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Linear ¢-Difference Equations
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Abstract. We prove that a linear ¢g-difference equation of order n has a fundamental
set of n-linearly independent solutions. A ¢-type Wronskian is derived for the n-
th order case extending the results of Swarttouw—Meijer (1994) in the regular case.
Fundamental systems of solutions are constructed for the n-th order linear ¢-difference
equation with constant coefficients. A basic analog of the method of variation of
parameters is established.
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1. Introduction and basic definitions

In the following, ¢ is a positive number, 0 < ¢ < 1, and [ is an open interval
containing zero. Now we state the basic definitions used in this article, cf. [4, 9].
Then we introduce a brief account about the g-calculus established in [3]. Let
n € N. The g-shifted factorial (a;q), of a € C is defined by

n

(CL; q)o =1 and, for n > 0, (a;q)n e H (1 _ aqkil),
k=1

The multiple g-shifted factorial for complex numbers aq, ..., ay is defined by

k
(alv ag, ..., 0; q)n = H(aj; Q)n

Jj=1
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The limit lim,, . (a; ), exists and is denoted by (a; q)s. The third type of the
q-Bessel functions of Jackson of order v is defined to be, see [10],

v+1 2n

JZE?’) x;q) = x”m 1 nq_"(";l) x ‘
) (¢ 9)oc 21 (¢ (@5 O

n=0

We denote this function by J,(z; q) instead of J5) (x; q) for simplicity. In some
literature this function is called the Hahn—Exton ¢-Bessel function, see [12, 14].
The functions cos,x and sin,x are defined for x € C, |z|(1 — ¢q) < 1, by

COS, T 1= N — ”—(m(l _ q))2"
ot = ;( "=
in,r := N 1" (:c(l — q))2”+1
et Z( b (¢ @)2nt1 '

n=0

The functions cos(z; ¢) and sin(z;q) are defined in C by

(o)

W0 (z(1—q))

cos(z; q) == ;)(_1) (¢ 9)2n
e €Y (1 — )
sin(z5¢) =) (1) (¢ @)2n+1

n=0

and they are g-analogs of the sine and cosine functions, [4, 9]. See also [1, 2],
[5]-[7] for a study of the zeros and completeness of ¢-trigonometric and ¢g-Bessel
systems.

Let 1 € R be fixed . A set A C R is called a pu-geometric set if for x € A,
pr € A. Now, we define the g-difference operator of Heine. Let f be a function
defined on a g-geometric set A C R. The g¢-difference operator is defined by the
formula

D,f(z) = M, ze A\ {0}.

T —qx
If 0 € A, we say that f has g-derivative at zero if the limit
L fa) — £(0)

n— oo J}q”

, r€A

exists and does not depend on x. In this case, we shall denote this limit by
D,f(0). In some literature the g-derivative at zero is defined to be f’(0) if it
exists, cf. [12, 14], but the above definition is more suitable for our approach.
The non-symmetric Leibniz’ rule

Dy(fg)(x) = g(x) Dy f(x) + f(gz)Dyg(x) (1.1)
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holds. Relation (1.1) can be symmetrized using the relation f(qz) = f(z)—x(1—
q)D,f(z), giving the additional term —x(1—¢) D, f(z)D,g(x). The g-integration
of F. H. Jackson [11] is defined for a function f deﬁned on a g-geometric set A

to be /f dt_/f dt—/f t)d,t, a,be A,

where i o
| e = S a0 - ). vea (12)
provided that the series convelrg(;0
Theorem 1.1 ([3]). The g-integral (1.2) exists only if ]}1_{210 xq* f(zq®)= 0.
Consider the non-homogeneous g-difference equation of order n
ao(x)Dly(x) + ar(x) D) 'y(z) + -+ - + an(x)y(z) = b(z), =z €1, (1.3)

for which a;, 0 < i < n, and b are continuous at zero functions defined on I and
ap(z) # 0 for all z € I. Equation (1.3) together with the initial conditions

Di'y(0)=b;, beC,i=1,...,n, (1.4)

form a g-type Cauchy problem. By a solution of problem (1.3)—(1.4), we mean
a continuous at zero function which satisfies (1.3) subject to the initial condi-
tions (1.4). According to [3], there exists a unique solution of (1.3)—(1.4) in a
subinterval J of I, J = [—h,h], h > 0. In the next section, we shall study the
n-th order homogeneous linear equation

ao(x)Dly(x) + ar(x) D) y(z) + -+ + an(a)y(z) =0, z€l. (1.5)

A fundamental set of solutions for (1.5) when the coefficients are constants is
derived in §2. In §3, a ¢-type Wronskian for the solutions of (1.5) is introduced
and it is proved that it satisfies a first order ¢-difference equation and its solution
is given. This extends the results of Swarttouw—Meijer [15] in the regular case.
As applications, a formula for a solution of (1.3) in terms of a fundamental set
of solutions of (1.5) will be given in §4 by using a g-analog of the method of
variation of parameters.

2. Linear homogeneous ¢-difference equations

Let M denote the set of solutions of (1.5) valid in a subset J C [ which contains
zero. Then it is easy to see that M is a linear space over C. Also from the
existence and uniqueness of the solutions, cf. [3 ], 1f pe M and ngb( ) =

0<i<n-—1,then ¢(xr) =0 on J. Moreover, cf. | {Dlgb} <n—1
are continuous at zero for any ¢ € M. A set of n solutlons of (1 5) is said to
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be a fundamental set (f.s.) for (1.5) valid in J or a f.s. of M if it is linearly
independent in J. Moreover, as in differential equations, if b;;, 1 <7,j < n, are
numbers, and, for each j, ¢; is the unique solution of (1.5) which satisfies the
initial conditions '
Dzﬁl¢j(0) = bija 1 S ) S n,

then {¢;}7_, is a fs. of (1.5) if and only if det(b;;) # 0. Hence M is a linear
space of dimension n. In the following we are concerned with constructing
a f.s. for (1.5) when it has constant coefficients, a,, 0 < r < n. Set L :=
apD} + a1 Dy~ + - + a,. Then, (1.5) can be written as

Ly(z) = angy(x) + alDZ_ly(x) + -+ ayy(z) =0. (2.1)
The characteristic polynomial P()) of (2.1) is defined by

P\ =a\" +a A"+ +a,, AeC.

Let \;; 1 < i < k, denote the distinct roots of P(\) and m; denotes the
multiplicity of A;, so that Zle m; = n. Corresponding to each \; we define an
m;-dimensional subspace M; by

Mi={veM: (D,—X)"v=0}.
The construction of a f.s. of (2.1) depends on the fact that, cf. [13],
M=M®-- & M,. (2.2)

Lemma 2.1. Let (X,K) be a vector space, and let T be a linear operator on X.
For any A € K, if there exist yo,y1, ..., Ym—1 in X such that

Tyo = Ayo, Yo # 0
Ty; = \yi + Yi-1, 1<i<m—1,

then yi,...,Ym—1 are linearly independent.
Proof. By induction on 7, 0 <7< m — 1. O
Lemma 2.2. If \; # 0, then the initial value problem

Do = Aido.i, $0i(0) = 1,7

Dq¢r7i = )\i¢r,i + ¢r—1,ia ¢7‘,2(0) = 07 r= 17 s,y — 17

has the solution

(Niz(1
¢ (x)— ( ) Zko QQ):) ’ TIO (23)
7,0 F Zkzr k(k 1) T!(k r+1) ()\ ;Elgqu):))k’ - 17 27 o ’mi 1’ .
which is valid for |x| < 5 1 sa g A =0, then
1—qg)"
¢T,i(x) = Ma T:()?la"'ami_l' (24)

(¢:9)r
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Proof. The proof follows by direct computations. O

One can see that (D, — \;)™¢,; =0, r=0,1,...,m; — 1. Thus, ¢,; € M,,
for r = 0,1,...,m; — 1. Therefore, these functions form a basis for M; since
they are linearly independent by Lemma 2.1. This fact and (2.2) above imply
the following theorem.

Theorem 2.3. The set {(;S”}:ZO_I of (2.3) when \; # 0 or of (2.4) when \; =0
m;—1

is a linearly independent set of solutions of (2.1). Moreover, Ule {Dirtisy s

a fundamental set of solutions of (2.1).

Example 2.4. The ¢-difference equation
Dgy(x) — AD7y(x) + 5Dgy(x) — 2y(z) = 0,

has the functions e,(2z), ¢,(z) and Y, k:(zg.;)qz)k as a f.s..

3. A ¢-type Wronskian

This section contains a g-analog of the Wronskian of linear differential equa-
tions, we prove that the g-analog satisfies a first order ¢-difference equation
and we derive its solution. We also derive a g-type Liouville’s formula for the
g-Wronskian.

Definition 3.1. Let y;, 1 <7 < n, be functions defined on a ¢-geometric set A.
The q- Wronskian of the functions y; which will be denoted by W, (y1, ..., yn)(2)
is defined to be

yi(x) Un(2)
Dans) D)
Wq(yh‘"?yn)(‘r) = y ‘.. y 7
D) Dyt

provided that the derivatives exist in I. For convenience we write W, (x) instead
of Wq(yh G 7yn)(l‘)

Lemma 3.2. Let yy,...,y, be functions defined on a q-geometric set A. Then
for any x € A, x # 0,

y1(qz) y2(qz) e Yn(q)
(Dgy1)(gz)  (Dgy2)(qz) -+ (Dgyn)(qz)
D Wo(y1,y2, - Yn)(x) = : : e : (3.1)
(D~ ?y1)(gz) (Dg~2y2)(qz) -~ (Dy~*yn)(qz)
D}y (x) Dgya(z) -+ Dyya()
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Proof. We prove the lemma by induction on n. The lemma is trivial when n = 1.
Assume that (3.1) holds at k € N, k > 1, then expanding W, (y1,v2, - ., Y+1)
in terms of the first row we obtain

k+1
Wq(yla Y2, ... 7yk+1)(x) = Z(_l)j—‘rlyJ(x)WqS])(I)?
=1
where
. Wq(quZa---aquk-i—l)a J=1
Wq(]) = Wq(qula s D1, Dgyjga, - - 7quk+1), 1<3<k+1
Wq(qu1,-~-,quk), J=k+1.
Consequently, from (1.1),
Dqu (yla Y2, ... 7yk+1)(x)
k+1 k+1
= Z D Dy ()W () + Y (=1)"y;(qz) D,W Y ().
=1
Now
Doyi(z) -+ Dyyrs1(z)
. Dy () Dyyri1(x)
+ ) . D2y1(x) T D2yk+1($)
S )T Dy W@ = =0,
:1 . M .
’ DE-lyi(e) -+ DElyii(e)
Diyi(x) -+ Diypyi(x)
and from the induction hypothesis,
k+1 k+1
> (1) y(qa) DWW () = (=1 y;(ga)
=1 =1
(Dgy1)(gz) -+ (Dgyj—1)(gx)  (Dgyj+1)(qx) - (Dgyr+1)(q)
(D2y)(ge) - (D2y1)(gz)  (D2y)(az) - (Diye)(gz) | (3:2)
(D 'y)(qz) -+ (DE'y;—1)(qz) DE'yjpa(gr) - D lypya(x)(gx)
Dittyy(z) -+ Difly;a(z)  Ditlyjp(x) - DETlyrga(x)

where when ¢ = 1 the determinant of (3.2) starts with D,ys(¢z) and when
j =k +1, the determinant ends with D}*'y,(z). Thus

y1(qx) e Yr+1(qT)
(qul)(qx) T (quk+1)(q$)
kt1 . i Dg 1 X Dg 1 X
Z(—I)J“yj(qa:)DquU)(x) _ ( y:)(q ) ; ( ykf )(qz) |
= (DEy)(gz) -~ (DEtyisr)(ga)
Dyttyi(x) - Dyflypsa()
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proving (3.1) for n = k + 1 and hence all £ € N. O

Theorem 3.3. If y1, ya, ..., Yo are solutions of (1.5) in J C I, then their
q-Wronskian satisfies the first order q-difference equation

DyWo(x) = —R(x)Wy(z), 2 e J\{0}

R = 3 (o g 22, (33)

Proof. From the definition of the operator D,, we have
(Dy'y)(gr) = D'y(x) — x(1 — q) D" 'y(z), meN.
Substituting in (3.1) yields

DQWQ(yla . 7yn) (z)

y1(z) — 2(1 = q)Dgyn (z) e yn(x) = 2(1 = q)Dgyn(x)
Dgyi(z) —2(1 —q)Djyi(x) -+ Dayn(@) = 2(1 — q)DJyn ()
Dg*2y1(x) —z(1-— q)D;”lyl () --- D;"gyn(x) —z(l - q)DZ;’lyn(x)
Dy (x) e Dgyn (@)

We shall prove by induction on n that

D,W, (yl, . ,yn) (x)

y1(x) yn(z)
Dy (z) Dgyn ()
n ' | ' 3.4
— ( 1)k 1(1, qx)k 1 D;L—k—lyl(x) D;L*kflyn(x) ( )
=1 D;L*k+1y1(l-) D;sz+1yn(x)
Dy - Diu)
If (3.4) holds at n = m, then
m+1
D‘]WQ(yla Y2,y Yms1)(T) = Z(_l)JH (yj(.ilﬁ) — (1l — Q)quj(x))Alj’
j=1

where

Alj = Dqu<qu1a s 7quj—1aquj+17 ce 7qum+1)7 j = 1727 cee, M.
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Hence from the previous hypothesis we obtain

DaWo(1,2, -+ s Yms1) (@)

m+1 m
= Z( 1)+ (yJ (x) —2(1— Q)quj(x)) Z( )t (x(l
=1 k=1
jm Mg a2,
= > (D)1= 0) T DD (=1 () B
k=1 j=1
m km+1
+Z(_1)k(x(1 —q)) Z(—l)jHqu](x)B]k,
k=1 =1
with
Dyy1(x) e Dyyj-1(z) Dyy; ()
D2y (x) o D2y (x)(x) D3y;(x)
Bj == D;”_ém(x) D;”"“z./jfl(x) Df;n_’;yj(fﬂ)
Dp=F 2y (x) - DPRRy g (x) Dty (x)
Dptiy(e) o DPtyLa@) Dty )

qum-i-l(x)
Dgmerl(x)

Dgn_kmerl (x) )

Dyt ty 1 (2)

D;n+1ym+1 (:)3)

k=1,2,...,m, where when j = 1 the determinant By start with D,y(x) and
when j = m + 1, the determinant B, 1), ends with Dg”“ym(x). From the

properties of the determinants we conclude that

y1(z) T Ym+1(7)
Dyy1(x) e Dyym+1(z)
m+1
S (@) By = | Dp @) D () (3.5)
j=1 D2y () - DP Ry, (x)
Dytty(z) - DPtlymga(x)
m+1
Z(—l)jHquj(:c)Bjk =0, for k=1,2,...,m—1, (3.6)
=1
and
) Deyi(z) -+ Dgym+1(2)
s . Dlyi(z) -+ D2ymyi(x)
Z(_l)JHquj(x)BJm = " : o (3.7)
j=1

Dyttyi(x) - Dty (@)
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Combining equations (3.5)—(3.7) with (3), we obtain (3.4) when n = m+1. One
can easily see that (3.4) holds at n = 1. Consequently it holds for all n € N.
From (1.5), we have

i=n

quj(x):_izla0<$>Dq yj(x)7 ]:1727 y TV
Then (3.4) is nothing but
k=n—1 a (.T)
k+1
DW,y(z) =~ 3 (a- qx)km Wy(z) = —R(x)Wy().
k=0
This completes the proof of the theorem. O

The next theorem gives a ¢-type Liouville’s formula for the g-Wronskian.

Theorem 3.4. Let (1 —q)R(x) # —1 for all x € J. Then the q- Wronskian of
any set of solutions {¢;}1, of equation (1.5) is given by

Wo(z) = We(or, ..., ¢n)(2)
- 1 x (3:8)
a H;O:o(l + x(l — q)qu(qu))WQ(())? e J.

Proof. Equation (3.3) is

Wy () = Wy (gz)

T —qx

= —R(x)W,(x), z # 0,

ie., Wy(x) — Wy(qr) = —x(1 — q)R(z)W,(x). Hence, under the assumption
14+ 2(1 —q)R(x) # 0, we obtain W,(z) = %. Therefore,
Wq($qm+1>

Wale) = ITito (1 +2(1 = g)g*R(xq*))’

for allm € Nand x € 1.

Since all functions % are continuous at zero, then >~ ¢*| R(z¢")| is convergent.
ag =

Consequently, [];7, (1 + (1 — ¢)¢"R(zq*)) converges for every z € I. Thus,
using the continuity of W, (x) at zero, (3.8) follows. O

Corollary 3.5. Let {¢;};_, be a set of solutions of (1.5) in some subinterval J
of I which contains zero. Then W, (x) is either never zero or identically zero
in I. The first case occurs when {¢;};_, is a fundamental set of (1.5) and the
second when it is not.
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Proof. A set of solutions {¢;};_, forms a f.s. of (1.5) if and only if
Wq(0) = det (Dy™'¢;(0));,_, # 0.

cf. [3]. This proves the corollary since from Theorem 3.4, W (x) # 0 for all
x € J if and only if W,(0) # 0. O

Example 3.6. In this example we calculate the g-Wronskian of

?ququ(x) +y(x)=0, zeR. (3.9)

The solutions of (3.9) subject to the initial conditions
y(0) =0, Dyy(0) =1 and y(0) =1, Dyy(0) =0,
are sin(z; q), cos(z;q), © € R, respectively. Since (3.9) can be written as

D2y(x) + qr(1 — q)Dgy(x) — qy(x) = 0.
Then ag(z) = 1, a1(x) = qx(1 — ¢) and as(x) = —¢. Thus R(z) =0 on R and
W,(z) = W,(0). But
W,(0) = Wy cos(+; q),sin(+; ) (0)
= (cos(z; q) cos(v/qz; q) + v/gsin(z; ) sin(y/qz; q) ) ‘x:O
=1.
Then, Wy(z) =1 for all z € R.

Example 3.7. We calculate the ¢-Wronskian of the solutions of the ¢g-difference
equations
2
~Dyy(r) +y(xr) =0, weR, (3.10)

The functions sin, z, cos, z, |z|(1 —¢) < 1, are solutions of (3.10) subject to the
initial conditions

y(0) =0, Dgy(0) =1 and  y(0) =1, Dyy(0) =0,

respectively. Here R(z) = z(1 — ¢q). So, z(1 — ¢)R(z) # —1 for all z in R.
Hence,

_ W,(0) o
N | R e N

But
W,(0) = W, (cosy, sing) (0) = (cosy*x + sing z) |x:0 =1

Therefore, W, (z) = ([T77,(1 + ¢**{z(1 — q)}Q))_l, |z|(1 —q) < 1.
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Remarks. 1. Theorem 3.3 might be satisfied for less restrictive conditions. But
a general treatment needs a separate consideration. The ¢g-Wronskian of (1.5)
satisfies the first order ¢-difference equation (3.3) whatever the conditions which
the functions a;, 0 < j < n satisfy. But, in this case, the ¢-Wronskian can not
be determined by using Theorem 3.4. An example of this case is the second
order g-difference equation

qz*(1 = q)?Diy(x) + 2(1 — q)*Dyy()

+ (22 + (1= ¢")(1 = ¢7)ylzq) =0,
where v > —1, which has a fs. {J,(z;¢%),J_,(xq7";¢*)} and it has been
treated by R. F. Swarttouw and H. G. Meijer [15]. This class of problems

may be considered as singular ¢-difference equations, while we are dealing with
regular equations.

2. It is worthy to mention here that if equation (1.5) has the form

ao(z) Dy y(x) + al(x)(DZ’l)y(q:U) + - Fap(x)y(ge) =0, xe€l, (3.11)

then substituting with Djy(z) = — >, (D" Jy)(gx) in (3.1) above we

a (:r
could derive a theory similar to that of the0 present section. In this case the
associated g-Wronskian of solutions z1, . .., 2z, of (3.11) will satisfy the simplified

first order g-difference equation

D Wy(z) = _Z;Ei) W (gz)
Consequently
Wyta) =TT (1ot - 0225 ) wy0), 2 e 77 10).

Similar to differential equations if a; = 0, then W, (x) is identically a constant.
It should be noted that problems involving equation of the form (3.11) plays an
important role in defining self adjoint eigenvalue problems, see e.g. [5, §].

4. Applications

The theory introduced in the previous two sections can be used to obtain a
general formula for the solutions of the inhomogeneous equation (1.3). Obvi-
ously, if ¥y and 1y are two solutions of (1.3), then 1; — 1, is a solution of the
corresponding homogeneous equation (1.5). Thus if ¢ is a solution of (1.3) and
{¢:};_, is a f.s. for (1.5), then there are unique constants {c¢;};_, such that

¢:Cl¢1+"'+cn¢n+¢07
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where 1) is a particular solution of (1.3). Now, we introduce a g-analog of the
method of variation of parameters to find a particular solution v of (1.3). Here
also the functions a, and b are continuous at zero functions defined on [ such

that ag(x) # 0 for all x € 1.

Theorem 4.1. Let {¢;}._, be a fundamental set of (1.5) in J. Then, any
solution v of (1.3) is given by

Wai (@15 -5 ¢a) (at) (1) (o
wle) = (Cl / Wy (b1, ... 00) (qt)  aolt) dqt) Pi(@), (4.1)

where the ¢;’s are constants and W, (¢1, ..., ¢n)(x) is the determinant obtained
from Wy(o1,...,¢n)(x) by replacing the r-th column by (0,...,0,1).

Proof. Let 1) be a solution of (1.3). If ¢y is a particular solution of (1.3), then
for some constants cq,co, ..., Cp,

¢:¢0+01¢1+“'+0n¢m

where c¢q,...,c, are constants. Assume that 1y has the form
Yo(x) = ur(z)d1(z) + - - + un(2)Pn (1),
where uq, ..., u, are functions satisfying the system

Dyuy(x)p1(qx) + - - - + Dyun()pn(qr) =0
Dyur (2) Dggepr1(q) + + -+ + Dyun () Dy e P (qz) =0

' ' (4.2)
unl( ) qqz(ﬁl(qx) -+ unn( )ng§¢n(q$) =0
Dyus (2) qugbl(q@ w4 Dyun(x )D;‘q;gbn(qx) = ;O((a;))-

System (4.2) is an inhomogeneous linear system of equations in the n unknowns
{Dyu;};_,. The determinant of the coefficients is Wy (¢1,. .., ¢,)(gx) # 0 since
¢r, 1 <7 < n,isafs. for (1.5). Hence (4.2) can be solved for the D,u, and

Wor(01, ... ¢n)(gz)  b(x)

Dot () = S e an)  ae)’

r=1,...,n.

Since ai is continuous at zero, then from Theorem 1.1 D,u, is g-integrable

on [0, x]o, for all # € J. Thus, a suitable choice for u,(z) is

/ War(b1,- - 6a)(at)  b(t)
Wyl oa)at)  aolt)

d,t,
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and then 1, has the form

ola) = Do) [ (B, oy Gn) (a) PO

Wy (1, - dn) (at)  aolt)

proving formula (4.1). O

Example 4.2. Consider the equation
1
=Dy Dyy(a) + y(a) = bie). (4.3)

where b(-) is a continuous function defined in R. The corresponding homoge-
neous equation is

D2y(z) — qy(qx) = 0. (4.4)
A fundamental set of solutions of (4.4) is {sin(x;q), cos(z;q)}. Substituting
in (4.1) and using W,(sin(+; q),cos(:;q))(x) = —1, every solution of (4.3) has
the form

Y(x) = c1sin(z; q) + ¢z cos(z; q)

_ q/ox (sin(z; ) cos(qt; q) — cos(x; q) sin(qt; q) ) b(qt) dyt

where x € R, ¢; and ¢y are arbitrary constants.
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