Linear q-Difference Equations

M. H. Abu Risha, M. H. Annaby, M. E. H. Ismail and Z. S. Mansour

Abstract. We prove that a linear q-difference equation of order n has a fundamental set of n-linearly independent solutions. A q-type Wronskian is derived for the n-th order case extending the results of Swarttouw–Meijer (1994) in the regular case. Fundamental systems of solutions are constructed for the n-th order linear q-difference equation with constant coefficients. A basic analog of the method of variation of parameters is established.

Keywords. q-Difference equations, q-Wronskian, q-type Liouville's formula **Mathematics Subject Classification (2000).** Primary 39A13, secondary 15A03, 34A30

1. Introduction and basic definitions

In the following, q is a positive number, 0 < q < 1, and I is an open interval containing zero. Now we state the basic definitions used in this article, cf. [4, 9]. Then we introduce a brief account about the q-calculus established in [3]. Let $n \in \mathbb{N}$. The q-shifted factorial $(a;q)_n$ of $a \in \mathbb{C}$ is defined by

$$(a;q)_0 := 1$$
 and, for $n > 0$, $(a;q)_n := \prod_{k=1}^n (1 - aq^{k-1})$.

The multiple q-shifted factorial for complex numbers a_1, \ldots, a_k is defined by

$$(a_1, a_2, \dots, a_k; q)_n := \prod_{j=1}^k (a_j; q)_n.$$

M. H. Abu Risha, M. H. Annaby, Z. S. Mansour: Department of Mathematics, Cairo University, Faculty of Science, Giza, Egypt;

moemenha@yahoo.com, mhannaby@yahoo.com, zeinabs98@hotmail.com

M. E. H. Ismail: Department of Mathematics, University of Central Florida, Orlando, Florida 33620-5700; ismail@math.ucf.edu

The limit $\lim_{n\to\infty} (a;q)_n$ exists and is denoted by $(a;q)_{\infty}$. The third type of the q-Bessel functions of Jackson of order ν is defined to be, see [10],

$$J_{\nu}^{(3)}(x;q) = x^{\nu} \frac{(q^{\nu+1};q)_{\infty}}{(q;q)_{\infty}} \sum_{n=0}^{\infty} (-1)^n q^{\frac{n(n+1)}{2}} \frac{x^{2n}}{(q;q)_n (q^{\nu+1};q)_n}.$$

We denote this function by $J_{\nu}(x;q)$ instead of $J_{\nu}^{(3)}(x;q)$ for simplicity. In some literature this function is called the Hahn–Exton q-Bessel function, see [12, 14]. The functions $\cos_q x$ and $\sin_q x$ are defined for $x \in \mathbb{C}$, |x|(1-q) < 1, by

$$\cos_q x := \sum_{n=0}^{\infty} (-1)^n \frac{\left(x(1-q)\right)^{2n}}{(q;q)_{2n}}$$
$$\sin_q x := \sum_{n=0}^{\infty} (-1)^n \frac{\left(x(1-q)\right)^{2n+1}}{(q;q)_{2n+1}}.$$

The functions $\cos(x;q)$ and $\sin(x;q)$ are defined in \mathbb{C} by

$$\cos(x;q) := \sum_{n=0}^{\infty} (-1)^n \frac{q^{n^2} (x(1-q))^{2n}}{(q;q)_{2n}}$$
$$\sin(x;q) := \sum_{n=0}^{\infty} (-1)^n \frac{q^{n(n+1)} (x(1-q))^{2n+1}}{(q;q)_{2n+1}},$$

and they are q-analogs of the sine and cosine functions, [4, 9]. See also [1, 2], [5]–[7] for a study of the zeros and completeness of q-trigonometric and q-Bessel systems.

Let $\mu \in \mathbb{R}$ be fixed . A set $A \subseteq \mathbb{R}$ is called a μ -geometric set if for $x \in A$, $\mu x \in A$. Now, we define the q-difference operator of Heine. Let f be a function defined on a q-geometric set $A \subseteq \mathbb{R}$. The q-difference operator is defined by the formula

$$D_q f(x) := \frac{f(x) - f(qx)}{x - ax}, \quad x \in A \setminus \{0\}.$$

If $0 \in A$, we say that f has q-derivative at zero if the limit

$$\lim_{n \to \infty} \frac{f(xq^n) - f(0)}{xq^n}, \quad x \in A$$

exists and does not depend on x. In this case, we shall denote this limit by $D_q f(0)$. In some literature the q-derivative at zero is defined to be f'(0) if it exists, cf. [12, 14], but the above definition is more suitable for our approach. The non-symmetric Leibniz' rule

$$D_{a}(fg)(x) = g(x)D_{a}f(x) + f(qx)D_{a}g(x)$$
(1.1)

holds. Relation (1.1) can be symmetrized using the relation $f(qx) = f(x) - x(1-q)D_q f(x)$, giving the additional term $-x(1-q)D_q f(x)D_q g(x)$. The q-integration of F. H. Jackson [11] is defined for a function f defined on a q-geometric set A to be f^b f^a

 $\int_{a}^{b} f(t) d_{q}t = \int_{0}^{b} f(t) d_{q}t - \int_{0}^{a} f(t) d_{q}t, \quad a, b \in A,$

where

$$\int_0^x f(t) \, d_q t = \sum_{n=0}^\infty x q^n (1-q) f(x q^n), \quad x \in A,$$
(1.2)

provided that the series converge.

Theorem 1.1 ([3]). The q-integral (1.2) exists only if $\lim_{k\to\infty} xq^k f(xq^k) = 0$.

Consider the non-homogeneous q-difference equation of order n

$$a_0(x)D_q^n y(x) + a_1(x)D_q^{n-1} y(x) + \dots + a_n(x)y(x) = b(x), \quad x \in I,$$
 (1.3)

for which a_i , $0 \le i \le n$, and b are continuous at zero functions defined on I and $a_0(x) \ne 0$ for all $x \in I$. Equation (1.3) together with the initial conditions

$$D_q^{i-1}y(0) = b_i, \quad b_i \in \mathbb{C}, \ i = 1, \dots, n,$$
 (1.4)

form a q-type Cauchy problem. By a solution of problem (1.3)–(1.4), we mean a continuous at zero function which satisfies (1.3) subject to the initial conditions (1.4). According to [3], there exists a unique solution of (1.3)–(1.4) in a subinterval J of I, J = [-h, h], h > 0. In the next section, we shall study the n-th order homogeneous linear equation

$$a_0(x)D_q^n y(x) + a_1(x)D_q^{n-1} y(x) + \dots + a_n(x)y(x) = 0, \quad x \in I.$$
 (1.5)

A fundamental set of solutions for (1.5) when the coefficients are constants is derived in §2. In §3, a q-type Wronskian for the solutions of (1.5) is introduced and it is proved that it satisfies a first order q-difference equation and its solution is given. This extends the results of Swarttouw–Meijer [15] in the regular case. As applications, a formula for a solution of (1.3) in terms of a fundamental set of solutions of (1.5) will be given in §4 by using a q-analog of the method of variation of parameters.

2. Linear homogeneous q-difference equations

Let M denote the set of solutions of (1.5) valid in a subset $J \subseteq I$ which contains zero. Then it is easy to see that M is a linear space over \mathbb{C} . Also from the existence and uniqueness of the solutions, cf. [3], if $\phi \in M$ and $D_q^i \phi(0) = 0$, $0 \le i \le n-1$, then $\phi(x) \equiv 0$ on J. Moreover, cf. [3], $\{D_q^i \phi\}_{i=0}^{n-1}$, $0 \le i \le n-1$, are continuous at zero for any $\phi \in M$. A set of n solutions of (1.5) is said to

be a fundamental set (f.s.) for (1.5) valid in J or a f.s. of M if it is linearly independent in J. Moreover, as in differential equations, if b_{ij} , $1 \le i, j \le n$, are numbers, and, for each j, ϕ_j is the unique solution of (1.5) which satisfies the initial conditions

$$D_q^{i-1}\phi_j(0) = b_{ij}, \quad 1 \le i \le n,$$

then $\{\phi_j\}_{j=1}^n$ is a f.s. of (1.5) if and only if $\det(b_{ij}) \neq 0$. Hence M is a linear space of dimension n. In the following we are concerned with constructing a f.s. for (1.5) when it has constant coefficients, a_r , $0 \leqslant r \leqslant n$. Set $L := a_0 D_q^n + a_1 D_q^{n-1} + \cdots + a_n$. Then, (1.5) can be written as

$$Ly(x) = a_0 D_q^n y(x) + a_1 D_q^{n-1} y(x) + \dots + a_n y(x) = 0.$$
 (2.1)

The characteristic polynomial $P(\lambda)$ of (2.1) is defined by

$$P(\lambda) = a_0 \lambda^n + a_1 \lambda^{n-1} + \dots + a_n, \quad \lambda \in \mathbb{C}.$$

Let λ_i , $1 \leq i \leq k$, denote the distinct roots of $P(\lambda)$ and m_i denotes the multiplicity of λ_i , so that $\sum_{i=1}^k m_i = n$. Corresponding to each λ_i we define an m_i -dimensional subspace M_i by

$$M_i = \{ v \in M : (D_q - \lambda_i)^{m_i} v = 0 \}.$$

The construction of a f.s. of (2.1) depends on the fact that, cf. [13],

$$M = M_1 \oplus \cdots \oplus M_k. \tag{2.2}$$

Lemma 2.1. Let (X, \mathbb{K}) be a vector space, and let T be a linear operator on X. For any $\lambda \in \mathbb{K}$, if there exist $y_0, y_1, \ldots, y_{m-1}$ in X such that

$$Ty_0 = \lambda y_0,$$
 $y_0 \neq 0$
 $Ty_i = \lambda y_i + y_{i-1},$ $1 \leq i \leq m-1,$

then y_1, \ldots, y_{m-1} are linearly independent.

Proof. By induction on
$$i, 0 \le i \le m-1$$
.

Lemma 2.2. If $\lambda_i \neq 0$, then the initial value problem

$$D_q \phi_{0,i} = \lambda_i \phi_{0,i}, \qquad \phi_{0,i}(0) = 1, r$$

$$D_q \phi_{r,i} = \lambda_i \phi_{r,i} + \phi_{r-1,i}, \qquad \phi_{r,i}(0) = 0, \quad r = 1, \dots, m_i - 1,$$

has the solution

$$\phi_{r,i}(x) = \begin{cases} e_q(\lambda_i x) := \sum_{k=0}^{\infty} \frac{(\lambda_i x (1-q))^k}{(q;q)_k}, & r = 0\\ \frac{1}{\lambda_i^r} \sum_{k=r}^{\infty} \frac{k(k-1)\cdots(k-r+1)}{r!} \frac{(\lambda_i x (1-q))^k}{(q;q)_k}, & r = 1, 2, \dots, m_i - 1, \end{cases}$$
(2.3)

which is valid for $|x| < \frac{1}{\lambda_i(1-q)}$. If $\lambda_i = 0$, then

$$\phi_{r,i}(x) = \frac{x^r (1-q)^r}{(q;q)_r}, \quad r = 0, 1, \dots, m_i - 1.$$
(2.4)

Proof. The proof follows by direct computations.

One can see that $(D_q - \lambda_i)^{m_i} \phi_{r,i} = 0$, $r = 0, 1, \ldots, m_i - 1$. Thus, $\phi_{r,i} \in M_i$, for $r = 0, 1, \ldots, m_i - 1$. Therefore, these functions form a basis for M_i since they are linearly independent by Lemma 2.1. This fact and (2.2) above imply the following theorem.

Theorem 2.3. The set $\{\phi_{i,r}\}_{r=0}^{m_i-1}$ of (2.3) when $\lambda_i \neq 0$ or of (2.4) when $\lambda_i = 0$ is a linearly independent set of solutions of (2.1). Moreover, $\bigcup_{i=1}^k \{\phi_{i,r}\}_{r=0}^{m_i-1}$ is a fundamental set of solutions of (2.1).

Example 2.4. The q-difference equation

$$D_q^3 y(x) - 4D_q^2 y(x) + 5D_q y(x) - 2y(x) = 0,$$

has the functions $e_q(2x)$, $e_q(x)$ and $\sum_{k=1}^{\infty} k \frac{(x(1-q))^k}{(q;q)_k}$ as a f.s..

3. A q-type Wronskian

This section contains a q-analog of the Wronskian of linear differential equations, we prove that the q-analog satisfies a first order q-difference equation and we derive its solution. We also derive a q-type Liouville's formula for the q-Wronskian.

Definition 3.1. Let y_i , $1 \le i \le n$, be functions defined on a q-geometric set A. The q-Wronskian of the functions y_i which will be denoted by $W_q(y_1, \ldots, y_n)(x)$ is defined to be

$$W_{q}(y_{1},...,y_{n})(x) := \begin{vmatrix} y_{1}(x) & \cdots & y_{n}(x) \\ D_{q}y_{1}(x) & \cdots & D_{q}y_{n}(x) \\ \vdots & \ddots & \vdots \\ D_{q}^{n-1}y_{1}(x) & \cdots & D_{q}^{n-1}y_{n}(x) \end{vmatrix},$$

provided that the derivatives exist in I. For convenience we write $W_q(x)$ instead of $W_q(y_1, \ldots, y_n)(x)$.

Lemma 3.2. Let y_1, \ldots, y_n be functions defined on a q-geometric set A. Then for any $x \in A$, $x \neq 0$,

$$D_{q}W_{q}(y_{1}, y_{2}, \dots, y_{n})(x) = \begin{vmatrix} y_{1}(qx) & y_{2}(qx) & \cdots & y_{n}(qx) \\ (D_{q}y_{1})(qx) & (D_{q}y_{2})(qx) & \cdots & (D_{q}y_{n})(qx) \\ \vdots & \vdots & \ddots & \vdots \\ (D_{q}^{n-2}y_{1})(qx) & (D_{q}^{n-2}y_{2})(qx) & \cdots & (D_{q}^{n-2}y_{n})(qx) \\ D_{q}^{n}y_{1}(x) & D_{q}^{n}y_{2}(x) & \cdots & D_{q}^{n}y_{n}(x) \end{vmatrix}.$$
 (3.1)

Proof. We prove the lemma by induction on n. The lemma is trivial when n = 1. Assume that (3.1) holds at $k \in \mathbb{N}$, $k \ge 1$, then expanding $W_q(y_1, y_2, \dots, y_{k+1})$ in terms of the first row we obtain

$$W_q(y_1, y_2, \dots, y_{k+1})(x) = \sum_{j=1}^{k+1} (-1)^{j+1} y_j(x) W_q^{(j)}(x),$$

where

$$W_q^{(j)} := \begin{cases} W_q(D_q y_2, \dots, D_q y_{k+1}), & j = 1 \\ W_q(D_q y_1, \dots, D_q y_{j-1}, D_q y_{j+1}, \dots, D_q y_{k+1}), & 1 \leqslant j \leqslant k+1 \\ W_q(D_q y_1, \dots, D_q y_k), & j = k+1. \end{cases}$$

Consequently, from (1.1),

$$D_q W_q(y_1, y_2, \dots, y_{k+1})(x)$$

$$= \sum_{j=1}^{k+1} (-1)^{j+1} D_q y_j(x) W_q^{(j)}(x) + \sum_{j=1}^{k+1} (-1)^{j+1} y_j(qx) D_q W_q^{(j)}(x).$$

Now

$$\sum_{j=1}^{k+1} (-1)^{j+1} D_q y_j(x) W_q^{(j)}(x) = \begin{bmatrix} D_q y_1(x) & \cdots & D_q y_{k+1}(x) \\ D_q y_1(x) & \cdots & D_q y_{k+1}(x) \\ D_q^2 y_1(x) & \cdots & D_q^2 y_{k+1}(x) \\ \vdots & \ddots & \vdots \\ D_q^{k-1} y_1(x) & \cdots & D_q^{k-1} y_{k+1}(x) \\ D_q^k y_1(x) & \cdots & D_q^k y_{k+1}(x) \end{bmatrix} = 0,$$

and from the induction hypothesis,

$$\sum_{j=1}^{k+1} (-1)^{j+1} y_j(qx) D_q W_q^{(j)}(x) = \sum_{j=1}^{k+1} (-1)^{j+1} y_j(qx) \times
\begin{vmatrix}
(D_q y_1)(qx) & \cdots & (D_q y_{j-1})(qx) & (D_q y_{j+1})(qx) & \cdots & (D_q y_{k+1})(qx) \\
(D_q^2 y_1)(qx) & \cdots & (D_q^2 y_{j-1})(qx) & (D_q^2 y_{j+1})(qx) & \cdots & (D_q^2 y_{k+1})(qx) \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
(D_q^{k-1} y_1)(qx) & \cdots & (D_q^{k-1} y_{j-1})(qx) & D_q^{k-1} y_{j+1}(qx) & \cdots & D_q^{k-1} y_{k+1}(x)(qx) \\
D_q^{k+1} y_1(x) & \cdots & D_q^{k+1} y_{j-1}(x) & D_q^{k+1} y_{j+1}(x) & \cdots & D_q^{k+1} y_{k+1}(x)
\end{vmatrix}, (3.2)$$

where when i = 1 the determinant of (3.2) starts with $D_q y_2(qx)$ and when j = k + 1, the determinant ends with $D_q^{k+1} y_k(x)$. Thus

$$\sum_{j=1}^{k+1} (-1)^{j+1} y_j(qx) D_q W_q^{(j)}(x) = \begin{bmatrix} y_1(qx) & \cdots & y_{k+1}(qx) \\ (D_q y_1)(qx) & \cdots & (D_q y_{k+1})(qx) \\ (D_q^2 y_1)(qx) & \cdots & (D_q^2 y_{k+1})(qx) \\ \vdots & \ddots & \vdots \\ (D_q^{k-1} y_1)(qx) & \cdots & (D_q^{k-1} y_{k+1})(qx) \\ D_q^{k+1} y_1(x) & \cdots & D_q^{k+1} y_{k+1}(x) \end{bmatrix},$$

proving (3.1) for n = k + 1 and hence all $k \in \mathbb{N}$.

Theorem 3.3. If $y_1, y_2, ..., y_n$ are solutions of (1.5) in $J \subseteq I$, then their q-Wronskian satisfies the first order q-difference equation

$$D_q W_q(x) = -R(x) W_q(x), \quad x \in J \setminus \{0\}$$

$$R(x) = \sum_{k=0}^{n-1} (x - qx)^k \frac{a_{k+1}(x)}{a_0(x)}.$$
(3.3)

Proof. From the definition of the operator D_q , we have

$$(D_q^m y)(qx) = D_q^m y(x) - x(1-q)D_q^{m+1} y(x), \quad m \in \mathbb{N}.$$

Substituting in (3.1) yields

$$D_{q}W_{q}(y_{1},...,y_{n})(x)$$

$$= \begin{vmatrix} y_{1}(x) - x(1-q)D_{q}y_{1}(x) & \cdots & y_{n}(x) - x(1-q)D_{q}y_{n}(x) \\ D_{q}y_{1}(x) - x(1-q)D_{q}^{2}y_{1}(x) & \cdots & D_{q}y_{n}(x) - x(1-q)D_{q}^{2}y_{n}(x) \\ \vdots & \ddots & \vdots \\ D_{q}^{n-2}y_{1}(x) - x(1-q)D_{q}^{n-1}y_{1}(x) & \cdots & D_{q}^{n-2}y_{n}(x) - x(1-q)D_{q}^{n-1}y_{n}(x) \\ D_{q}^{n}y_{1}(x) & \cdots & D_{q}^{n}y_{n}(x) \end{vmatrix}.$$

We shall prove by induction on n that

$$D_qW_q(y_1,\ldots,y_n)(x)$$

$$= \sum_{k=1}^{n} (-1)^{k-1} (x - qx)^{k-1} \begin{vmatrix} y_1(x) & \cdots & y_n(x) \\ D_q y_1(x) & \cdots & D_q y_n(x) \\ \vdots & \ddots & \vdots \\ D_q^{n-k-1} y_1(x) & \cdots & D_q^{n-k-1} y_n(x) \\ D_q^{n-k+1} y_1(x) & \cdots & D_q^{n-k+1} y_n(x) \\ \vdots & \ddots & \vdots \\ D_q^n y_1(x) & \cdots & D_q^n y_n(x) \end{vmatrix} .$$
(3.4)

If (3.4) holds at n=m, then

$$D_q W_q(y_1, y_2, \dots, y_{m+1})(x) = \sum_{j=1}^{m+1} (-1)^{j+1} (y_j(x) - x(1-q)D_q y_j(x)) A_{1j},$$

where

$$A_{1j} = D_a W_a (D_a y_1, \dots, D_a y_{j-1}, D_a y_{j+1}, \dots, D_a y_{m+1}), \quad j = 1, 2, \dots, m.$$

Hence from the previous hypothesis we obtain

$$D_{q}W_{q}(y_{1}, y_{2}, \dots, y_{m+1})(x)$$

$$= \sum_{j=1}^{m+1} (-1)^{j+1} (y_{j}(x) - x(1-q)D_{q}y_{j}(x)) \sum_{k=1}^{m} (-1)^{k-1} (x(1-q))^{k-1} B_{jk}$$

$$= \sum_{k=1}^{m} (-1)^{k-1} (x(1-q))^{k-1} \sum_{j=1}^{m+1} (-1)^{j+1} y_{j}(x) B_{jk}$$

$$+ \sum_{k=1}^{m} (-1)^{k} (x(1-q))^{k} \sum_{j=1}^{m+1} (-1)^{j+1} D_{q}y_{j}(x) B_{jk},$$

with

$$B_{jk} := \begin{vmatrix} D_q y_1(x) & \cdots & D_q y_{j-1}(x) & D_q y_j(x) & \cdots & D_q y_{m+1}(x) \\ D_q^2 y_1(x) & \cdots & D_q^2 y_{j-1}(x)(x) & D_q^2 y_j(x) & \cdots & D_q^2 y_{m+1}(x) \\ \vdots & \ddots & \vdots & & \vdots & \ddots & \vdots \\ D_q^{m-k} y_1(x) & \cdots & D_q^{m-k} y_{j-1}(x) & D_q^{m-k} y_j(x) & \cdots & D_q^{m-k} y_{m+1}(x) \\ D_q^{m-k+2} y_1(x) & \cdots & D_q^{m-k+2} y_{j-1}(x) & D_q^{m+k+1} y_{j+1}(x) & \cdots & D_q^{m+k+1} y_{m+1}(x) \\ \vdots & \ddots & \vdots & & \vdots & \ddots & \vdots \\ D_q^{m+1} y_1(x) & \cdots & D_q^{m+1} y_{j-1}(x) & D_q^{m+1} y_{j+1}(x) & \cdots & D_q^{m+1} y_{m+1}(x) \end{vmatrix},$$

k = 1, 2, ..., m, where when j = 1 the determinant B_{1k} start with $D_q y_2(x)$ and when j = m + 1, the determinant $B_{(m+1)k}$ ends with $D_q^{m+1} y_m(x)$. From the properties of the determinants we conclude that

$$\sum_{j=1}^{m+1} (-1)^{j+1} y_j(x) B_{jk} = \begin{vmatrix} y_1(x) & \cdots & y_{m+1}(x) \\ D_q y_1(x) & \cdots & D_q y_{m+1}(x) \\ \vdots & \ddots & \vdots \\ D_q^{m-k} y_1(x) & \cdots & D_q^{m-k} y_{m+1}(x) \\ D_q^{m-k+2} y_1(x) & \cdots & D_q^{m-k+2} y_{m+1}(x) \\ \vdots & \ddots & \vdots \\ D_q^{m+1} y_1(x) & \cdots & D_q^{m+1} y_{m+1}(x) \end{vmatrix}$$
(3.5)

$$\sum_{j=1}^{m+1} (-1)^{j+1} D_q y_j(x) B_{jk} = 0, \quad \text{for } k = 1, 2, \dots, m-1,$$
(3.6)

and

$$\sum_{j=1}^{m+1} (-1)^{j+1} D_q y_j(x) B_{jm} = \begin{vmatrix} D_q y_1(x) & \cdots & D_q y_{m+1}(x) \\ D_q^2 y_1(x) & \cdots & D_q^2 y_{m+1}(x) \\ \vdots & \ddots & \vdots \\ D_q^{m+1} y_1(x) & \cdots & D_q^{m+1} y_{m+1}(x) \end{vmatrix}.$$
(3.7)

Combining equations (3.5)–(3.7) with (3), we obtain (3.4) when n = m+1. One can easily see that (3.4) holds at n = 1. Consequently it holds for all $n \in \mathbb{N}$. From (1.5), we have

$$D_q^n y_j(x) = -\sum_{i=1}^{i=n} \frac{a_i(x)}{a_0(x)} D_q^{n-i} y_j(x), \quad j = 1, 2, \dots, n.$$

Then (3.4) is nothing but

$$D_q W_q(x) = -\left[\sum_{k=0}^{k=n-1} (x - qx)^k \frac{a_{k+1}(x)}{a_0(x)}\right] W_q(x) = -R(x) W_q(x).$$

This completes the proof of the theorem.

The next theorem gives a q-type Liouville's formula for the q-Wronskian.

Theorem 3.4. Let $x(1-q)R(x) \neq -1$ for all $x \in J$. Then the q-Wronskian of any set of solutions $\{\phi_i\}_{i=1}^n$ of equation (1.5) is given by

$$W_{q}(x) = W_{q}(\phi_{1}, \dots, \phi_{n})(x)$$

$$= \frac{1}{\prod_{k=0}^{\infty} (1 + x(1 - q)q^{k}R(xq^{k}))} W_{q}(0), \quad x \in J.$$
(3.8)

Proof. Equation (3.3) is

$$\frac{W_q(x) - W_q(qx)}{x - qx} = -R(x)W_q(x), \ x \neq 0,$$

i.e., $W_q(x)-W_q(qx)=-x(1-q)R(x)W_q(x)$. Hence, under the assumption $1+x(1-q)R(x)\neq 0$, we obtain $W_q(x)=\frac{W_q(qx)}{1+x(1-q)R(x)}$. Therefore,

$$W_q(x) = \frac{W_q(xq^{m+1})}{\prod_{k=0}^m \left(1 + x(1-q)q^k R(xq^k)\right)}, \quad \text{for all } m \in \mathbb{N} \text{ and } x \in I.$$

Since all functions $\frac{a_j}{a_0}$ are continuous at zero, then $\sum_{k=0}^{\infty} q^k |R(xq^k)|$ is convergent. Consequently, $\prod_{k=0}^{\infty} \left(1 + x(1-q)q^k R(xq^k)\right)$ converges for every $x \in I$. Thus, using the continuity of $W_q(x)$ at zero, (3.8) follows.

Corollary 3.5. Let $\{\phi_i\}_{i=1}^n$ be a set of solutions of (1.5) in some subinterval J of I which contains zero. Then $W_q(x)$ is either never zero or identically zero in I. The first case occurs when $\{\phi_i\}_{i=1}^n$ is a fundamental set of (1.5) and the second when it is not.

Proof. A set of solutions $\{\phi_i\}_{i=1}^n$ forms a f.s. of (1.5) if and only if

$$W_q(0) = \det \left(D_q^{i-1} \phi_j(0) \right)_{i,j=1}^n \neq 0,$$

cf. [3]. This proves the corollary since from Theorem 3.4, $W_q(x) \neq 0$ for all $x \in J$ if and only if $W_q(0) \neq 0$.

Example 3.6. In this example we calculate the q-Wronskian of

$$\frac{-1}{q}D_{q^{-1}}D_q y(x) + y(x) = 0, \quad x \in \mathbb{R}.$$
 (3.9)

The solutions of (3.9) subject to the initial conditions

$$y(0) = 0, D_q y(0) = 1$$
 and $y(0) = 1, D_q y(0) = 0,$

are $\sin(x;q)$, $\cos(x;q)$, $x \in \mathbb{R}$, respectively. Since (3.9) can be written as

$$D_q^2 y(x) + qx(1-q)D_q y(x) - qy(x) = 0.$$

Then $a_0(x) \equiv 1$, $a_1(x) = qx(1-q)$ and $a_2(x) = -q$. Thus $R(x) \equiv 0$ on \mathbb{R} and $W_q(x) \equiv W_q(0)$. But

$$W_q(0) = W_q \Big(\cos(\cdot; q), \sin(\cdot; q) \Big) (0)$$

= $\Big(\cos(x; q) \cos(\sqrt{q}x; q) + \sqrt{q} \sin(x; q) \sin(\sqrt{q}x; q) \Big) \Big|_{x=0}$
= 1.

Then, $W_q(x) \equiv 1$ for all $x \in \mathbb{R}$.

Example 3.7. We calculate the q-Wronskian of the solutions of the q-difference equations

$$-D_q^2 y(x) + y(x) = 0, \quad x \in \mathbb{R}.$$
 (3.10)

The functions $\sin_q x$, $\cos_q x$, |x|(1-q) < 1, are solutions of (3.10) subject to the initial conditions

$$y(0) = 0, D_a y(0) = 1$$
 and $y(0) = 1, D_a y(0) = 0$,

respectively. Here R(x) = x(1-q). So, $x(1-q)R(x) \neq -1$ for all x in \mathbb{R} . Hence,

$$W_q(x) = \frac{W_q(0)}{\prod_{n=0}^{\infty} (1 + q^{2n} \{ x(1-q) \}^2)}, \quad |x|(1-q) < 1.$$

But

$$W_q(0) = W_q(\cos_q, \sin_q)(0) = (\cos_q^2 x + \sin_q^2 x)|_{x=0} = 1.$$

Therefore,
$$W_q(x) \equiv \left(\prod_{n=0}^{\infty} (1 + q^{2n} \{x(1-q)\}^2)\right)^{-1}, |x|(1-q) < 1.$$

Remarks. 1. Theorem 3.3 might be satisfied for less restrictive conditions. But a general treatment needs a separate consideration. The q-Wronskian of (1.5) satisfies the first order q-difference equation (3.3) whatever the conditions which the functions a_j , $0 \le j \le n$ satisfy. But, in this case, the q-Wronskian can not be determined by using Theorem 3.4. An example of this case is the second order q-difference equation

$$qx^{2}(1-q)^{2}D_{q}^{2}y(x) + x(1-q)^{2}D_{q}y(x) + (x^{2}q^{2-\nu} + (1-q^{\nu})(1-q^{-\nu}))y(xq) = 0,$$

where $\nu > -1$, which has a f.s. $\{J_{\nu}(x;q^2), J_{-\nu}(xq^{-\nu};q^2)\}$ and it has been treated by R. F. Swarttouw and H. G. Meijer [15]. This class of problems may be considered as singular q-difference equations, while we are dealing with regular equations.

2. It is worthy to mention here that if equation (1.5) has the form

$$a_0(x)D_q^n y(x) + a_1(x)(D_q^{n-1})y(qx) + \dots + a_n(x)y(qx) = 0, \quad x \in I,$$
 (3.11)

then substituting with $D_q^n y(x) = -\sum_{j=1}^n \frac{a_j(x)}{a_0(x)} (D_q^{n-j}y)(qx)$ in (3.1) above we could derive a theory similar to that of the present section. In this case the associated q-Wronskian of solutions z_1, \ldots, z_n of (3.11) will satisfy the simplified first order q-difference equation

$$D_q W_q(x) = -\frac{a_1(x)}{a_0(x)} W_q(qx).$$

Consequently

$$W_q(x) = \prod_{k=0}^{\infty} \left(1 - xq^k (1 - q) \frac{a_1(xq^k)}{a_0(xq^k)} \right) W_q(0), \quad x \in J \setminus \{0\}.$$

Similar to differential equations if $a_1 \equiv 0$, then $W_q(x)$ is identically a constant. It should be noted that problems involving equation of the form (3.11) plays an important role in defining self adjoint eigenvalue problems, see e.g. [5, 8].

4. Applications

The theory introduced in the previous two sections can be used to obtain a general formula for the solutions of the inhomogeneous equation (1.3). Obviously, if ψ_1 and ψ_2 are two solutions of (1.3), then $\psi_1 - \psi_2$ is a solution of the corresponding homogeneous equation (1.5). Thus if ψ is a solution of (1.3) and $\{\phi_i\}_{i=1}^n$ is a f.s. for (1.5), then there are unique constants $\{c_i\}_{i=1}^n$ such that

$$\psi = c_1 \phi_1 + \dots + c_n \phi_n + \psi_0,$$

where ψ_0 is a particular solution of (1.3). Now, we introduce a q-analog of the method of variation of parameters to find a particular solution ψ_0 of (1.3). Here also the functions a_r and b are continuous at zero functions defined on I such that $a_0(x) \neq 0$ for all $x \in I$.

Theorem 4.1. Let $\{\phi_i\}_{i=1}^n$ be a fundamental set of (1.5) in J. Then, any solution ψ of (1.3) is given by

$$\psi(x) = \sum_{i=1}^{n} \left(c_i + \int_0^x \frac{W_{q,i}(\phi_1, \dots, \phi_n)(qt)}{W_q(\phi_1, \dots, \phi_n)(qt)} \cdot \frac{b(t)}{a_0(t)} d_q t \right) \phi_i(x), \tag{4.1}$$

where the c_i 's are constants and $W_{q,r}(\phi_1, \ldots, \phi_n)(x)$ is the determinant obtained from $W_q(\phi_1, \ldots, \phi_n)(x)$ by replacing the r-th column by $(0, \ldots, 0, 1)$.

Proof. Let ψ be a solution of (1.3). If ψ_0 is a particular solution of (1.3), then for some constants c_1, c_2, \ldots, c_n ,

$$\psi = \psi_0 + c_1 \phi_1 + \dots + c_n \phi_n,$$

where c_1, \ldots, c_n are constants. Assume that ψ_0 has the form

$$\psi_0(x) = u_1(x)\phi_1(x) + \dots + u_n(x)\phi_n(x),$$

where u_1, \ldots, u_n are functions satisfying the system

$$D_{q}u_{1}(x)\phi_{1}(qx) + \dots + D_{q}u_{n}(x)\phi_{n}(qx) = 0$$

$$D_{q}u_{1}(x)D_{q,qx}\phi_{1}(qx) + \dots + D_{q}u_{n}(x)D_{q,qx}\phi_{n}(qx) = 0$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$D_{q}u_{1}(x)D_{q,qx}^{n-2}\phi_{1}(qx) + \dots + D_{q}u_{n}(x)D_{q,qx}^{n-2}\phi_{n}(qx) = 0$$

$$D_{q}u_{1}(x)D_{q,qx}^{n-1}\phi_{1}(qx) + \dots + D_{q}u_{n}(x)D_{q,qx}^{n-1}\phi_{n}(qx) = \frac{b(x)}{a_{0}(x)}.$$

$$(4.2)$$

System (4.2) is an inhomogeneous linear system of equations in the n unknowns $\{D_q u_i\}_{i=1}^n$. The determinant of the coefficients is $W_q(\phi_1, \ldots, \phi_n)(qx) \neq 0$ since $\phi_r, 1 \leq r \leq n$, is a f.s. for (1.5). Hence (4.2) can be solved for the $D_q u_r$ and

$$D_q u_r(x) = \frac{W_{q,r}(\phi_1, \dots, \phi_n)(qx)}{W_q(\phi_1, \dots, \phi_n)(qx)} \cdot \frac{b(x)}{a_0(x)}, \quad r = 1, \dots, n.$$

Since $\frac{b}{a_0}$ is continuous at zero, then from Theorem 1.1 $D_q u_r$ is q-integrable on [0, x], for all $x \in J$. Thus, a suitable choice for $u_r(x)$ is

$$u_r(x) = \int_0^x \frac{W_{q,r}(\phi_1, \dots, \phi_n)(qt)}{W_q(\phi_1, \dots, \phi_n)(qt)} \cdot \frac{b(t)}{a_0(t)} d_q t,$$

and then ψ_0 has the form

$$\psi_0(x) = \sum_{i=1}^{n} \phi_i(x) \int_0^x \frac{W_{q,i}(\phi_1, \dots, \phi_n)(qt)}{W_q(\phi_1, \dots, \phi_n)(qt)} \cdot \frac{b(t)}{a_0(t)} d_q t,$$

proving formula (4.1).

Example 4.2. Consider the equation

$$-\frac{1}{q}D_{q^{-1}}D_qy(x) + y(x) = b(x), \tag{4.3}$$

where $b(\cdot)$ is a continuous function defined in \mathbb{R} . The corresponding homogeneous equation is

$$D_a^2 y(x) - qy(qx) = 0. (4.4)$$

A fundamental set of solutions of (4.4) is $\{\sin(x;q), \cos(x;q)\}$. Substituting in (4.1) and using $W_q(\sin(\cdot;q),\cos(\cdot;q))(x) \equiv -1$, every solution of (4.3) has the form

$$\psi(x) = c_1 \sin(x; q) + c_2 \cos(x; q) - q \int_0^x (\sin(x; q) \cos(qt; q) - \cos(x; q) \sin(qt; q)) b(qt) d_q t,$$

where $x \in \mathbb{R}$, c_1 and c_2 are arbitrary constants.

References

- Abreu, L. D. and Bustoz, J., On the Completeness of Sets of q-Bessel Functions.
 In: Theory and Applications of Special Functions (ded. to M. Rahman; eds.:
 M. E. H. Ismail et al.). Dev. Math. 13. New York: Springer 2005, pp. 29 38.
- [2] Abreu, L. D., Bustoz, J. and Caradoso, J. L., The roots of the third Jackson q-Bessel functions. *Int. J. Math. Math. Sci.* 67 (2003), 4241 4248.
- [3] Abu Risha, M. H., Annaby, M. H., Ismail, M. E. H. and Mansour, Z. S., Existence and uniqueness Theorems of q-difference equations (submitted).
- [4] Andrews, G. E., Askey, R. and Roy R., *Special Functions*. Cambridge: Cambridge Univ. Press 1999.
- [5] Annaby, M. H. and Mansour, Z. S., Basic Sturm liouville problems. *J. Phys.* A 38 (2005), 3775 3797. Corrigendum: *J. Phys.* A 39 (2006), 8747.
- [6] Annaby, M. H. and Mansour, Z. S., On the zeros of basic finite Hankel transforms. J. Math. Anal. Appl. 323 (2006), 1091 1103.
- [7] Bustoz, J. and Cardoso, J. L., Basic analog of Fourier series on a q-linear grid. J. Approx. Theory 112 (2001), 134 – 157. Erratum: J. Approx. Theory, 113 (2001), 326.

- [8] Exton, H., q-Hypergeometric Functions and Applications. Chichester: Ellis—Horwood 1983.
- [9] Gasper, G. and Rahman, M., *Basic Hypergeometric Series*. New York: Cambridge Univ. Press 1990.
- [10] Ismail, M. E. H., Basic Bessel functions and polynomials. SIAM J. Math. Anal. 12 (1981), 454 468.
- [11] Jackson, F. H., On q-definite integrals. Quart. J. Pure Appl. Math. 41 (1910), 193 203.
- [12] Koelink, H. T. and Swarttouw, R. F., On the zeros of the Hahn–Exton q-Bessel function and associated q-Lommel polynomials. J. Math. Anal. Appl. 186 (1994), 690 710.
- [13] Shilov, G. E., Linear Algebra. New York: Dover 1971.
- [14] Swarttouw, R. F., The Hahn-Exton q-Bessel Funktionen. PhD thesis. Delft: Technical Univ. 1992.
- [15] Swarttouw, R. F. and Meijer, H. G., A q-analogue of the Wronskian and a second solution of the Hahn–Exton q-Bessel difference equation. *Proc. Amer. Math. Soc.* 120 (1994)(3), 855 864.

Received March 22, 2005; revised June 24, 2005