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On Ren-Kähler’s Paper

”Hardy-Littlewood Inequalities and Qp-Spaces”
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Abstract. In this note we prove that a harmonic function u on the unit ball B ⊂ R
n

belongs to the harmonic mixed norm space Ap,q
s (B), when p, q ∈ (0,∞] and s > 0,

if and only if all weighted tangential derivatives of order k (with positive orders of
derivatives) belong to the related weighted Lebesgue mixed norm space Lp,q

s (B). Our
proof of the result for the case q ∈ (0, 1) and k is odd, corrects the corresponding one
in the paper: G. Ren and U. Kähler, Hardy-Littlewood inequalities and Qp-spaces,
Z. Anal. Anwendungen 24 (2005), 375 – 388.
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1. Introduction

Throughout this paper B(a, r) = {x ∈ R
n | |x − a| < r} denotes the open ball

centered at a of radius r, where |x| denotes the norm of x ∈ R
n, B the open

unit ball in R
n, rB = B(0, r), S = ∂B = {x ∈ R

n | |x| = 1} is the boundary
of B and Sr = {x ∈ R

n | |x| = r}. Let further dV denote the Lebesgue measure
on R

n, dσ the surface measure on S, σn the surface area of S, dVN the normalized
Lebesgue measure on B, dσN the normalized surface measure on S.

For a given multi-index α = (α1, . . . , αn) with each αi, i ∈ {1, . . . , n}, a
nonnegative integer, we use notations |α| = α1 + · · ·+ αn and ∂α = ∂α1

1 · · · ∂αn
n

where ∂j denotes the differentiation with respect to the jth variable.
Let H(B) denote the set of all harmonic functions on B. Some basic facts

on harmonic functions can be found, for example, in [1].
For u ∈ H(B) and p ∈ (0,∞), we denote the integral mean of u by

Mp
p (u, r) =

∫

S

|u(rζ)|pdσN(ζ), r ∈ [0, 1)

while M∞(u, r) = sup|x|<r |u(x)|, r ∈ [0, 1).
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The harmonic Hardy space Hp(B), p ∈ (0,∞) consists of all u ∈ H(B) such
that sup0<r<1 Mp(u, r) <∞.

The mixed norm space Ap,q
s (B), p, q ∈ (0,∞), s ∈ R, consists of all u ∈

H(B) such that

‖u‖p,q,s =

(
∫ 1

0

Mp
q (u, r)(1− r)ps−1dr

)

1

p

<∞.

If p =∞, then

A∞,q
s (B) =

{

u ∈ H(B)
∣

∣

∣
sup

0<r<1
(1− r2)sMq(u, r) <∞

}

.

Let Ra = aI+
∑n

j=1 xj
∂

∂xj
where I denotes the identity operator. For a = 0, Ra

is the standard radial differential operator R. By Tiju = xi
∂u
∂xj
−xj

∂u
∂xi

we denote

the tangential derivatives, where 1 ≤ i < j ≤ n. Note that tangential derivatives
of harmonic functions are again harmonic. Given a nontrivial multi-index α we
use the notation T α = T α1

i1j1
· · ·T αn

injn
for any choice of i1, . . . , in and j1, . . . , jn.

In [16] Ren and Kähler nicely note that the following result can be obtained
by some modification of known ones:

Theorem A. Let 0 < p, q ≤ ∞ 0 < s < ∞ and k ∈ N. If u ∈ H(B), then the
following quantities are equivalent:

a) ‖u‖p,q,s;

b) |u(0)|+ ‖Rku‖p,q,s+k;

c)
∑

|α|<k |∂
αu(0)|+

∑

|α|=k ‖∂
αu‖p,q,s+k.

They also claim that in [4] Choe–Koo–Yi have proved the following asymp-
totic relation:

‖u‖p,q,s ³ |u(0)|+ ‖T
ku‖p,q,s+k,

when p = q ∈ [1,∞], s = 0 and k ∈ N, for every u ∈ H(B) (see [16, p. 380]).
The above means that there are finite positive constants C and C ′ independent
of u such that the left and right hand sides L(u) and R(u) satisfy

CR(u) ≤ L(u) ≤ C ′R(u)

for all harmonic u.

However, there is a number of somewhat vague points in their paper [16].
First, they defined the norm ‖u‖p,q,s wrongly, by

∫

B
Mp

q (u, r)(1− r)ps−1dr (see
[16, p. 378]) which is probably a misprint. Second, the tangential derivative T
is defined by {Tij}i<j which looks like a set, and then it is not clear what
‖T ku‖p,q,s+k means. In our opinion the operator T should have been defined
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by T =
∑

i<j Tij. Third, in order to obtain Choe–Koo–Yi’s result s should be

equal to 1
p
, that is, Ren and Kähler have probably meant that

‖u‖p,p, 1
p
³ |u(0)|+

∑

|α|=k

‖T αu‖p,p, 1
p
+k

bearing in mind the fact that

‖u‖bp =

(
∫

B

|u(x)|pdV (x)

)
1

p

³ ‖u‖p,p, 1
p
,

when p ≥ 1. Note that it is not immediately clear why these two norms are
equivalent in the case p ∈ (0, 1). As we know the monotonicity of the integral
means plays a crucial role in proving the asymptotic relation for the case p ≥ 1.

Motivated by Choe–Koo–Yi’s result they tried to prove the following nice
result:

Theorem 1. Let 0 < p, q ≤ ∞ 0 < s <∞ and k ∈ N. If u ∈ H(B), then

‖u‖p,q,s ³ |u(0)|+
∑

|α|=k

‖T αu‖p,q,s+k. (1)

However, their proof of Theorem 1 is not true when q ∈ (0, 1) and k is odd.
They assert that Propositions 3.8 and 3.9 in [16] are true for all q ∈ (0,∞]
and that their proofs are exactly the same as the proofs of [15, Propositions 3.1
and 3.2]. Unfortunately, this is also not true. More specifically, in the proof
of Proposition 3.1 on page 64, they use Bocher’s Theorem 1 in [3], which was
proved for analytic functions on the unit ball in C

n (moreover, on circular
domains). Further, Hardy–Littlwood’s maximal theorem (see [15, p. 66]) for
the case of harmonic functions on the unit ball holds only when q > 1, unlike
the case of analytic functions in the unit ball of C

n. Beside that the standard
trick of using the slice functions gζ(λ) = g(λζ), where λ ∈ C and ζ ∈ ∂B,

cannot be applied for the case of harmonic functions.

Probably the biggest mistake in [16] appears in the proof of Theorem 3.10
where Ren and Kähler use the fact that the integral means Mq(u, r) of har-
monic functions are nondecreasing. Unfortunately, if q ∈ (0, 1) this is also
not true causing several steps in the proof of Theorem 3.10 to be incorrect.

For example, it is well known that the Poisson kernel u(x) = P (x, ζ) = 1−|x|2

|x−ζ|n

where ζ ∈ S is fixed, is a harmonic function on B satisfying the condition
limr→1

∫

S
|u(rζ)|pdσN(ζ) = 0.

Another property which is specific for the case p ∈ (0, 1) is a kind of
subharmonicity. We say that a locally integrable function f on B possesses
HL-property with a constant c > 0 if

f(a) ≤
c

rn

∫

B(a,r)

f(x)dV (x) whenever B(a, r) ⊂ B.
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For example, every subharmonic function ([11]) possesses HL-property with
c = 1

vn
. In [10] Hardy and Littlewood proved that |u|p, when p > 0 and n = 2,

also possesses HL-property whenever u is a harmonic function in B. In the case
n ≥ 3 a generalization was made by Fefferman and Stein [6].

Using Fefferman–Stein’s result it follows that the estimate in [4, Lemma 2.2]
also holds when p ∈ (0, 1). Namely, the following result holds true:

Lemma 1. Let p ∈ (0,∞) and α be a multi-index. Suppose u is harmonic on
a proper open subset G of R

n. Then, we have

|∂αu(x)|p ≤
C

dn+p|α|(x, ∂G)

∫

G

|u(y)|pdV (y) (x ∈ G),

where d(x, ∂G) denotes the distance from x to the boundary ∂G. The constant C

depends only on n, p and α.

Mixed norm spaces and weighted Bergman spaces of analytic or harmonic
functions of one or several variables have been studied extensively. For closely
related results to Theorem A and Theorem 1, see, for example, [2, 4, 5], [7]–[10],
[14], [17]–[25] and the references therein.

The organization of the paper is as follows: In Section 2 we formulate and
prove two auxiliary results, which we use in the proof of Theorem 1. The main
result of this paper (Theorem 1) is proved in Section 3.

We have to say that throughout the rest of the paper C will denote a
constant not necessarily the same at each occurrence.

2. Auxiliary results

In this section we give two auxiliary results which we use in the proof of Theorem
1 in the next section. The following lemma was proved in [4, Lemma 5.1]:

Lemma 2. Given an integer m ≥ 1, there is a smooth differential operator Em

of order 2m− 1 with bounded coefficients such that

R2mu =

(

−
∑

i<j

T 2
ij

)m

u+ Emu

for functions u harmonic on B.

The next lemma is a generalization of Proposition 5.1 in [4].

Lemma 3. Let 0 < p, q ≤ ∞, ε ∈ (0, 1) and m be a positive integer. Then

there is a positive constant C = C(p, q, ε,m) such that

sup
|x|≤r

|u(x)− u(0)| ≤ C
∑

|α|=m

‖T αu‖p,q,s+m (2)

whenever 0 < r < 1− ε and u is harmonic on B.
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Proof. From the proof of Proposition 5.1 in [4] we have that there is a positive
constant C independent of u such that

|u(x)− u(0)| ≤ C sup
η∈Sr

∑

i<j

|Tiju(η)| = C sup
η∈Sr

∑

|α|=1

|T αu(η)| (3)

for every x ∈ Sr. Applying (3) to the harmonic function Ti1j1u and using the
fact Ti1j1u(0) = 0 we obtain

|Ti1j1u(x)| ≤ C sup
η∈Sr

∑

|α|=1

|T αTi1j1u(η)| ≤ sup
η∈Sr

∑

|α|=2

|T αu(η)|,

for every x ∈ Sr and every 1 ≤ i1 < j1 ≤ n. Continuing this process it follows
that, for every m ∈ N, there is a positive constant C independent of u such that
|u(x)−u(0)| ≤ C supη∈Sr

∑

|α|=m |T
αu(η)| for every x ∈ Sr. Using the maximum

principle and Lemma 3.3 in [16] (with k = 1, α→ s+m and f = T αu), it follows
that

sup
rB
|u(x)− u(0)| ≤ C sup

η∈Sr

∑

|α|=m

|T αu(η)|

≤ C sup
w∈rB

∑

|α|=m

|T αu(w)|

≤ C(p, q, ε,m)
∑

|α|=m

‖T αu‖p,q,s+m.

3. Proof of the main result

In this section we prove the main result in this paper.

Proof of Theorem 1. Let α be a multi-index of order k. Then by Theorem A
and the definition of tangential derivatives we have that

‖T αu‖p,q,s+k ≤ C
∑

1≤|α|≤k

‖∂αu‖p,q,s+k ≤ C
∑

1≤|α|≤k

‖∂αu‖p,q,s+|α| ≤ C‖u‖p,q,s .

From this and [16, Lemma 3.3], it follows that

|u(0)|+
∑

|α|=k

‖T αu‖p,q,s+k ≤ C‖u‖p,q,s. (4)

Now we prove that there is a constant C such that

‖u‖p,q,s ≤ C

(

|u(0)|+
∑

|α|=k

‖T αu‖p,q,s+k

)

.
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Let Tij be any tangential differential operator and |α| = 2m− 1. Then, by
Theorem A applied to the function T αu, we have

‖(1− |x|)2mTijT
αu‖p,q,s ≤ C‖(1− |x|)∇T αu(1− |x|)2m−1‖p,q,s

≤ C‖(1− |x|)2m−1T αu‖p,q,s

which implies that
∑

|α|=2m

‖T αu‖p,q,s+2m ≤ C
∑

|α|=2m−1

‖T αu‖p,q,s+2m−1. (5)

Let Em be the differential operator in Lemma 2. Then, we have

‖R2mu‖p,q,s+2m ≤ C

(

∑

|α|=2m

‖T αu‖p,q,s+2m + ‖(1− |x|)2mEmu‖p,q,s

)

. (6)

Let δ ∈ (0, 1). Then by Theorem A we have

(
∫ 1

1−δ

Mp
q (Emu, r)(1− r2)p(s+2m)−1dr

)

1

p

≤ Cδ‖(1− |x|)2m−1Emu‖p,q,s

≤ C1δ‖u‖p,q,s.

(7)

On the other hand, by Lemma 1 and Lemma 3, we have

(
∫ 1−δ

0

Mp
q (Emu, r)(1− r2)p(s+2m)−1dr

)

1

p

≤ C sup
|x|<1−δ

|(1− |x|)2m−1Emu(x)|

≤ C sup
|x|<1−δ/2

|u(x)|

≤ C

(

|u(0)|+
∑

|α|=2m

‖T αu‖p,q,s+2m

)

.

(8)

From (7) and (8), it follows that

‖(1− |x|)2mEmu‖p,q,s ≤ C

(

|u(0)|+
∑

|α|=2m

‖T αu‖p,q,s+2m

)

+ C1δ‖u‖p,q,s, (9)

for some C1 independent of δ. Since |u(0)|+‖R2mu‖p,q,s+2m ³ ‖u‖p,q,s and from
(6) and (9), it follows that

‖u‖p,q,s ≤ C

(

|u(0)|+
∑

|α|=2m

‖T αu‖p,q,s+2m

)

+ Cδ‖u‖p,q,s. (10)

Taking in (10) δ sufficiently small we obtain the result, for k even. If k is odd
then the result follows from (4), (5) and the asymptotics (1) for k even, finishing
the proof of the theorem for the case p ∈ (0,∞). The proof in the case p = ∞
is simpler and is omitted.
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[21] Stević, S., Weighted integrals of holomorphic functions on the polydisk.
Z. Anal. Anw. 23 (2004), 577 – 587.
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