
Zeitschrift für Analysis und ihre Anwendungen c© European Mathematical Society
Journal for Analysis and its Applications
Volume 26 (2007), 495–506

Estimates of Approximate Solutions

and Well-Posedness in Vector Optimization
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Abstract. In this paper we estimate the sizes of approximate solution sets for vector
optimization from outside and inside, respectively. In terms of an important scalar-
ization function, we obtain some estimates of approximate solutions for well-posed
vector optimization, and some estimates of approximate solutions for well-posed vec-
tor optimization under perturbations.
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1. Introduction

The study of approximate solutions is very important in the theory of optimiza-
tion. From numerical and practical points of view, the task is always to find the
approximate solution instead of the exact solution of the problem because the
finding of exact solution costs much, and sometimes even is impossible. Given
an approximate solution, it is necessary to estimate its distance to the exact
solution. Such estimate is an important and interesting subject of stability anal-
ysis of optimization problems, see, e.g., [1]–[3], [22] and the references therein.
Another important issue related to stability analysis is on the well-posedness
of optimization which deals with the continuity property of the solutions with
respect to data’s perturbations. An initial notion of well-posedness was first in-
troduced by Tykhonov [19], already known as Tykhonov well-posedness, which
means the existence and uniqueness of solution, and the convergence of every
“minimizing sequence” to the unique solution of the problem. In the following
years, various notions of well-posedness were introduced and studied. Con-
cerning well-posedness in scalar optimization, we can refer the readers to [8],
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[19]–[23] and the references therein. In [22], Zolezzi studied the sets of approx-
imate solutions for well-posed scalar optimization. Some estimates of the size
of approximate solution sets were obtained for Tykhonov well-posed optimiza-
tion, and further for extended well-posed (called well-posed under perturbations
in [22]) optimization. In recent years, the concepts of well-posedness have been
generalized to vector optimization; see, e.g., [4, 5, 7], [9]–[12], [14, 15]. A nat-
ural problem is: whether or not some analogous estimates can be established
for well-posed vector optimization? The paper is denoted to the study of this
topic. In terms of an important function ξ (defined in the sequel, see also
[9, 13, 17]) we establish some estimates of approximate solutions for well-posed
vector optimization, and some estimates of approximate solutions for well-posed
vector optimization under perturbations. Our results generalize and improve
the corresponding results by Zolezzi [22].

2. Preliminaries and notations

Let X and Y be normed vector spaces. Denote by B(x, δ) (B̄(x, δ)) the open
(closed) ball, centered at x with radius δ. The space Y is endowed with a partial
order induced by a pointed, closed and convex cone C with intC 6= ∅ in the
following way:

x ≤C y ⇔ y − x ∈ C

x ≤intC y ⇔ y − x ∈ int C,

where intC denotes the interior of C. Assume that P is a parametric metric
space, p∗ is a fixed point in P , and that L is a closed ball in P centered at p∗

with a positive radius. Let J : X 7→ Y and I : X × L 7→ Y be vector-valued
functions. Consider the following global vector optimization problems:

(X, J) : min
x∈X

J(x)

(X, I(·, p)) : min
x∈X

I(x, p).

Assume always that
J(x) = I(x, p∗), ∀x ∈ X.

(X, J) is called the original problem and (X, I(·, p)) is called the perturbed
problem of the original problem corresponding to the parameter p ∈ L. A point
y∗ ∈ I(X,L) is called a minimal point of (X, I(·, p)) (for short (p) if no confusion
arises) iff

I(X, p) ∩ (y∗ − C) = {y∗}.

A point x∗ ∈ X is called an efficient solution of (p) iff I(x∗, p) is a minimal
point of (p). Denote by Min(X, I(·, p)) and Eff(X, I(·, p)) (or Min(p) and Eff(p),
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respectively, if no confusion arises) the sets of minimal points and efficient
solutions of (p), respectively. Fix an e ∈ intC. In the sequel, we use frequently
the following function ξ : Y → R (see [9, 13, 17]) defined by

ξ(y) = min{t ∈ R : y ∈ te− C}, ∀y ∈ Y.

Lemma 2.1 ([9, 11, 13, 17]). The following conclusions hold:

(i) The function ξ is continuous, monotone (with respect to C) and sublinear;

(ii) For any y ∈ Y , ξ(y) = maxλ∈C∗\{0}
λ(y)
λ(e)

, where C∗ is the usual dual cone
of C.

The following concepts of well-posedness for vector optimization were in-
troduced and studied by Dentcheva and Helbig [7] and Huang [10]–[12].

Definition 2.2 ([7]). (X, J) is said to be well-posed of type 1 at a point v ∈
Eff(p∗) iff

inf
α>0

diamL(v, q, α) = 0, ∀q ∈ C,

where L(v, q, α) = {x ∈ X : J(x) ≤C J(v)+αq} and diam denotes the diameter
of a set.

Note that if (X, J) is well-posed of type 1 at a point v ∈ Eff(p∗), then
J−1(J(v)) = {v}.

Definition 2.3 ([10]). (X, J) is said to be well-posed of type 2 at a point v ∈
Eff(p∗) iff xn → v, for any sequence {xn} ⊂ X with J(xn)→ J(v).

Remark 2.4. As pointed out by Huang [10], well-posedness of type 1 implies
well-posedness of type 2, but the converse is not true in general.

Definition 2.5 ([11, 12]). (X, J) is said to be extended well-posed iff

(i) Eff(p) 6= ∅ for all p ∈ L;

(ii) ∀(pn) with pn → p∗, ∀(an) with 0 ≤ αn → 0, ∀(yn) with yn ∈ Min(pn)
(for every n), ∀(xn) with xn ∈ X and I(xn, pn) ≤C yn+αne (for every n),
∃x∗ ∈ Eff(p∗) : xn → x∗.

Note that if (X, J) verifies conditions (i) and (ii) of Definition 2.5, then
Eff(p∗) is a singleton (see the statements of Propositions 4.7 and 4.9 below).

Definition 2.6 ([16]). A set-valued mapping F : X 7→ 2Y is said to be

(i) upper Hausdorff continuous at x0 ∈ X iff for any neighborhood V of 0 in Y

there exists a neighborhood W of x0 in X such that F (x) ⊂ F (x0) + V

for all x ∈ W ;

(ii) lower Hausdorff continuous at x0 ∈ X iff for any neighborhood V of 0 in Y

there exists a neighborhood W of x0 in X such that F (x0) ⊂ F (x) + V

for all x ∈ W .
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Definition 2.7. A set-valued mapping F : X 7→ 2Y is said to be

(i) C-upper semicontinuous at x0 ∈ X iff for any d ∈ int C there exists a
neighborhood W of x0 in X such that F (x) ⊂ F (x0) + d − int C for all
x ∈ W ;

(ii) C-lower semicontinuous at x0 ∈ X iff for any d ∈ int C there exists a
neighborhood W of x0 in X such that F (x0) ⊂ F (x) + d − int C for all
x ∈ W .

F is called C-upper (C-lower) semicontinuous iff F is C-upper (C-lower) semi-
continuous at every x0 ∈ X.

Remark 2.8. (i) When F is single-valued, Definition 2.7 reduces to the defini-
tion of cone semicontinuity in the sense of Luc [13], Bianchi, Hadjisavvas and
Schaible [6], and Tanaka [18].

(ii) Upper (lower) Hausdorff continuity implies C-upper(lower) semiconti-
nuity.

3. Estimates of approximate solutions and well-posedness

In this section we give some estimates of approximate solutions for well-posed
vector optimization. In what follows we fix u∗ ∈ Eff(p∗) and e ∈ int C. Set
inf ∅ = +∞ and sup ∅ = −∞. Consider the set L(u∗, e, ε), which is defined
as in Definition 2.2. To estimate the size of L(u∗, e, ε) we need the following
important lemma and functions:

Lemma 3.1 (Theorem 2.3.1 of [9]). Given y ∈ Y and t ∈ R. Then ξ(y) ≤ t if
and only if y ≤C te.

Set

α(ε) = sup{‖u− u∗‖ : u ∈ X, ξ(J(u)− J(u∗)) ≤ ε}

∆(ε) = sup{δ > 0 : ‖u− u∗‖ ≤ δ ⇒ ξ(J(u)− J(u∗)) ≤ ε}

c∗(t) = inf{ξ(J(u)− J(u∗)) : u ∈ X, ‖u− u∗‖ = t}

q1(s) = sup{t ≥ 0 : c∗(t) ≤ s}

q2(s) = sup{t ≥ 0 : c∗(t) < s}

k(t) = sup{ξ(J(u)− J(u∗)) : ‖u− u∗‖ ≤ t}

k1(s) = sup{t ≥ 0 : k(t) ≤ s}.

By Lemma 3.1, it is easy to see that α(ε) and ∆(ε) are the radii of the largest
open ball centered at u∗ contained in L(u∗, e, ε), and the smallest closed ball
centered at u∗ containing L(u∗, e, ε), respectively; in particular, ∆(ε) ≤ α(ε).
By the definitions, it is clear that α,∆, k and k1 are nondecreasing on [0,∞),
k(0) = 0, k1(0) ≥ 0, and α(0) ≥ 0, but ∆(ε) might be −∞ for some ε > 0.
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Proposition 3.2. For all positive number ε, the following relations hold:

q2(ε) ≤ α(ε) ≤ q1(ε) (1)

k1(ε) = max{0,∆(ε)}. (2)

Proof. We first prove (1). By the definition of c∗, we have

ξ(J(u)− J(u∗)) ≥ c∗(‖u− u∗‖), ∀u ∈ X.

For any u ∈ L(u∗, e, ε), it follows from Lemma 3.1 that c∗(‖u− u∗‖) ≤ ε. From
the definition of q1, we get ‖u− u∗‖ ≤ q1(ε), and so α(ε) ≤ q1(ε). To prove the
left side of (1), we only consider the case when α(ε) < +∞ (in fact, the left
side of (1) holds trivially when α(ε) = +∞). Suppose by contradiction that
q2(ε) > α(ε) for some ε. By the definition of q2, there exists some T ≥ 0 such
that

c∗(T ) < ε, T > α(ε). (3)

Again from the definition of c∗, there exists u ∈ X with ‖u − u∗‖ = T such
that ξ(I(u) − I(u∗)) < ε. From the definition of α, we obtain T ≤ α(ε),
contradicting (3). Thus (1) is proved.

Next, we prove (2). Fix ε > 0. If k1(ε) = 0, then k1(ε) ≤ max{0,∆(ε)}.
Else take 0 < γ < k1(ε). Then there exists t > γ with k(t) ≤ ε. Hence
ξ(J(u) − J(u∗)) ≤ ε for ‖u − u∗‖ ≤ t, and so ∆(ε) ≥ t > γ. Therefore,
k1(ε) ≤ ∆(ε). Thus k1(ε) ≤ max{0,∆(ε)} for all ε > 0.

Take now γ > k1(ε) (≥ 0). Then k(γ) > ε, and so there exists u ∈ X

such that ‖u − u∗‖ ≤ γ and ξ(J(u) − J(u∗)) > ε. It follows that ∆(ε) ≤ γ.
Hence ∆(ε) ≤ k1(ε). Since k1 is nondecreasing on [0,∞) and k1(0) ≥ 0,
max{0,∆(ε)} ≤ k1(ε).

Remark 3.3. Proposition 3.2 generalizes Proposition 1 of Zolezzi in [22].

Proposition 3.4. Assume that X is a finite-dimensional space and J is
C-lower semicontinuous. Then α(ε) = q1(ε) for all ε > 0.

Proof. By Proposition 3.2, it is sufficient to show that α(ε) ≥ q1(ε). When
q1(ε) = +∞, from the definitions of q1 and α, one has α(ε) = +∞. Suppose
that q1(ε) < +∞. By the definition of q1, there exists a sequence {tn} ⊂ R+

such that tn → q1(ε), c
∗(tn) < ε + 1

n
. By the definition of c∗, there exists a

sequence {un} ⊂ X such that ‖un − u∗‖ = tn, ξ(J(un)− J(u∗)) ≤ ε+ 1
n
. Since

X is finite-dimensional, without loss of generality, we can suppose that un → u.
It follows that

‖u− u∗‖ = q1(ε), J(un) ∈ J(u∗) +
(

ε+
1

n

)

e− C. (4)

Since J is C-lower semicontinuous, for any d ∈ int C there exists n0 such that
J(un) ∈ J(u) − d + intC, for all n > n0. This together with (4) implies that
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J(u) ∈ J(u∗)+d+(ε+ 1
n
)e− int C, for all n > n0. Since d ∈ int C is arbitrary, it

follows that J(u) ≤C J(u∗)+εe. Therefore, ‖u−u∗‖ = q1(ε), ξ(J(u)−J(u∗)) ≤ ε,

whence α(ε) ≥ q1(ε).

Proposition 3.5. If (X, J) is well-posed of type 1 at u∗∈ Eff(p∗), then q1(ε)→0
as ε→ 0.

Proof. If q1(ε) 6→ 0 as ε → 0, then there exist δ > 0 and εn > 0 with εn → 0
such that q1(εn) ≥ δ > 0. By the definition of q1, there exists tn with tn ≥ δ

such that c∗(tn) ≤ εn. Then there exists un ∈ X with ‖un − u∗‖ = tn such
that ξ(J(un) − J(u∗)) ≤ εn. From Lemma 3.1, we have un ∈ L(u∗, e, εn), and
so tn = ‖un − u∗‖ ≤ diamL(u∗, e, εn) → 0 since (X, J) is well-posed of type 1
at u∗. This gives a contradiction.

Remark 3.6. By Propositions 3.2, 3.4 and 3.5, α(ε) → 0 and q2(ε) → 0 as
ε→ 0 whenever (X, J) is well-posed of type 1 at u∗ ∈ Eff(p∗).

4. Estimates of approximate solutions and extended well-
posedness

In this section we give some estimates of approximate solutions of extended
well-posed vector optimization taking into account perturbations.

Define

T1(ε, δ) =
⋃

p∈B̄(p∗,δ)

{u ∈ X : I(u, p) ∈ Min(p) + εe− C}

T2(ε, δ) =
⋃

p∈B̄(p∗,δ)

{u ∈ X : I(u, p) ∈ Min(p∗) + εe− C}.

To estimate the sizes of T1(ε, δ) and T2(ε, δ) from outside, we need the following
functions:

c∗1(t, s) = inf
‖u−u∗‖=t,p∈B̄(p∗,s)

inf
y∈Min(p)

ξ(I(u, p)− y)

c∗2(t, s) = inf
‖u−u∗‖=t,p∈B̄(p∗,s)

inf
y∈Min(p∗)

ξ(I(u, p)− y)

αi(ε, δ) = sup{‖u− u∗‖ : u ∈ Ti(ε, δ)}, i = 1, 2

qi1(s, δ) = sup{t ≥ 0 : c∗i (t, δ) ≤ s)}, i = 1, 2

qi2(s, δ) = sup{t ≥ 0 : c∗i (t, δ) < s)}, i = 1, 2

ω1(δ) = sup
p∈B̄(p∗,δ)

sup{ξ(y) : y ∈ Min(p∗)−Min(p)}

ω2(δ) = sup
p∈B̄(p∗,δ)

sup{ξ(y) : y ∈ Min(p)−Min(p∗)}.
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Proposition 4.1. For all positive numbers ε and δ, the following inequalities
hold:

q12(ε, δ) ≤ α1(ε, δ) ≤ q11(ε, δ) (5)

q22(ε, δ) ≤ α2(ε, δ) ≤ q21(ε, δ). (6)

Proof. To prove (5), let u ∈ T1(ε, δ). Then there exists p ∈ B̄(p∗, δ) such that
I(u, p) ∈ Min(p)+ εe−C. From Lemma 3.1, we have ξ(I(u, p)−y) ≤ ε for some
y∈Min(p). This together with the definition of c∗1 implies that c∗1(‖u−u∗‖, δ)≤ε.
By the definition of q11, we obtain ‖u− u∗‖ ≤ q11(ε, δ), and so α1(ε, δ) ≤ q11(ε, δ).

To prove the left side of (5), suppose by contradiction that q12(ε, δ) > α1(ε, δ)
for some ε and δ. Then there exists some t such that t > α1(ε, δ), c

∗
1(t, δ) < ε.

By the definition of c∗1, there exist u with ‖u − u∗‖ = t and p ∈ B̄(p∗, δ) such
that

inf
y∈Min(p)

ξ(I(u, p)− y) < ε.

This together with Lemma 3.1 implies that I(u, p) ∈ y + εe − C for some
y ∈ Min(p). By the definition of α1, we get t ≤ α1(ε, δ), a contradiction. Thus
(5) is proved.

Similarly, we can prove (6).

Proposition 4.2. For all positive numbers ε and δ, the following inequalities
hold:

q12(ε− ω2(δ), δ) ≤ α2(ε, δ) ≤ q11(ε+ ω1(δ), δ) (7)

q22(ε− ω1(δ), δ) ≤ α1(ε, δ) ≤ q21(ε+ ω2(δ), δ). (8)

Proof. To prove (7), let u ∈ T2(ε, δ). Then there exists p ∈ B̄(p∗, δ) such that
I(u, p) ∈ y∗ + εe−C for some y∗ ∈ Min(p∗). By Lemmas 2.1 and 3.1, for given
y ∈ Min(p) we have

ξ(I(u, p)− y) ≤ ξ(y∗ − y + εe) ≤ ξ(y∗ − y) + ε ≤ ω1(δ) + ε.

It follows that c∗1(‖u − u∗‖, δ) ≤ ω1(δ) + ε. By the definition of q11, we obtain
‖u− u∗‖ ≤ q11(ε+ ω1(δ), δ) and so α2(ε, δ) ≤ q11(ε+ ω1(δ), δ).

To prove the left side of (7), only the case when α2(ε, δ) < +∞ and q12(ε−
ω2(δ), δ) > −∞ is of interest. Suppose by contradiction that α2(ε, δ) < q12(ε −
ω2(δ), δ) for some ε and δ. Then there exists some t such that t > α2(ε, δ),
c∗1(t, δ) < ε− ω2(δ). By the definition of c∗1, there exist u with ‖u− u∗‖ = t and
p ∈ B̄(p∗, δ) such that

inf
y∈Min(p)

ξ(I(u, p)− y) < ε− ω2(δ).

This together with Lemma 3.1 yields that I(u, p) ∈ y + (ε − ω2(δ))e − C for
some y ∈ Min(p). For given y∗ ∈ Min(p∗), it follows that

ξ(I(u, p)− y∗) ≤ ξ(y − y∗ + (ε− ω2(δ))e) ≤ ξ(y − y∗) + (ε− ω2(δ)) ≤ ε.
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Thus t ≤ α2(ε, δ), a contradiction. Thus (7) is proved.

Similarly, we can prove (8).

Remark 4.3. Proposition 4.2 generalizes Proposition 2 of Zolezzi in [22].

Next we estimate the sizes of Ti(ε, δ) from inside in terms of the following
functions:

∆i(ε, δ) = sup{t ≥ 0 : B(u∗, t) ⊂ Ti(ε, δ)}, i = 1, 2

k1(t, δ) = inf
p∈B̄(p∗,δ)

sup
u∈B̄(u∗,t)

inf
y∈Min(p)

ξ(I(u, p)− y)

k2(t, δ) = inf
p∈B̄(p∗,δ)

sup
u∈B̄(u∗,t)

inf
y∈Min(p∗)

ξ(I(u, p)− y)

k∗i (ε, δ) = sup{t ≥ 0 : ki(t, δ) ≤ ε}, i = 1, 2.

Proposition 4.4. For all positive numbers ε and δ, the following inequalities
hold:

k∗1(ε, δ) ≤ ∆1(ε, δ) ≤ q11(ε, δ) (9)

k∗2(ε, δ) ≤ ∆2(ε, δ) ≤ q12(ε, δ). (10)

Proof. To prove the left side of (9), suppose by contradiction that k∗
1(ε, δ) >

∆1(ε, δ) for some ε and δ. Then there exists some t ≥ 0 such that t > ∆1(ε, δ),
k1(t, δ) ≤ ε. By the definition of k1, there exists some p ∈ B̄(p∗, δ) such that

sup
u∈B̄(u∗,t)

inf
y∈Min(p)

ξ(I(u, p)− y) ≤ ε.

By Lemma 3.1, for every u ∈ B̄(u∗, t) there exists y ∈ Min(p) such that
I(u, p) ∈ y + εe− C. This proves that B̄(u∗, t) ⊂ T1(ε, δ) and so ∆1(ε, δ) ≥ t, a
contradiction. Thus the left side of (9) is proved.

Similarly, we can prove the left side of (10). The right sides of (9) and
(10) follow immediately from Proposition 4.1 and the fact ∆i(ε, δ) ≤ αi(ε, δ),
i = 1, 2.

Proposition 4.5. For all positive numbers ε and δ, the following inequalities
hold:

k∗2(ε− ω1(δ), δ) ≤ ∆1(ε, δ) ≤ q21(ε+ ω2(δ), δ) (11)

k∗1(ε− ω2(δ), δ) ≤ ∆2(ε, δ) ≤ q11(ε+ ω1(δ), δ). (12)

Proof. To prove the left side of (11), assume by contradiction that k∗
2(ε −

ω1(δ), δ) > ∆1(ε, δ) for some ε and δ. Then there exists some t ≥ 0 such
that t > ∆1(ε, δ), k2(t, δ) ≤ ε − ω1(δ). By the definition of k2, there exists
p ∈ B̄(p∗, δ) such that

sup
u∈B̄(u∗,t)

inf
y∈Min(p∗)

ξ(I(u, p)− y) ≤ ε− ω1(δ).
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This means that for every u ∈ B̄(u∗, t), ξ(I(u, p) − y∗) ≤ ε − ω1(δ) for some
y∗ ∈ Min(p∗). Let y ∈ Min(p). From Lemma 3.1, we have I(u, p) − y ∈
y∗ − y + (ε− ω1(δ))e− C. It follows from Lemmas 2.1 and 3.1 that

ξ(I(u, p)− y) ≤ ξ(y∗ − y + (ε− ω1(δ))e) ≤ ξ(y∗ − y) + (ε− ω1(δ)) ≤ ε.

Again from Lemma 3.1, we obtain I(u, p) ∈ y + εe − C. Summarizing, we get
B̄(u∗, t) ⊂ T1(ε, δ) and so t ≤ ∆1(ε, δ), a contradiction. Thus the left side of (11)
is proved.

Similarly we can prove the left side of (12). The right sides of (11) and
(12) follow immediately from Proposition 4.2 and the fact ∆i(ε, δ) ≤ αi(ε, δ),
i = 1, 2.

Remark 4.6. Propositions 4.4 and 4.5 generalize Proposition 3 of Zolezzi in
[22].

To end this paper, we give characterizations of extended well-posedness of
(X, J) in terms of the behavior of diam Ti(ε, δ) when Eff(p∗) is a singleton.

Proposition 4.7. Assume that Eff(p) 6= ∅ for all p ∈ L. Then condition

diamT2(ε, δ)→ 0 as (ε, δ)→ (0, 0) (13)

is necessary for extended well-posedness of (X, J) and Eff(p∗) to be a singleton
provided that the mapping p 7→ Min(p) is C-lower semicontinuous at p∗, and
sufficient provided that the mapping p 7→ Min(p) is C-upper semicontinuous
at p∗ and I is C-lower semicontinuous at (x, p∗) for all x ∈ X.

Proof. Suppose that (13) holds, the mapping p 7→ Min(p) is C-upper semi-
continuous at p∗ and I is C-lower semicontinuous at (x, p∗) for all x ∈ X.
Then Eff(p∗) is a singleton since Eff(p∗) = T2(0, 0). Set Eff(p∗) = {u∗}. Let
{pn} ⊂ L,{xn} ⊂ X, {εn} ⊂ R+, yn ∈ Min(pn) be such that

pn → p∗, εn → 0, I(xn, pn) ∈ yn + εne− C.

By (13), for given a > 0 there exists b > 0 such that

diamT2 (ε, δ) < a, whenever 0 < ε ≤ b, 0 < δ ≤ b. (14)

Then there exists n0 such that ‖pn − p∗‖ ≤ b and εn ≤
b
2
for all n > n0. Since

p 7→ Min(p) is C-upper semicontinuous, there exists n1 such that Min(pn) ⊂
Min(p∗) + b

2
e− int C, for all n > n1, and so

I(xn, pn) ∈ yn +
b

2
e− C ⊂ Min(p∗) + be− C, ∀n > n2, (15)
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where n2 = max{n0, n1}. Summarizing, for any a > 0 we have from (14) and
(15) that ‖xn − xk‖ ≤ diamT2(ε, δ) ≤ a for all sufficiently large n, k, and so
xn → x for some x ∈ X. Since I is C-lower semicontinuous at (x, p∗) and
p 7→ Min(p) is C-upper semicontinuous at p∗, for any d ∈ int C there exists n3

such that

I(x, p∗) ∈ I(xn, pn) + d− intC

⊂ yn + εne− C + d− intC

⊂ (Min(p∗) + d− int C) + εne + d− int C

⊂ Min(p∗) + 2d + εne− int C

for all n > n3. It follows that I(x, p∗) ∈ Min(p∗)−C. This yields x ∈ Eff(p∗) =
{u∗}, and so (X, J) is extended well-posed.

Conversely, suppose that (X, J) is extended well-posed and Eff(p∗) = {u∗}.
If (13) does not hold, then there exist εn → 0, δn → 0, un and vn in T2(εn, δn),
and a > 0 such that

‖un − vn‖ ≥ a. (16)

By the definition of T2, there exist pn → p∗ and qn → p∗, such that

I(un, pn) ∈ Min(p∗) + εne− C, I(vn, qn) ∈ Min(p∗) + εne− C.

Since the mapping p 7→ Min(p) is C-lower semicontinuous at p∗, Min(p∗) ⊂
Min(pn) + εne − int C and Min(p∗) ⊂ Min(qn) + εne − int C for all sufficiently
large n. It follows that

I(un, pn) ∈ Min(pn) + εne− int C + εne− C ⊂ Min(pn) + 2εne− C

I(vn, qn) ∈ Min(qn) + εne− int C + εne− C ⊂ Min(qn) + 2εne− C.

Since (X, J) is extended well-posed, un → u∗ and vn → u∗. This contra-
dicts (16).

Remark 4.8. Proposition 4.7 generalizes Theorem 1 of Zolezzi in [22].

Following the proof of Proposition 4.7, we have

Proposition 4.9. Assume that Eff(p) 6= ∅ for all p ∈ L. Then condition

diamT1(ε, δ)→ 0 as (ε, δ)→ (0, 0)

holds if and only if (X, J) is extended well-posed and Eff(p∗) is a singleton.
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