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Bilinear Estimates

Associated to the Schrödinger Equation

with a Nonelliptic Principal Part

Eiji Onodera

Abstract. We discuss bilinear estimates of tempered distributions in the Fourier
restriction spaces for the two-dimensional Schödinger equation whose principal part
is the d’Alembertian. We prove that the bilinear estimates hold if and only if the
tempered distributions are functions.
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1. Introduction

This paper is devoted to studying bilinear estimates of tempered distributions
in the Fourier restriction spaces related with the two-dimensional Schrödinger
equation whose principal part is the d’Alembertian. The Fourier restriction
spaces were originated by Bourgain in his celebrated papers [1] and [2] to estab-
lish time-local or time-global well-posedness of the initial value problem for one-
dimensional nonlinear Schrödinger equations and the Korteweg-de Vries equa-
tion in L2(R) respectively. Generally speaking, to solve the initial value problem
for nonlinear dispersive partial differential equations which can be treated by the
classical energy method, one usually analyzes the interactions of propagation
of singularities in nonlinearity in detail, and applies the regularity properties of
free propagators to the resolution of singularities. It is well-known that prop-
agators of some classes of linear dispersive equations with constant coefficients
have local smoothing effects (see, e.g., [3]), and dispersion properties (see, e.g.,
[7] and [14]). Surprisingly, the Fourier restriction spaces automatically work
for both of the analysis of the interactions of propagation of singularities in the
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frequency space and the application of the regularity properties of free propaga-
tors. For this reason, many applications and refinements of the method of the
Fourier restriction spaces have been investigated in the last decade; see, e.g.,
[4], [10]–[12], [15, 16] and references therein.

Here we state the definition of the Fourier restriction spaces. The Fourier
transform of a function f(x, t) of (x, t) = (x1, . . . , xn, t) ∈ Rn+1 is defined by

f̃(ξ, τ) = (2π)−
n+1

2

∫∫

Rn+1

e−itτ−ix·ξf(x, t)dxdt,

where i =
√
−1, (ξ, τ) = (ξ1, . . . , ξn, τ) ∈ Rn+1 and x · ξ = x1ξ1 + · · · + xnξn.

Let a(ξ) be a real polynomial of ξ = (ξ1, . . . , ξn) ∈ Rn. Set ∂t =
∂
∂t
, ∂j = ∂

∂xj
,

Dt = −i∂t, Dj = −i∂j, D = (D1, . . . , Dn), |ξ| =
√
ξ · ξ, 〈τ〉 =

√
1 + τ 2, and

〈ξ〉 =
√

1 + |ξ|2. For s, b ∈ R, the Fourier restriction space Xs,b = Xs,b(Rn+1)
associated to the differential operator Dt − a(D) is the set of all tempered
distributions f on Rn+1 satisfying

‖f‖s,b =
(∫∫

Rn+1

∣∣〈τ − a(ξ)〉b〈ξ〉sf̃(ξ, τ)
∣∣2 dξ dτ

) 1

2

< +∞.

The free propagator eita(D) of a differential equation (Dt−a(D))u = 0 is defined
by

eita(D)φ(x) = (2π)−
n
2

∫

Rn

eix·ξ+ita(ξ)φ̂(ξ) dξ,

where φ̂ is the Fourier transform of φ in x ∈ Rn, that is,

φ̂(ξ) = (2π)−
n
2

∫

Rn

e−ix·ξφ(x) dx.

In one-dimensional case, bilinear estimates in the Fourier restriction spaces
associated to Dt − D2 and Dt − D3 were completed. More precisely, in [10]
and [11], Kenig, Ponce and Vega refined the bilinear estimates in the Fourier
restriction spaces with some negative indices s < 0. Nakanishi, Takaoka and
Tsutsumi in [12] constructed sequences of tempered distributions breaking the
bilinear estimates to show the optimality of the indices s < 0 used in [10]
and [11].

In [15] Tao investigated the bilinear estimates associated to a(ξ) = |ξ|2
with n > 2. He dealt with some equivalent estimates of the integral of trilinear
form, and pointed out that the worst singularity occurs when an orthogonal
relationship of three phases in that integral holds. Particularly in case n = 2,
Colliander, Delort, Kenig and Staffilani succeeded in overcoming this difficulty
by the dyadic decomposition in not only the sizes of phases but also the angles
among them. See [4] for the detail. Combining the above results for a(ξ) = |ξ|2
with n = 1, 2, we have the following.
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Theorem 1.1 ([4, 10]). Let n = 1, 2, and let a(ξ) = |ξ|2.
(i) For any s ∈ (− 3

4
, 0], there exist b ∈ ( 1

2
, 1) and C > 0 such that

‖uv‖s,b−1 6 C‖u‖s,b ‖v‖s,b, (1)

‖ūv̄‖s,b−1 6 C‖u‖s,b ‖v‖s,b. (2)

(ii) For any s ∈ (− 1
4
, 0], there exist b ∈ ( 1

2
, 1) and C > 0 such that

‖ūv‖s,b−1 6 C‖u‖s,b ‖v‖s,b. (3)

(iii) For any s < − 3
4

and for any b ∈ R, the estimates (1) and (2) fail to hold,

and for any s < − 1
4

and for any b ∈ R, (3) fails to hold.

Here we mention a few remarks. First, the difference between (i) and (ii)
are basically due to the structure of the products. In view of Hörmander’s
theorem concerned with the microlocal condition on the multiplication of dis-
tributions (see [13, Theorem 0.4.5] for instance), uū needs more smoothness of
u than u2 and ū2 to make sense. Secondly, the local smoothing effect and the
dispersion property of the fundamental solution eit|D|

2

are strongly reflected in
these bilinear estimates. These are applied to solving the initial value problem
for some nonlinear Schrödinger equations in a class of tempered distributions
which are not necessarily functions. Indeed, by using the technique developed
in [10] together with the estimates (1), (2) and (3), one can prove time-local
well-posedness of the initial value problem for quadratic nonlinear Schrödinger
equations of the form

Dtu− |D|2u = Nj(u, u) in Rn × R, (4)

u(x, 0) = u0(x) in Rn, (5)

in Sobolev space Hs(Rn) with s ∈ (− 3
4
, 0] for j = 1, 2 and s ∈ (− 1

4
, 0] for j = 3,

respectively. Here n = 1, 2, u(x, t) is a complex-valued unknown function of
(x, t), u0 is a given initial data, N1(u, v) = uv, N2(u, v) = ūv̄, N3(u, v) = ūv,
Hs(Rn) = 〈D〉−sL2(Rn), and L2(Rn) is the set of all square-integrable functions
on Rn.

Some two-dimensional nonlinear dispersive equations with a nonelliptic
principal part arise in classical mechanics. For example, the Ishimori equa-
tion ([8])

Dtu− (D2
1 −D2

2)u =
−2ū

1 + |u|2
(
(D1u)

2 − (D2u)
2
)
+ i(D2φD1u+D1φD2u),

φ = −4i|D|−2

(
D1ūD2u−D1uD2ū

1 + |u|2
)
,
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and the hyperbolic–elliptic Davey-Stewartson equation ([5])

Dtu− (D2
1 −D2

2)u = −|u|2u− uD2
1|D|−2(|u|2)

are well-known two-dimensional nonlinear dispersive equations. It is easy to see
that eit(D

2
1
−D2

2
) has exactly the same local smoothing and dispersion properties

of eit(D
2
1
+D2

2
) since a(ξ) = ξ2

1 ± ξ2
2 are two-dimensional nondegenerate quadratic

forms. If the gradient a′(ξ) of a quadratic form a(ξ) does not vanish for ξ 6= 0,
then eita(D) gains 1

2
-spatial differentiation globally in time and locally in space.

If the Hessian a′′(ξ) of an n-dimensional quadratic form a(ξ) is a nonsingular
matrix, then the distribution kernel of eita(D) in Rn×Rn is estimated by O(|t|−n

2 )
for all t ∈ R (see, e.q., [9]). Then, we expect that the bilinear estimates for
a(ξ) = ξ2

1 − ξ2
2 are the same as those for a(ξ) = ξ2

1 + ξ2
2 . The purpose of this

paper is to examine this expectation. However, our answer is negative. More
precisely, our results are the following.

Theorem 1.2. Let n = 2, and let a(ξ) = ξ2
1 − ξ2

2 .

(i) For s ≥ 0, there exists b ∈ ( 1
2
, 1) and C > 0 such that the estimates (1),

(2) and (3) hold.

(ii) For any s < 0 and for any b ∈ R, the estimates (1), (2) and (3) fail to

hold.

Note that our results are independent of the structure of products. In other
words, our results depend only on the properties of a(ξ), in particular, on the
noncompactness of the zeros of a(ξ).

We shall prove Theorem 1.2 in the next section. On one hand, we directly
compute trilinear forms in the phase space to show (i) of Theorem 1.2. We see
that the Strichartz estimates work for making use of the regularity property of
the free propagator eit(D

2
1
−D2

2
) to prove (i).

On the other hand, to prove (ii) of Theorem 1.2, we construct two sequences
of real-analytic functions for which the bilinear estimates break down. We
observe that one cannot make full use of the regularity properties of eit(D

2
1
−D2

2
)

for the negative index s. More precisely, if s < 0, then these properties cannot
work effectively near the set of zeros of a(ξ), that is, the hyperbola in R2.

Finally, we remark that our results seem to be strongly related with the
recent results on bilinear estimates of the two dimensional Fourier restriction
problems by Tao and Vargas in [17] and [18]. They obtained bilinear estimates
of two functions restricted on the unit paraboloid in the phase space. Their
method of proof does not work for the restriction on the hyperbolic paraboloid.

2. Proof of Theorem 1.2

Fix a(ξ) = ξ2
1 − ξ2

2 . Note that a(ξ) = a(−ξ) for any ξ ∈ R2. First, we prove (i)
of Theorem 1.2. Secondly, we prove a lemma needed in the proof of (i). Lastly,
we conclude this paper by proving (ii) of Theorem 1.2.
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Proof of (i) of Theorem 1.2. Let s ≥ 0 and 1
2
< b < 1. We employ the idea of

trilinear estimates developed in [15]. In view of the duality argument, we have
only to show that there exists a positive constant C depending only on s and b
such that

|I| 6 C‖f‖L2(R3) ‖g‖L2(R3) ‖h‖L2(R3),

where

I =

∫

A1

∫

A2

〈µ0〉s 〈µ1〉−s 〈µ2〉−s f(µ0, τ0)g(µ1, τ1)h(µ2, τ2)

〈τ0 + a(µ0)〉1−b 〈τ1±a(µ1)〉b 〈τ2±a(µ2)〉b
dτ0dτ1dτ2dµ0dµ1dµ2

and, A1 and A2 are defined by

A1 = {(µ0, µ1, µ2) ∈ R6 | µ0 + µ1 + µ2 = 0}
A2 = {(τ0, τ1, τ2) ∈ R3 | τ0 + τ1 + τ2 = 0}.

By using the pairs of signatures ±a(µ1) and ±a(µ2) in I, we can prove (1), (2)
and (3) together. More precisely, the pairs (−,−), (+,+) and (+,−) correspond
to (1), (2) and (3) respectively. Since 〈µ1 + µ2〉s 6 2s 〈µ1〉s 〈µ2〉s for s ≥ 0, a
simple computation gives

|I| =
∣∣∣∣
∫

R4

∫

R2

f(−µ1 − µ2,−τ1 − τ2)g(µ1, τ1)h(µ2, τ2)

〈τ1±a(µ1)〉b 〈τ2±a(µ2)〉b

× 〈µ1 + µ2〉s 〈µ1〉−s 〈µ2〉−s

〈−τ1 − τ2 + a(µ1 + µ2)〉1−b
dτ1 dτ2 dµ1 dµ2

∣∣∣∣

6 2s
∫

R4

∫

R2

|f(−µ1 − µ2,−τ1 − τ2)||g(µ1, τ1)||h(µ2, τ2)|
〈τ1±a(µ1)〉b 〈τ2±a(µ2)〉b

dτ1 dτ2 dµ1 dµ2

= (2π)−
3

22s
∫

R2

∫

R

F
−1
ξ,τ [|f |](x, t)G(x, t)H(x, t) dt dx,

where

G(x, t) =

∫

R2

∫

R

ei(x·µ+tτ) |g(µ, τ)|
〈τ±a(µ)〉b dτ dµ

H(x, t) =

∫

R2

∫

R

ei(x·µ+tτ) |h(µ, τ)|
〈τ±a(µ)〉b dτ dµ,

and F
−1
ξ,τ denotes the inverse Fourier transform on ξ and τ , that is,

F
−1
ξ,τ [f̃ ](x, t) = (2π)−

3

2

∫∫

R3

eitτ+ix·ξf̃(ξ, τ)dξdτ.

The estimates of G and H are the following:
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Lemma 2.1. For b > 1
2
, there exists C1 = C1(b) > 0 such that for any g,

h ∈ L2(R3)

‖G‖L4(R3) 6 C1‖g‖L2(R3), ‖H‖L4(R3) 6 C1‖h‖L2(R3),

where L4(R3) is the set of all Lebesgue measurable functions of (x, t) ∈ R2 × R

satisfying

‖F‖L4(R3) =

(∫

R2

∫

R

|F (x, t)|4 dtdx
) 1

4

< +∞.

By using Lemma 2.1, the Hölder inequality and the Plancherel formula, we
deduce

|I| 6 ‖f‖L2(R3)‖G‖L4(R3)‖H‖L4(R3) 6 C‖f‖L2(R3)‖g‖L2(R3)‖h‖L2(R3),

which was to be established.

Proof of Lemma 2.1. We show the estimate of G. Changing a variable by τ =
λ∓a(ξ), we deduce

G(x, t) =

∫

R2

∫

R

ei(x·ξ+tτ) |g(ξ, τ)|
〈τ±a(ξ)〉b dτ dξ

=

∫

R

eitλ〈λ〉−b

(∫

R2

eix·ξe∓ita(ξ)|g(ξ, λ∓a(ξ))| dξ
)
dλ

=

∫

R

eitλ〈λ〉−be∓ita(D)ψλ(x) dλ,

where (ψλ)
∧(ξ) = 2π|g(ξ, λ∓ a(ξ))|. Applying the Minkowski inequality, we get

‖G‖L4(R3) =

(∫∫

R3

∣∣∣∣
∫

R

eitλ〈λ〉−be∓ita(D)ψλ(x)dλ

∣∣∣∣
4

dt dx

)1

4

6

∫

R

(∫∫

R3

∣∣eitλ〈λ〉−be∓ita(D)ψλ(x)
∣∣4 dt dx

)1

4

dλ

=

∫

R

〈λ〉−b

(∫∫

R3

∣∣e∓ita(D)ψλ(x)
∣∣4 dtdx

)1

4

dλ. (6)

Since a(ξ) is a two-dimensional nondegenerate quadratic form of ξ, the so-
called Strichartz estimate

‖e±ita(D)u‖L4(R3) 6 C‖u‖L2(R2)
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holds (see, e.g., [6, Appendix]). Using this, the Schwarz inequality with b > 1
2

and the Plancherel formula, we obtain

‖G‖L4(R3) 6 C

∫

R

〈λ〉−b‖ψλ‖L2(R2) dλ

6 C(b)

(∫

R

‖ψλ‖2
L2(R2) dλ

)1

2

= 2πC(b)

(∫

R

∫

R2

|g(ξ, λ∓a(ξ))|2 dξ dλ
)1

2

= 2πC(b)

(∫

R

∫

R2

|g(ξ, λ)|2 dξ dλ
)1

2

= 2πC(b)‖g‖L2(R3).

This completes the proof of Lemma 2.1.

Proof of (ii) of Theorem 1.2. Basically we show the optimality in the bilinear
estimates by constructing suitable Knapp-type counterexamples as in [10].

First, we prove the case j = 1. Fix s < 0 and b ∈ R. Set B = max{1, |b|}
for short. Suppose that there exists a positive constant C > 0 such that the
bilinear estimate (1) holds for any u, v ∈ L2(R3). For N = 1, 2, 3, . . ., set

ũN(ξ1, ξ2, τ) = χQN
(ξ1, ξ2, τ), ṽN(ξ1, ξ2, τ) = χQN

(−ξ1,−ξ2,−τ),
where χA is the characteristic function of a set A, and

QN =

{
(ξ1, ξ2, τ) ∈ R3

∣∣∣∣ N 6 ξ1 + ξ2 6 2N, |ξ1 − ξ2| 6
1

4N
, |τ | 6 1

2

}
.

Note that

QN ⊂
{
(ξ1, ξ2, τ) ∈ R3

∣∣∣∣ |τ±a(ξ)| 6 1,
N

2
6 |ξ| 6 2N

}
, (7)

since

−1

2
6 a(ξ) = (ξ1 + ξ2)(ξ1 − ξ2) 6

1

2
N2

2
6 |ξ|2 =

(ξ1 + ξ2)
2

2
+

(ξ1 − ξ2)
2

2
6 2N 2 +

1

32N2
.

By using (7), we deduce

‖uN‖s,b =
(∫∫

QN

〈τ − a(ξ)〉2b 〈ξ〉2sdτdξ
) 1

2

6 2B−sN s

(∫∫

QN

dτdξ

) 1

2

= 2B−s−1N s, (8)
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and

‖vN‖s,b =
(∫∫

QN

〈τ + a(ξ)〉2b 〈ξ〉2sdτdξ
) 1

2

6 2B−sN s

(∫∫

QN

dτdξ

) 1

2

= 2B−s−1N s. (9)

A simple computation shows that for large N ∈ N,

ũNvN(ξ, τ) = (2π)−
3

2

∫∫

R3

χQN
(ξ − η, τ − λ)χQN

(−η,−λ)dηdλ

= (2π)−
3

2

∫∫

QN

χQN
(ξ + η, τ + λ)dηdλ

>
1

26+ 1

2 π
3

2

χRN
(ξ, τ),

where

RN =

{
(ξ1, ξ2, τ) ∈ R3

∣∣∣∣ |ξ1 + ξ2| 6
N

2
, |ξ1 − ξ2| 6

1

8N
, |τ | 6 1

4

}
.

Since RN ⊂
{
(ξ1, ξ2, τ) ∈ R3

∣∣ |τ±a(ξ)| 6 1, |ξ| 6 N
2

}
, we get

‖uNvN‖s,b−1 =

(∫∫

R3

|ũNvN(ξ, τ)|2〈τ − a(ξ)〉2(b−1) 〈ξ〉2sdτdξ
) 1

2

>
1

26+ 1

2π
3

2

(∫∫

RN

〈τ − a(ξ)〉2(b−1) 〈ξ〉2sdτdξ
) 1

2

> 2B−6− 1

2π−
3

2N s

(∫∫

RN

dτdξ

) 1

2

= 2B−8− 1

2π−
3

2N s. (10)

Substitute (8),(9) and (10) into (1). Then we have 2B−8− 1

2π−
3

2N s6 22B−2s−2N2s,

which becomes 2−B+2s−6− 1

2π−
3

2 6 N s. Since s < 0, the right hand side of the
above goes to zero as N → ∞ while the left hand side is a strictly positive
constant depending only on s < 0 and b ∈ R. This is contradiction. Then, this
completes the proof of the case j = 1.

The cases j = 2, 3 are proved in the same way. Let QN be the same as
above. For j = 2, set

ũN(ξ, τ) = χQN
(−ξ,−τ), ṽN(ξ, τ) = χQN

(ξ, τ),
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and for j = 3, set

ũN(ξ, τ) = χQN
(−ξ,−τ), ṽN(ξ, τ) = χQN

(−ξ,−τ).

We omit the detail about the cases j = 2, 3.
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