliptic Equations
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Abstract. We shall prove the limiting regularity W
1,
N(p−1)
N−1

0 (Ω) of solutions of some
nonlinear elliptic problems with right hand side in LLogαL(Ω) and α ≥ N−1

N
. Also,

an improved regularity is given when α < N−1
N

.
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1. Introduction

We deal with boundary value problems
{

A(u) := − div(a(·, u,∇u)) = f in Ω

u = 0 on ∂Ω,
(E)

where Ω is a regular bounded domain of R
N , N ≥ 2, a : Ω × R × R

N → R
N is

a Carathéodory function (that is, measurable with respect to x in Ω for every
(s, ξ) in R × R

N , and continuous with respect to (s, ξ) in R × R
N for almost

every x in Ω). We assume that there exist a real positive constant ν > 0, a
nonnegative function k in Lp′(Ω), p′ = p

p−1
, where 2− 1

N
< p ≤ N , such that for

almost every x in Ω , for every s in R, for every ξ and ξ∗ in R
N :

a(x, s, ξ)ξ ≥ ν|ξ|p (1.1)

[a(x, s, ξ)− a(x, s, ξ∗)][ξ − ξ∗] > 0, ξ 6= ξ∗ (1.2)

|a(x, s, ξ)| ≤ k(x) + |s|p−1 + |ξ|p−1. (1.3)

The use of the LLogαL(Ω) space to study the problem (E) in the linear case, is
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early introduced by G. Stampacchia in [14] (for the case α = N−1
N

), by A. Pas-
sareli di Napoli and C. Sbordonne in [13] (for 0 < α ≤ 1) and recently by
A. Fiorenza and M. Krebec in [7] for the case α ≥ N−1

N
. In the nonlinear case,

the particular situations were given in [4]. Another approach to reach the lim-
iting regularity was given in [3].

Our main result consists in reaching the limiting regularity W
1,q̄
0 (Ω), q̄ =

N(p−1)
N−1

with f belonging to the space LLogαL(Ω), α ≥ N−1
N

in the nonlinear
case.

For the sake of simplicity, we restrict our studies to the p-Laplacian problem
model, i.e., a(·, u,∇u) = |∇u|p−2∇u.

2. Preliminaries

We list some well known results about Orlicz and Orlicz–Sobolev spaces.

2.1. Let M : R
+ → R

+ be an N-function, i.e., M is continuous, convex
with M(t) > 0 for t > 0, M(t)

t
→ 0 as t → 0 and M(t)

t
→ ∞ as t → ∞.

Equivalently, M admits the representation M(t) =
∫ t

0
a(s) ds, where a : R

+ →
R

+ is nondecreasing, right continuous, with a(0) = 0, a(t) > 0 for t > 0 and
a(t)→∞ as t→∞. The N-function M conjugate to M is defined by M(t) =
∫ t

0
a(s) ds, a : R

+ → R
+ is given by a(t) = sup{s : a(s) ≤ t} (see [1, 10]). The

N-function is said to satisfy the ∆2-condition if, for some k > 0,

M(2t) ≤ kM(t) ∀t ≥ 0. (2.1)

If (2.1) holds only for t ≥ t0 > 0, then M is said to satisfy the ∆2-condition
near infinity.

We will extend these N-functions into even functions on all R.

2.2. Let Ω be an open subset of R
N . The Orlicz class KM(Ω) (resp. the Orlicz

space LM(Ω)) is defined as the set of (equivalences classes of) real valued mea-

surable functions u on Ω such that
∫

Ω
M(u(x)) dx < +∞ (resp.

∫

Ω
M(u(x)

λ
) dx <

+∞ for some λ > 0). LM(Ω) is a Banach space under the norm

‖u‖M,Ω = inf

{

λ > 0 :

∫

Ω

M

(

u(x)

λ

)

dx ≤ 1

}

and KM(Ω) is a convex subset of LM(Ω).
The closure in LM(Ω) of the set of bounded measurable functions with

compact support in Ω is denoted by EM(Ω). The equality EM(Ω) = LM(Ω)
holds if and only ifM satisfies the ∆2-condition, for all t or for t large according
to whether Ω has infinite measure or not. The dual of EM(Ω) can be identified
with LM (Ω) by means of pairing

∫

Ω
u(x)v(x) dx and the dual norm on LM (Ω)

is equivalently to ‖u‖M,Ω.
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The space LM(Ω) is reflexive if and only if M and M satisfy the ∆2-
condition, for all t or for t large according to whether Ω has infinite measure
or not.

2.3. We now turn to the Orlicz–Sobolev space. W 1LM(Ω) (resp. W 1EM(Ω) )
is the space of all functions such that u and its distributional derivatives up to
order 1 lie in LM(Ω) (resp. EM(Ω) ). It is a Banach space under the norm

‖u‖1,M,Ω =
∑

|α|≤1

‖Dαu‖M,Ω.

Thus,W 1LM(Ω) andW 1EM(Ω) can be identified with subspaces of the product
of N + 1 copies of LM(Ω). Denoting this product by

∏

LM , we will use the weak
topologies σ(

∏

LM ,
∏

EM) and σ(
∏

LM ,
∏

LM).
The space W 1

0EM(Ω) is defined as the (norm) closure of the Schwartz space
D(Ω) in W 1EM(Ω) and the space W 1

0LM(Ω) as the σ(
∏

LM ,
∏

EM) closure of
D(Ω) in W 1LM(Ω).

Let W−1LM(Ω) (resp. W−1EM(Ω)) denote the space of distributions on Ω
which can be written as sums of derivatives of order ≤ 1 of functions in LM (Ω)
(resp. EM (Ω)). It is a Banach space under the usual quotient norm.

If the open set Ω has the segment property, then the space D(Ω) is dense in
W 1

0LM(Ω) for the modular convergence and thus for the topology σ(
∏

LM ,
∏

LM)
(see [8, 9]). Consequently, the action of a distribution in W−1LM(Ω) on an
element of W 1

0LM(Ω) is well defined.
We denote by LLogαL(Ω) the Orlicz space LM(Ω) where M(t) ∼ t lnα(t)

as t→∞.

The following abstract lemma will be applied in the following.

Lemma 2.1 ([2]). Let F : R → R be uniformly Lipschitzian with F (0) = 0. Let
M be an N-function and let u ∈ W 1

0LM(Ω) (resp. W 1
0EM(Ω)). Then F (u) ∈

W 1
0LM(Ω) (resp.W 1

0EM(Ω) ). Moreover, if the set of discontinuity points of F ′

is finite, then

∂

∂xi
F (u) =

{

F ′(u) ∂u
∂xi

a.e. in {x ∈ Ω : u(x) 6∈ D}

0 a.e. in {x ∈ Ω : u(x) ∈ D}.

3. Main result

Let M be an N-function such that

(H)







K(s) =
(

M−1(s)
)p

is convex and
∫ ·

0
M◦B−1

(

1

r
1− 1

N Logα( 1
r
)

)

dr < +∞, B(t) = tp−1.
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Theorem 3.1. Under the assumptions (1.1)–(1.3), 2 − 1
N
< p ≤ N and f in

LLogαL(Ω)with α ≥ N−1
N
, there exists at least a weak solution u ∈ W 1,q̄

0 (Ω) of

problem (E) where q̄ = N(p−1)
N−1

. Moreover, if α > N−1
N

, then u ∈ W 1
0LM(Ω) for

every N-function M satisfying (H).

Remark 3.2. The proof of the last theorem allows us to obtain an improved
regularity of the solution u of (E) in the Orlicz–Sobolev spaces. For example,

u ∈ W 1
0LM(Ω),M(t) = tq̄

Logσ(e+t)
, for all σ > 1− αN

N−1
if α ∈ [0, N−1

N
[

u ∈ W 1
0LM(Ω),M(t) = tq̄Logσ(e+ t), for all σ < αN

N−1
− 1 if α > N−1

N
.

For the case α = N−1
N
, p < N, the regularity W 1,q̄

0 (Ω) is optimal.

Hereafter, we denote by XN the real number defined by XN = NC
1
N

N , CN is
the measure of the unit ball of R

N , µ(t) = meas {|u| > t}.

The following lemma (see [15] for the general case) plays an essential role
for estimation of the approximate solutions of the problem .

Lemma 3.3. Let u ∈ W 1,p
0 (Ω), 1 < p < +∞. Then

−µ′(t) ≥ XNµ(t)
1− 1

N

(

−
1

XNµ(t)
1− 1

N

d

dt

∫

{|u|>t}

|∇u|p dx

)− 1
p−1

.

Proof of Theorem 3.1. If α > N−1
N
, 2 − 1

N
< p ≤ N , then we consider the

approximate problem
{

A(un) := − div(a(·, un,∇un)) = fn in Ω

un ∈ W
1,p
0 (Ω),

(3.1)

where (fn) is a smooth sequence of functions satisfying fn → f in LH(Ω) for
the modular convergence, H(t) = tLogα(1 + t) .

Let ϕ be a truncation defined by

ϕ(ξ) =



















0, 0 ≤ ξ ≤ t
1
h
(ξ − t), t < ξ < t+ h

1, ξ ≥ t+ h

−ϕ(−ξ), ξ < 0,

(3.2)

for all t, h > 0. Without loss of generality, we omit the index n. Using v = ϕ(u)
as a test function in (3.1), we obtain

∫

Ω

a(·, u,∇u)∇uϕ′(u) dx =

∫

Ω

fϕ(u) dx

1

h

∫

{t<|u|<t+h}

|∇u|p dx ≤ C

∫

{|u|≥t+h}

f dx .
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And letting h→ 0, we have

−
d

dt

∫

{|u|>t}

|∇u|p dx ≤ C

∫

{|u|≥t}

f dx . (3.3)

By using Lemma 3.3 we obtain (supposing −µ′(t) > 0 which does not affected
the proof)

1

µ′(t)

d

dt

∫

{|u|>t}

|∇u|p dx ≤

(

−
1

XNµ(t)
1− 1

N

d

dt

∫

{|u|>t}

|∇u|p dx

)
p

p−1

or equivalently

(

1

µ′(t)

d

dt

∫

{|u|>t}

|∇u|p dx

) 1
p

≤

(

−
1

XNµ(t)
1− 1

N

d

dt

∫

{|u|>t}

|∇u|p dx

) 1
p−1

Let M be an N-function satisfying (H). Jensen’s inequality involves

K

(∫

{t<|u|<t+h}
M(|∇u|)

−µ(t+ h) + µ(t)

)

≤

∫

{t<|u|<t+h}
(|∇u|)p

−µ(t+ h) + µ(t)
.

Then

M−1

(

1

µ′(t)

d

dt

∫

{|u|>t}

M(|∇u|) dx

)

≤

(

1

µ′(t)

d

dt

∫

{|u|>t}

|∇u|p dx

) 1
p

≤

(

−
1

XNµ(t)
1− 1

N

d

dt

∫

{|u|>t}

|∇u|p dx

) 1
p−1

.

Therefore we have

−
d

dt

∫

{|u|>t}

M(|∇u|) dx ≤ (−µ′(t))M

(

(

−
1

XNµ(t)
1− 1

N

d

dt

∫

{|u|>t}

|∇u|p dx

) 1
p−1

)

.

Combining with (3.3) and the fact that the function t→
∫

{|u|>t}
M(|∇u|) dx is

absolutely continuous, we obtain
∫

Ω

M(|∇u|) dx =

∫ +∞

0

(

−
d

dt

∫

{|u|>t}

M(|∇u|) dx

)

dt

≤

∫ +∞

0

(−µ′(t))M





(

C
∫

{|u|≥t}
f dx

XNµ(t)
1− 1

N

) 1
p−1



 dt

≤
1

C ′

∫ C′|Ω|

0

M





(

C

r1−
1
NLogα(1

r
)

) 1
p−1



 dr <∞,
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where C ′ = (XN
C
)N

′

, and the last inequality is obtained by using the Hölder
inequality on

∫

{|u|≥t}
f dx.

Finally, we deduce that (∇un)n≥0 is bounded in (LM(Ω))N for every
N-function satisfying (H). In particular, (∇un)n≥0 is bounded in (Lq̄(Ω))N . As
in [4], the almost everywhere convergence of the gradients can be obtained and
the proof of theorem follows with the same way.

We deal now with the case α = N−1
N

and 2− 1
N
< p < N . We recall that the

authors in [4] have proved some regularity result but by assuming that α = N
N−1

and p = N . Consider now the following approximate problems:






− div
(

a(x, un,∇un)
)

−
1

n
div
(

|∇un|
N−2∇un

)

= fn in Ω

un ∈W
1,N
0 (Ω) .

(3.4)

The solutions un exist thanks to the Leray–Lions theorem (see [11]). Taking
v = un as test function in the problem (3.4), we have

∫

Ω

|∇un|
p dx+

1

n

∫

Ω

|∇un|
N dx ≤ 2‖fn‖A‖un‖Ā ≤ C‖un‖W 1,N

0
,

where we have used the continuous and optimal injection W
1,N
0 (Ω) ↪→ LĀ(Ω)

with Ā(t) = et
N′

− 1 (see [5]). Then we deduce 1
n
(
∫

Ω
|∇un|

N dx)
N−1
N ≤ C. Let

now φ ∈W 1,N
0 (Ω) as test function, one has

∫

Ω

|∇un|
p−2∇un∇φ dx+

1

n

∫

Ω

|∇un|
N−2∇un∇φ dx =

∫

Ω

fnφ dx ,

so
∫

Ω

|∇un|
p−2∇un∇φ dx ≤

∣

∣

∣

∣

1

n

∫

Ω

|∇un|
N−2∇un∇φ dx

∣

∣

∣

∣

+ C‖φ‖
W

1,N
0
≤ C‖φ‖

W
1,N
0

which implies, thanks to [6, Theorem 4.1], that
∫

Ω
|∇un|

q̄ dx ≤ C, where here
and below C denote positive constants not depending on n. Therefore, we can
see that there exist a measurable function u ∈W 1,q̄

0 (Ω) and a subsequence also
denoted (un)n,

un → u weakly inW 1,q̄
0 (Ω)

Tk(un)→ Tk(u) weakly inW 1,p
0 (Ω) ,

where Tk is the usual truncation defined by Tk(s) = max(−k,min(k, s)), for all
s ∈ R, for all k ≥ 0. Let v ∈ D(Ω) and choose the test function Tk(un− v), n >
k + ‖v‖∞, in the approximate problem, we have

∫

Ω

|∇un|
p−2∇un∇Tk(un − v) dx+

1

n

∫

Ω

|∇un|
N−2∇un∇Tk(un − v) dx

=

∫

Ω

fnTk(un − v) dx
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which we rewrite as follows:
∫

Ω

(

|∇un|
p−2∇un − |∇v|

p−2∇v
)

∇Tk(un − v) dx

+

∫

Ω

|∇v|p−2∇v∇Tk(un − v) dx

+
1

n

∫

Ω

(

|∇un|
N−2∇un − |∇v|

N−2∇v
)

∇Tk(un − v) dx

+
1

n

∫

Ω

|∇v|N−2∇v∇Tk(un − v) dx

=

∫

Ω

fnTk(un − v) dx .

This obviously gives
∫

Ω

|∇v|p−2∇v∇Tk(un−v)dx+
1

n

∫

Ω

|∇v|N−2∇v∇Tk(un−v)dx ≤

∫

Ω

fnTk(un−v)dx.

By using the fact that Tk(un − v)→ Tk(u− v) weakly in W 1,p
0 (Ω), we obtain

∫

Ω

|∇v|p−2∇v∇Tk(u− v) dx ≤

∫

Ω

fTk(u− v) dx, ∀v ∈ D(Ω),

By the density argument the last inequality remains true for all v ∈ W 1,p
0 (Ω) ∩

L∞(Ω).

To prove that u is a weak solution of the problem (E), we follow the tech-
nique used in [12]. Let h and k be positive real numbers, let t belong to (−1, 1)
and let ψ be a function in W 1,p

0 (Ω)∩L∞(Ω). Choose φ = Th(u) + tTk(u−ψ) in
the previous inequality, we have u is a so-called entropy solution of (E) which
completes the proof of the theorem.
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