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A Sharp Stability Criterion for

Soliton-Type Propagating Phase Boundaries

in Korteweg’s Model

Kevin Zumbrun

Abstract. Recently, Benzoni–Gavage, Danchin, Descombes, and Jamet have given
a sufficient condition for linear and nonlinear stability of solitary wave solutions of
Korteweg’s model for phase-transitional isentropic gas dynamics in terms of convexity
of a certain “moment of instability” with respect to wave speed, which is equivalent
to variational stability with respect to the associated Hamiltonian energy under a
partial subset of the constraints of motion; they conjecture that this condition is
also necessary. Here, we compute a sharp criterion for spectral stability in terms
of the second derivative of the Evans function at the origin, and show that it is
equivalent to the variational condition obtained by Benzoni–Gavage et al., answering
their conjecture in the positive.
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1. Introduction

Motivated by recent work of Benzoni–Gavage et al [2], we investigate in this
paper stability of “soliton-type” (i.e., homoclinic) traveling wave solutions

U(x, t) = Ū(x− st), lim
z→±∞

Ū(z) = U∞, (1.1)

U = (v, u), Ū = (v̄, ū) of the Korteweg model

vt − ux = 0

ut + p(v)x = −κvxxx,
(1.2)

for isentropic phase-transitional gas dynamics, written in Lagrangian coordi-
nates, with v denoting specific volume, u particle velocity, p pressure, and
κ > 0 a coefficient of capillarity, taken for simplicity to be constant. The
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extension of our results to general κ(v) as considered in [2] is straightforward;
see Remarks 1.6 and 1.8. As pointed out in [5], system (1.2) is also formally
equivalent to the “good” Boussinesq equation modeling shallow-water flow.

Equations (1.1), accounting for the effects of compressibility and capillarity,
but neglecting viscosity, are of dispersive, type, in contrast to the dissipative
type of the usual compressible Navier–Stokes equations. Indeed, as discussed
in greater generality in [2], (1.1) has the Hamiltonian structure

Ut = J δH, (1.3)

where

J = ∂xJ := ∂x

(

0 1
1 0

)

(1.4)

is a constant-coefficient skew-symmetric first-order differential operator and δH
is a second-order differential operator corresponding to the variational derivative
of the Hamiltonian functional

H =

∫

H, H =
1

2
(u− u∞)2 −

∫ v

v∞

(p(z)− p(v∞))dz +
1

2
κ(v)(vx)

2, (1.5)

of the (relative) total energy H of the system, with κ(v) ≡ κ constant.

Formally,
(d/dt)H(U) = 〈δH, Ut〉 = 〈δH,J δH〉 = 0,

so that the Hamiltonian is one conserved quantity of motion. A second (for-
mally) conserved quantity, arising as a consequence of group invariance under
translation (see [14]) is the relative generalized momentum

Q(U) =
1

2
〈J(U − U∞), (U − U∞)〉 =

∫

(u− u∞)(v − v∞)(x) dx (1.6)

(formally, J = (∂xJ)
−1∂x, as prescribed in [14]). Two additional conserved

quantities are the relative masses

P1(U) =

∫

(v − v∞)(x) dx, P2(U) =

∫

(u− u∞)(x) dx.

The existence of these further quantities is associated with the fact that oper-
ator J is not onto, a circumstance that turns out to be significant.

With this framework, it was shown by Benzoni–Gavage et al [2] that sta-
bility of solitons may be investigated by variational methods, following the
formalism of [6, 14]. Specifically, one may compute that solitary wave solu-
tions are critical points of the Hamiltonian H under constraint Q, satisfying
the Euler–Lagrange equation (itself Hamiltonian)

(δH + sδQ)(Ū) = 0, (1.7)
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where speed s plays the role of a Lagrange multiplier. Such solutions occur
in a one-parameter family Ū s. Formally, strict variational stability of Ū with
respect to constraint Q is thus sufficient for time-evolutionary orbital stability
of the family {Ū s}, since, then, (i) a minimum Ū s(Q) should therefore persist
under small changes in Q, and (ii) within each level surface of Q, the conserved
quantityH(U)−H(Ū s(Q)) should control ‖U−Ū s(Q)‖2 in the underlying Hilbert
norm.

Denote by

Ls := (δ2H + sδ2Q)|Ūs (1.8)

the self-adjoint operator given by the constrained Hessian about Ū s. Then,
strict variational stability corresponds to positivity of Ls on the kernel of δQ.
On the other hand, changing to moving coordinates x̃ = x − st for which Ū s

is a stationary solution, and linearizing about U = Ū s(x̃), we obtain linearized
time-evolution equations Ut = LU , where

L := JLs

denotes the (non-self-adjoint) linearized operator about the wave; see (2.5)–
(2.6). Thus, time-evolutionary stability is related to spectral stability of L, i.e.,
nonexistence of spectra with positive real part; see Definition 2.1.

In [14], Grillakis et al made rigorous the intuitive argument (i)–(ii) above,
showing that variational stability indeed implies nonlinear orbital stability in a
quite general framework (which applies here). Moreover, under the assumption
that Ls have at most one negative eigenvalue, they gave a necessary and suffi-
cient condition for strict variational stability of Ū s at a prescribed speed s = s̄,
in terms of strict convexity with respect to s of the “moment of instability”

m(s) := (H + sQ)(Ū s)

(in the terminology of [6]), i.e.,

(d2m/ds2)(s̄) = (d/ds)Q(Ū s) = 〈(Ū − U∞), J(∂Ū s̄/∂s)〉 > 0. (1.9)

Finally, for J onto, they showed by construction of a suitable Lyapunov func-
tion that strict failure of (1.9) implies time-evolutionary instability, completely
deciding the issue of stability.

Remark 1.1. Relation (1.9) shows that convexity of the moment of insta-
bility is equivalent to monotone increase with respect to s of the generalized
momentum Q along {Ū s}.1 Local monotonicity of Q along {Ū s} is necessary
for the picture of stability described above (in particular, for strict variational

1In the notation of [14], monotone decrease with respect to ω = −s.
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stability), since the map from s to Q(Ū s) must be locally invertible if all suffi-
ciently small perturbations (corresponding to small variations in Q) are to lie
near some Ū s. Through the key relation

Ls(∂Ū s/∂s) = −δQ (1.10)

(obtained by differentiating (1.7) with respect to s; see [2, Proposition 4]), we
find that (1.9) is equivalent to

d2m/ds2 = −〈∂Ū s/∂s,Ls∂Ū s/∂s〉.

Remark 1.2. The condition that Ls have at most one unstable eigenvalue is
important for the conclusion of equivalence (of variational and time-evolutionary
stability). Even for finite-dimensional ODE, it is easy to construct examples for
which L, self-adjoint, has two unstable eigenvalues but L = JL is stable, with
J bijective. For example, consider the system generated byH(x, y) = |x|2−|y|2,
x, y ∈ R

2, J =
(

J 0
0 J

)

, with J =
(

0 1
−1 0

)

. In general, the numbers of unstable

eigenvalues are linked by parity considerations. See [16, 17] for a more detailed
discussion of the relation between the number of unstable eigenvalues of L and
JL.

In [2], a simple formula is given for m(s) and evaluated numerically to show
that regions of both convexity and nonconvexity of m(·) may arise, depending
on physical parameters. The first case corresponds with orbital stability, as dis-
cussed above. However, since J is not onto, the second case is inconclusive by
the theory of [14]. The authors conjecture nonetheless that convexity is neces-
sary as well as sufficient for stability, so that the second case in fact corresponds
to instability.

Here, we investigate time-evolutionary stability directly, using alternative,
Evans function methods introduced in [1, 3, 13, 25, 26] to obtain a sharp cri-
terion for spectral time-evolutionary stability of a prescribed wave Ū s̄ in terms
of the sign of the second derivative at the origin of the Evans function D(λ),
an analytic function whose zeroes correspond in location and multiplicity with
eigenvalues of the linearized operator L = JLs̄ about the wave. Specifically,
we obtain the following results deciding in the positive the conjecture of [2].

Theorem 1.3. D′′(0) = c(d2m/ds2)(s̄) for a nonzero constant c.

Corollary 1.4. Traveling waves (1.1) of (1.2) are time-evolutionarily (linearly
and nonlinearly) stable if d2m/ds2 > 0 and only if d2m/ds2 ≥ 0, i.e., if they
are strictly variationally stable with respect to constraint Q, and only if they are
nonstrictly variationally stable.

Theorem 1.3 generalizes a number of similar results obtained in [25] for var-
ious related scalar models, and indeed holds in far greater generality for systems
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of abstract form (1.3). To see why, and to better understand in general the rela-
tion between the moment condition and variational and time-evolutionary sta-
bility, notice that, in this generality, (1.6) and(1.9) become, formally (see [14]),

Q =
1

2

〈

J −1∂x(U − U∞), (U − U∞)
〉

and

(d2m/ds2)(s̄) =
〈

J −1∂x(Ū − U∞), (∂Ū s̄/∂s)
〉

=
〈

J −1∂xŪ , (∂Ū s̄/∂s)
〉

.

On the other hand, differentiation of the traveling-wave equation with respect
to x and s, respectively, reveals that f1 = ∂xŪ is a right zero-eigenfunction of
the linearized operator L and f2 = −∂sŪ s̄ a generalized zero-eigenfunction of
height two; for further discussion, see Section 2. Noting that left and right zero
eigenfunctions f̃1 and f1 of L = JL are related, formally, by f̃1 = J −1f1, we
find the general relation

(d2m/ds2)(s̄) = −〈f̃1, f2〉. (1.11)

But, vanishing of the inner product (1.11) of the genuine left eigenfunc-
tion f̃1 against the generalized right eigenfunction f1 of height two precisely de-
tects existence of a generalized eigenfunction of height three (by Jordan form),
i.e., algebraic multiplicity of order two or more of the eigenvalue λ = 0. Thus,
(d2m/ds2)(s̄) must be a nonzero multiple of D′′(0), since vanishing of D′′(0)
detects the same phenomenon.

Formula (1.11) reveals a direct (formal) link between the moment condition
and time-evolutionary stability that, moreover, does not require invertibility
of J on the whole space, but only on the range of ∂x, through the distinguished
roles of (∂Ū s̄/∂x) and −(∂Ū s̄/∂s) as zero eigenfunction and generalized eigen-
function of L. Recall that these same functions played critical roles in the argu-
ment of [14] linking the moment condition and variational stability: (∂Ū s̄/∂x)
as zero eigenfuction of L and −(∂Ū s̄/∂s) through relation (1.10).

This formal argument can be made rigorous using the extended spectral
theory of [29, Section 6], valid essentially wherever an Evans function can be
analytically defined,2 concerning Jordan structure at eigenvalues embedded in
essential spectrum, along with additional assumptions assuring that there exist
no additional (extended) genuine zero eigenfunctions other than f0; see Re-
mark 1.6. We shall instead follow the more concrete approach of direct Evans
function calculations using the specific structure at hand, which provide at the
same time sign information. However, we note that these are quite similar to
those on which the abstract development of [29] is based (see in particular the
proof of [29, Proposition 6.3]).

2See also [23, 27] for extensions to operators L of the degenerate type considered here.
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Remark 1.5. Along similar lines, the general relation

∂kλD(0) = c〈f̃1, fk〉 (1.12)

has been established by Kapitula [15] for general (not necessarily Hamiltonian)
systems for which λ = 0 is an isolated eigenvalue of geometric multiplicity one
of the linearized operator L under consideration. In the present (Hamiltonian)
case, λ = 0 is embedded in the essential spectrum of L, and so this result does
not apply. Indeed, Benzoni–Gavage, Serre, and Zumbrun [3] have shown in the
context of viscous conservation laws that (1.12) does not hold in general for
embedded eigenvalue λ = 0, but rather must be corrected by the addition of
appropriate boundary terms at plus and minus spatial infinity; see also related
results in [18, 19, 20] for perturbed NLS equations. Thus, the argument above
reflects partly the special features of the Hamiltonian case.

Remark 1.6. When J is a differential operator of the general form ∂xJ con-
sidered here, with J an invertible (not necessarily local) operator onto L2 (the
most general case falling under the sufficient but not necessary theory of [14]),
we may take J −1∂x = J−1 in the discussion above, and

f̃1 = J −1f1 = J −1∂x(Ū − U∞) = J−1(Ū − U∞).

Noting that f̃1 decays exponentially as x→ ±∞, we find that it is indeed a left
genuine zero-eigenfunction of L, making rigorous sense of relation (1.11). To
complete the rest of the formal argument sketched above, note that bounded
solutions of Lf = 0 correspond to nearby homoclinic connections with different
endstates, hence have equal limits as x → ±∞, and this eliminates them as
possible extended eigenfunctions (which might in general be merely bounded
[29]) unless they in fact vanish at ±∞. Thus, the standard assumption that Ū
be a transverse connection, ensuring that the L2 kernel of L is one-dimensional,
is sufficient to ensure that the extended kernel of L is also one-dimensional, i.e.,
there is a unique (up to constant factor) extended genuine eigenfunction f1 with
dual eigendirection f̃1.

Moreover, since f̃1, f1, and f2 are all exponentially decaying, there exists an
extended generalized eigenfunction f3, bounded but not necessarily decaying at
infinity, if and only if 〈f̃1, f2〉 = 0. For, Lf3 = f2 implies

〈f̃1, f2〉 = 〈f̃1, Lf3〉 = 〈L∗f1, f3〉 = 0.

On the other hand, if the extended Jordan chain is order two, then (see [29,
Proposition 5.3 (iii)]) the extended spectral projection

P = f1〈f̃2, ·〉+ f2〈f̃1, ·〉

preserves exponentially decaying elements of the extended eigenspace; in par-
ticular Pf2 = f2, whence 〈f̃1, f2〉 6= 0. Finally, recalling ([29, Theorem 6.3 (ii)])
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that the Evans function vanishes with multiplicity equal to the dimension of
the corresponding extended eigenspace, we obtain the result

D′′(0) = c(d2m/ds2)(s̄), c 6= 0 (1.13)

for this general class: in particular, for the general isentropic Korteweg equa-
tions discussed in [2] consisting of (1.3)–(1.5) with arbitrary κ(v) > 0.

Remark 1.7. The same extended spectrum argument used in Remark 1.6,
applied to general (not necessarily Hamiltonian) PDE, yields the remarkable
fact that the dual version

∂kλD(0) = c̃〈f̃k, f1〉, (1.14)

c̃ 6= 0, of (1.12) remains valid in complete generality, without additional bound-
ary terms, for embedded eigenvalues with (extended) geometric multiplicity one
for which the associated eigenfunction f1 is exponentially decaying, a condition
that is in the traveling wave context essentially always satisfied.3 For, then
Pf1 = f1, where P =

∑K

j=1 fj〈f̃K−j+1, ·〉 and K ≥ k is the order of vanishing of

the Evans function, whence 〈f̃k, f1〉 = 0 if and only ifK ≥ k+1, or, equivalently,
∂kλD(0) = 0. Boundary terms arise in the forward formula through the inte-
gration by parts converting 〈f̃k, f1〉 = 〈f̃k, Lk−1fk〉 to −1k−1〈(L∗)k−1f̃k, fk〉 =
−1k−1〈f̃1, fk〉, except in the case, as in Remark 1.6 above, that f1, . . . , fk or
f̃1, . . . , f̃k decay exponentially. (Recall that extended eigenfunctions fj, f̃j do
not necessarily decay at infinity, except, by assumption, f1, but rather grow at
most algebraically [3, 29].)

Remark 1.8. The relation (1.13) by itself does not give give the complete sta-
bility information of Corollary 1.4, but requires further information on the sign
of c (with D suitably normalized: more precisely, the relation between sgn(c)
and sgnD(+∞)). In practice, this is often not restrictive, since we may calibrate
the sign of c by continuation (homotopy) to a case where stability is decided by
the theory of [14], i.e., either d2m/ds2 > 0 (variational stability) or J onto. For
example, in the case considered here, the collection of all soliton solutions of all
isentropic Korteweg models comprises an open set in parameter space, so we
may conclude by the (numerically observed) existence of stable waves. Alter-

natively, the regular perturbation J θ := ∂xJ + θK, K :=
(

0 1
−1 0

)

, θ sufficiently

small, preserves sign information while converting J to an operator J θ that is
onto for all θ 6= 0.

3Likewise, the obvious extensions to higher geometric multiplicity remain valid so long as
all genuine extended eigenfunctions are exponentially decaying.
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A still more general approach, not limited to the Hamiltonian setting, is to
work directly from (1.14), computing the sign by a direct calculation like that of
Section 3. In practice, one may sometimes determine the normalization without
doing the full calculation, in which case it is easier to determine f̃k, f1 numer-
ically; see, for example, the analysis of stability of undercompressive traveling
waves of thin-film models in [4, Proposition 2.11 and Footnote 6 on duality].
We point out that the righthand side of (1.14) may by itself be considered
as a generalized Melnikov integral, like d2m/ds2 giving geometric information
about the dynamics of the traveling-wave ODE; see [23, Section 4.2] (especially
eqns. (4.9)–(4.13)) for a general duality principle linking dual eigenfunctions to
solutions of the adjoint ODE.

Remark 1.9. There appears in [2] the statement, apparently contradicting
Corollary 1.4, that there exist stable solitons that are variationally unstable.
However, the time-evolutionarily stable waves considered in [2] are in the stan-
dard sense variationally stable; indeed, this is the property that is used to prove
time-evolutionary stability. The instability that is referred to, rather, is of the
constrained Hessian, (1.8), with respect to unconstrained perturbations (i.e.,
perturbations outside the kernel of δQ), a notion that is necessary but not
sufficient for instability with respect to constraint Q.

Note. After the completion of this paper, we have learned of results of Bridges
and Derks [7, 8] establishing the relation D′′(0) = c(d2m/ds2) for the good
Boussinesq system, which is equivalent to the main example (1.2) studied here.
More generally, they derive formulae generalizing those of Pego and Weinstein
[25] for scalar equations for the first nonvanishing derivative of a “symplec-
tic Evans function” at the origin, for systems that can be put in the multi-
symplectic form MZt + KZx = ∇S(Z), where Z ∈ R

2n, M , K are constant
skew-symmetric 2n × 2n matrices, and S is a smooth function on R

2n. These
include in principle a rather large class of Hamiltonian PDE, overlapping with
but apparently distinct from the class (described in Remark 1.6) to which our
methods apply.

The multi-symplectic approach has the advantage that it is equation inde-
pendent once a change of coordinates to multi-symplectic form has been found,
yielding automatically a characterization of the sign of c in (1.13) in terms of
the geometry of the phase space of the traveling-wave ODE (cf. Remark 1.8,
par. two). On the other hand, our methods are somewhat more straightfor-
ward, being carried out in the original coordinates and motivated by the simple
relation (1.11). In addition (see Remarks 1.7–1.8), they yield useful partial
information also in the general, non-Hamiltonian case.
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2. Preliminaries

Substituting (1.1) into (1.2), we obtain the traveling-wave equation

−sv′ − u′ = 0

−su′ + p(v)′ = −κv′′′, (2.1)

or, substituting the first equation into the second, and integrating from −∞,
the Hamiltonian ODE (nonlinear oscillator)

v′′ = κ−1
(

s2v + p(v)− s2v∞ − p(v∞)
)

. (2.2)

Alternatively, we may write (2.1) formally as −sU ′ = JH(U), or

J (δH + sJ)(U) = J δ(H + sQ)(U) = 0. (2.3)

By the Hamiltonian structure of (2.2), it follows that homoclinic orbits
persist under changes in speed s and endstate U∞, forming for fixed U∞ a one-
parameter family Ū s, s ≥ 0, as described in the introduction. The equations
are invariant under shifts in velocity u, so that any value of u∞ is possible.
However, the requirement that U∞ be a saddle-point of (2.1) enforces on v∞
the condition

s2 + p′(v∞) < 0. (2.4)

Making the standard change of coordinates x → x− st to a rest frame for
the traveling wave, we may investigate its stability as an equilibrium solution
U(x, t) = Ū(x) of Ut − sUx = J δH(U), or

Ut = J δ(H + sQ)(U). (2.5)

Linearizing (2.5) about Ū , we obtain

Ut = LU := JLs̄U, (2.6)

where Ls is defined as in (1.8) and s̄ denotes the speed of the wave Ū under
investigation.

Definition 2.1. The wave Ū is spectrally stable if the spectrum σ(L) of the
linearized operator L about the wave is contained in the nonpositive complex
half-plane {λ : <λ ≤ 0}.

Routine calculation (see, e.g., [2, 14, 25], or Section 3 below) shows that the
essential spectrum of L consists of the entire imaginary axis, so that stability is
at best of neutral, or bounded type, rather than asymptotic stability. This may
be seen, likewise, by the fact that the equations are time-space reversible. Spec-
tral stability is therefore determined by the point spectrum of L: specifically,
whether there lie eigenvalues off of the imaginary axis. The following general
result of Pego and Weinstein, a quantitative (linear) version of the previously-
remarked relation between variational and time-evolutionary stability, gives a
way to bound the number of such eigenvalues.
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Lemma 2.2 ([25]). For a linear operator L factoring as L = JL with J skew-
symmetric and L self-adjoint, the number of eigenvalues of L in the positive
complex half-plane {λ : <λ > 0} is less than or equal to the number of negative
eigenvalues of L.

Proof. See [25, Theorem 3.1].

Lemma 2.2 was used in [2] to establish the following upper bound. This
is not needed in the present context, in which we seek to establish instability,
but gives useful additional information; see Remark 3.3. (It is necessary for
stability; see Remark 2.4.)

Corollary 2.3 ([2]). The number of unstable (i.e., positive real part) eigenvalues
of L = JLs̄ is less than or equal to one.

Proof. Eigenvalues of Ls̄ may be shown to correspond to eigenvalues of a second-
order scalar Sturm–Liouville operator Mv := v′′ − κ−1(s2 + α)v, α := p′(v̄(x))
in the variable v. Since v̄′ by translation invariance is a zero eigenfunction
of this operator (see further discussion below; or, just differentiate (2.1)), the
number of unstable eigenvalues by standard Sturm–Liouville theory is equal to
the number of nodes (zeroes) of v̄′, which, by (2.1) may be seen to be one.
See [2] for details.

A general approach to resolving the issue of variational vs. evolutionary
stability when variational methods fail to decide the question, introduced in [25],
is via the Evans function D(λ), an analytic function taking real values to real
values, whose zeroes correspond to eigenvalues of L; for origins of the Evans
function, see [9, 10, 11, 12, 1]. By translational invariance, D(0) necessarily
vanishes. For, differentiating (2.3) with respect to x, we obtain LŪ ′ = 0, hence
Ū ′ is a zero eigenfunction of L. Likewise, existence of a one-parameter family Ū s

of solutions with the same endstate implies that D′(0) = 0. For, differentiating
(2.3) with respect to s yields L(∂Ū s/∂s)|s=s̄ = −Ū ′, hence −(∂Ū s/∂s)|s=s̄ is a
generalized zero eigenfunction of L and there is a nontrivial Jordan block for L
at λ = 0.

Since D(+∞) by standard considerations (see [1, 25, 13]) has a constant,
nonzero sign as parameters are varied, this means that, in the generic case that
D′′(0) 6= 0, the number of unstable (i.e., positive) real roots of D (eigenvalues
of L) is odd or even depending on the sign of D′′(0). Used in conjunction with
Lemma 2.2, this observation can yield complete information. Namely, when the
total number is at most one, spectral stability is determined by the sign of the
second derivative of the Evans function.

The second derivativeD′′(0) was evaluated in [25] for scalar KdV-type equa-
tions and shown in several related cases to be exactly the second derivative
with respect to s of the moment of instability, thus establishing necessity of
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d2m/ds2 ≥ 0 along with sufficiency of d2m/ds2 > 0 for linearized and nonlinear
stability in those cases. Their method of computing D and its derivatives does
not apply in the system case considered here. However, it was shown in [13]
and [3], respectively, that quite similar formulae may be obtained for D′(0) and
higher derivatives (d/dλ)kD(0) in the system case; see also [7, 8, 18, 19, 20, 22].

In the remainder of the paper, we calculate D′′(0) by the method of [3] and
show by explicit computation that it is a nonzero multiple of (d2m/ds2)(s̄), thus
establishing Theorem 1.3 and Corollary 1.4.

Remark 2.4. The relation (d2m/ds2)(s̄) = cD′′(0), c 6= 0, shows that the
assumption that Ls have at most one negative eigenvalue is necessary for the
result of [14] that (d2m/ds2)(s̄) > 0 implies stability. For, by the discussion
above, the sign of D′′(0), hence of (d2m/ds2), counts the parity of the number
of unstable eigenvalues, which might be even in general despite instability of L.

3. Evans function calculations

3.1. Construction of the Evans function.Writing out the eigenvalue equa-
tion (L− λ)U = 0, L as in (2.6), we obtain

λv − sv′ − u′ = 0

λu− su′ + (αv)′ = −κv′′′, (3.1)

where α := p′(v̄(x)) as in (2.1), which may be written in phase variables W =
(u, v, v′, v′′)tr as a first order system of ODE W ′ = A(x, λ)W , or









u
v
v′

v′′









′

=









0 λ −s 0
0 1 0 0
0 0 1 0

−κ−1λ κ−1sλ κ−1(−α− s2) −κ−1α′v̄x

















u
v
v′

v′′









. (3.2)

Using the fact (easily verified for (2.1)) that Ū(x) converges exponentially to
its limit U∞ as x→ ±∞, we may construct an Evans function for (3.2) by the
general method described in [13]; see [27] for a more recent exposition.

Examining first the constant-coefficient limit

λv − sv′ − u′ = 0

λu− su′ + α∞v
′ = −κv′′′

of (3.1), α∞ < 0 by (2.4), we find, taking the Fourier transform ∂x → iξ,
that the spectrum of limiting, constant coefficient operator L∞ of L satisfies
dispersion relation

λ(ξ) = siξ ±
√

α∞ − κξ4, ξ ∈ R, (3.3)
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hence consists of the imaginary axis. By a standard result of Henry [21] on
asymptotically constant-coefficient operators, we thus find that the essential
spectrum of L likewise consists of the imaginary axis, while spectra lying in
the strictly unstable half-plane Λ := {λ : <λ > 0} consists entirely of isolated
eigenvalues.

The same calculation shows that the dimensions of the stable and unsta-
ble subspaces of the limiting coefficient matrix A∞(λ) := limz→±∞A(z, λ) is
constant in Λ. For, substituting µ = iξ into the characteristic equation

(λ− sµ)2 + α−∞µ
2 + κµ4 = 0 (3.4)

determining eigenvalues µ(λ), we obtain the dispersion relation (3.3); thus,
eigenvalues µ(λ) may cross the imaginary axis only along the dispersion curve,
i.e., for λ on the imaginary axis. Taking λ → +∞ along the real axis in (3.4),
we find that λ2 ∼ −κµ4, so that µ lie along the fourth roots of −1. Thus,
both stable and unstable subspaces of A∞(λ) have dimension two in Λ. An
elementary matrix perturbation calculation at λ = 0 shows that these extend
analytically to a neighborhood of the origin, λ = 0, with limiting values at
λ = 0 given by the direct sum of stable (resp. unstable) subspace of A(λ) and
the vector

W = (
√
−α∞, 1, 0, 0)tr (resp. (−√−α∞, 1, 0, 0)tr),

with U = (v, u) coordinate equal to the unstable (resp. stable) subspace

U = (1,
√
−α∞)tr (resp. (1,−√−α∞)tr)

of the convection matrix a :=
( −s −1
α∞ −s

)

. (Recall, (2.4), that det a < 0, so that

a has one real positive and one real negative eigenvalue.)

Applying the framework of [13], we find that, on Λ, the subspaces of solu-
tions decaying at +∞ and −∞ of the variable-coefficient equations (3.1) like-
wise have dimension two. Moreover, there exist choices of bases W+

1 ,W
+
2 and

W−
3 ,W

−
4 for these subspaces that are analytic in λ on Λ and extend analyt-

ically to Λ ∪ B(0, r) for r > 0 sufficiently small. At λ = 0, we may choose
W+

1 (·, 0) = W−
4 (·, 0) = ∂xW̄

s̄ asymptotically decaying, W̄ s̄ := (ūs̄, v̄s̄, v̄s̄x, v̄
s̄
xx)

tr,
and W+

2 (·, 0), W−
3 (·, 0) asymptotically constant, with

lim
x→+∞

W+
2 (x, 0) = (c, 1, 0, 0)tr

lim
x→−∞

W−
3 (x, 0) = (−c, 1, 0, 0)tr, (3.5)

c :=
√−α∞ > 0. The Evans function is defined as the Wronskian

D(λ) := det
(

W+
1 W+

2 W−
3 W−

4

)

|x=0,

zeroes of which detect nontrivial intersection between decaying manifolds of
solutions at plus/minus spatial infinity, i.e., decaying solutions of eigenvalue
equation (3.1).
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3.2. Calculation of D′′(0). We now compute D′′(0) by a simplified version
(taking advantage of special structure) of the approach of [3].

Proof of Theorem 1.3. Following [3] (see also related calculations of [29, Sec-
tion 6]), we choose a convenient basis for the calculation of derivatives at the
origin, based on the Jordan chain of L at λ = 0. Namely, observing that
Z := ∂λU satisfies at λ = 0 the first-order generalized eigenvalue equation

(L− λ)Z = U (3.6)

if U(λ, ·) satisfies for all λ the eigenvalue equation (L−λ)U = 0, we may arrange
that not only W+

1 (0) = W−
4 (0) = ∂xW̄

s̄ as above, but also

∂λW
+
1 (0) = ∂λW

−
4 (0) = −(∂W̄ s/∂s)(s̄).

For, W+
1 and W−

4 may be chosen as “fast modes”, decaying uniformly exponen-
tially as x→ ±∞ for |λ| sufficiently small, whence ∂λW

+
1 (0) and ∂λW

−
4 (0) are

uniformly exponentially decaying at their associated spatial infinities as well,
and (their U components) satisfy the generalized eigenvalue equation (3.6),
which uniquely specifies them up to exponentially decaying solutions of the
eigenvalue equation: in this case, multiples c1W

+
1 and c2W

−
4 , respectively, which

may be removed by the analytic change of coordinates Wj → λcjWj.

With this normalization, we find immediately that

D(0) = det
(

∂xW̄
s̄ W+

2 W−
3 ∂xW̄

s̄
)

= 0

and
D′(0) = det

(

∂λW
+
1 W+

2 W−
3 W−

4

)

+ · · ·
+ det

(

W+
1 W+

2 W−
3 ∂λW

−
4

)

= det
(

∂xW̄
s̄ W+

2 W−
3 ∂sW̄

s̄
)

+ det
(

∂sW̄
s̄ W+

2 W−
3 ∂xW̄

s̄
)

= 0.

By a similar computation, we find that

D′′(0) = det
(

∂2λW
+
1 W+

2 W−
3 W−

4

)

+ det
(

W+
1 W+

2 W−
3 ∂2λW

−
4

)

= det
(

W+
1 W+

2 W−
3 (∂2λW

−
4 − ∂2λW

+
1 )
)

,

(3.7)

W+
1 = ∂xW̄

s̄, where Yj := ∂2λUj satisfy at λ = 0 the second-order generalized
eigenvalue equation

(L− λ)Y = Z. (3.8)

(Recall that Z := ∂λU satisfies the first-order generalized eigenvalue equa-
tion (3.6).)



24 K. Zumbrun

Now, setting λ = 0 and integrating (3.1) from x = ±∞ to x = 0, we obtain

sv + u = (sv + u)(±∞),

−su+ αv + κv′′ = (−su+ αv)(±∞),
(3.9)

for each (u, v) = (u, v)±j associated with W±
j . In particular, the righhand

sides of (3.9) vanish for (u, v) = (u, v)+1 . Likewise, setting (ũ, ṽ) = (ũ, ṽ)±j :=
∂2λ(u, v)

±
j , j = 1, 4, using (3.8), and recalling that we chose (ũ, ṽ) to vanish at

spatial infinity, we find that

sṽ + ũ = −
∫ x

±∞
(∂v̄s̄/∂s) dx,

−sũ+ αṽ + κṽ′′ =

∫ x

±∞
(∂ūs̄/∂s) dx.

(3.10)

Performing the row operations corresponding the the lefthand side of (3.9), i.e.,
adding κ−1(−sũ + αṽ) to v′′, then adding sv to u, and using (3.9), (3.5), and
(3.10), reduces (3.7) to

D′′(0) = det









0 s+ c s− c Cv

v+1 v+2 v−3 (∂2λv
−
4 − ∂2λv

+
1 )

(v+1 )
′ (v+2 )

′ (v−3 )
′ (∂2λv

−
4 − ∂2λv

+
1 )
′

0 −sc− c2 sc− c2 Cu









,

where Cv := −
∫ +∞
−∞ (∂v̄s̄/∂s) dx and Cu := κ−1

∫ +∞
−∞ (∂ūs̄/∂s) dx. Since the

matrix
(

s+ c s− c

−sc− c2 sc− c2

)

is invertible, by (2.4), there exist constants d2, d3 such

that

d3

(

s− c
sc− c2

)

− d2

(

s+ c
−sc− c2

)

=

(

Cv

Cu

)

.

Performing the corresponding column operation to eliminate Cv, Cu, we obtain,
finally,

D′′(0) = det









0 s+ c s− c 0
v+1 v+2 v−3 (∂2λv

−
4 − ∂2λv

+
1 + d2v

+
2 − d3v

−
3 )

(v+1 )
′ (v+2 )

′ (v−3 )
′ (∂2λv

−
4 − ∂2λv

+
1 + d2v

+
2 − d3v

−
3 )
′

0 −sc− c2 sc− c2 0









= Cγ,

(3.11)

where

C = det

(

s+ c s− c
−sc− c2 sc− c2

)

= 2c(p′(v∞) + s2) < 0.

and

γ = det

(

v+1 (∂2λv
−
4 − ∂2λv

+
1 + d2v

+
2 − d3v

−
3 )

(v+1 )
′ (∂2λv

−
4 − ∂2λv

+
1 + d2v

+
2 − d3v

−
3 )
′

)

.
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Expand now γ = γ−(0)− γ+(0), where

γ−(x) := det

(

v+1 v̂4
(v+1 )

′ (v̂4)
′

)

, γ+(x) := det

(

v+1 v̂1
(v+1 )

′ (v̂1)
′

)

and
v̂4 := ∂2λv

−
4 − d3v

−
3 , v̂1 := ∂2λv

+
1 − d2v

+
2 .

Since v̂4 is bounded as x→ −∞, while v+1 = v−4 decays exponentially,

γ−(−∞) = 0. (3.12)

Similarly,
γ+(+∞) = 0. (3.13)

By (3.9), (3.10), v+1 = v̄x satisfies v′′ + κ−1(s2 + α)v = 0, or

(

v
v′

)′

−
(

0 1
−κ−1(s2 + α) 0

)(

v
v′

)

=

(

0
0

)

while v̂± satisfy v̂′′+κ−1(s2+α)v̂ = κ−1
∫ x

−∞[−s(∂v̄s̄/∂s)+ (∂ūs̄/∂s)]dx+ Ĉ, or

(

v̂
v̂′

)′

−
(

0 1
−κ−1(s2 + α) 0

)(

v̂
v̂′

)

=

(

0
F

)

,

with Ĉ constant,

F := κ−1
∫ x

−∞
[−s(∂v̄s̄/∂s) + (∂ūs̄/∂s)] dx+ Ĉ. (3.14)

Thus, using inhomogeneous Abel’s formula and (3.12)-(3.13), we may eval-
uate the difference γ between Wronskians γ+ and γ− at x = 0 as the Melnikov-
type integral

γ = γ−(0)− γ+(0)

=

∫ +∞

−∞
det

(

v+1 0
0 F

)

(x) dx

=

∫ +∞

−∞
v̄xF (x) dx

= κ−1
∫ +∞

−∞
v̄x(x)

∫ x

−∞
[−s(∂v̄s̄/∂s) + (∂ūs̄/∂s)](y) dy dx

= κ−1
∫ +∞

−∞
(v̄ − v∞)[−s(∂v̄s̄/∂s) + (∂ūs̄/∂s)](x) dx,

where in going from the third to the fourth line we are using the fact that term
∫ +∞
−∞ Ĉvx(x) dx coming from (3.14) integrates to zero and in going from the
fourth to the final line we are using integration by parts.
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Substituting the relation −s(v̄ − v∞) = (ū − u∞) coming from the first
equation in (2.1) and recalling (1.9), Remark 1.1, we obtain, finally,

γ = κ−1
∫ +∞

−∞
[(ū− u∞)(∂v̄s̄/∂s) + (v̄ − v∞)(∂ūs̄/∂s)](x) dx

= κ−1
∫ +∞

−∞
(Ū − U∞)J(∂Ū s̄/∂s)(x) dx

= κ−1(d2m/ds2)(s̄).

(3.15)

Combining (3.11) and (3.15), we obtain

D′′(0) = (−C/κ)(d2m/ds2)(s̄), (3.16)

−C/κ > 0, completing the proof.

3.3. Proof of Corollary 1.4. By standard considerations [3, 13, 25, 27] we
have also the following.

Lemma 3.1. As λ→ +∞ along the real axis, sgnD(λ) has limit +1.

Proof. First, note thatD(λ) does not vanish for <λ sufficiently large, a standard
fact associated with well-posedness of the linearized time-evolutionary system;
this may be established either by asymptotic ODE theory as in [13, 27] or by
elementary energy estimates as in [3]. Thus, D(λ) has a (nonzero) limiting sign
as claimed.

To determine the value of this sign, we may consider a homotopy from
system (3.1) to the constant-coefficient equation

λv − u′ = 0

λu+ κv′′′ = 0,
(3.17)

capturing high-frequency behavior, for which bases Vj =
(

λ
µj
, 1, µj, µ

2
j

)

, µj =

θj
√
λ of exponential solutions may be explicitly calculated for all λ, where θj

are the fourth roots of −1.
Choosing bases V1,

1√
λ
(V2−V1) and V3, 1√

λ
(V4−V3) of decaying subspaces at

±∞, we find that these extend continuously to λ = 0, with the projection onto
(u, v) coordinates of the limiting bases equal to the standard Euclidean basis
(1, 0), (0, 1); in particular, the projection of the limiting subspaces is nonsingu-
lar. Likewise, it is nonsingular for the bases at λ = 0 for the original system,
and (by identical calculation) for all systems strictly between the two. Thus,
choosing continuously initializing bases at λ = 0 for the family of systems, we
find that the signs of D(+∞) and of the determinants d± of the projections of
decaying subspaces at ±∞ onto (u, v) coordinates are all constant under homo-
topy, with, moreover sgnD(+∞)d−d+ explicitly calculable from system (3.17).
We may therefore determine sgnD(+∞) for the original system by the straight-
forward calculation of d− and d+, yielding the result.
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Remark 3.2. An alternative, somewhat simpler approach, using the homo-
clinic structure of the wave, is to note that the limiting subspaces at plus and
minus infinity of decaying solutions of the eigenvalue equation are complemen-
tary subspaces of the limiting coefficient matrix A, hence transverse. Thus,
their determinant (real-valued, by construction) is of constant sign independent
of λ, which may be related to sgnD(+∞) by explicit calculation. Calculating
the value at λ = 0 of this determinant then gives the result. This is similar
in spirit to the original argument of [25]. However, this approach does not ex-
tend to the heteroclinic case, and so we have chosen to give the more general
argument above. For related arguments, see [27, 28].

We may now easily obtain the main result.

Proof of Corollary 1.4. It has been shown in [2] by variational considerations
that (d2m/ds2)(s̄) > 0 implies linearized and nonlinear stability, using Corollary
2.3 and the argument of [14]. Thus, we need only establish that (d2m/ds2)(s̄) <
0 implies instability, for which it is sufficient to show that there is an L2 eigen-
function of L with positive real eigenvalue λ. Defining the stability index

Γ := sgnD′′(0)D(+∞),

we have, provided Γ 6= 0, that the number of positive real eigenvalues of L
(zeroes of D) is odd or even, according as Γ is negative or positive, by standard
degree theory on the line (recall, D is real-valued, by construction, for λ real).
Thus, Γ < 0 implies existence of at least one positive real eigenvalue, for which
(see Section 3) the associated eigenfunction is necessarily exponentially decaying
as x → ±∞. Noting that sgnΓ = sgn(d2m/ds2)(s̄) by (3.16) combined with
Lemma 3.1, we are done.

Remark 3.3. By Lemma 2.2, there is in fact precisely one unstable eigenvalue,
necessarily real, in case (d2m/ds2)(s̄) < 0.

4. Remarks on the viscous case

Finally, we comment briefly on the viscous case, as modeled by

vt − ux = 0

ut + p(v)x = εuxx − κvxxx,
(4.1)

ε > 0. Stability of traveling waves of this model has been studied in detail in
[24, 26] for a parameter range of (κ, ε) for which (4.1) may be converted by a
change of dependent variables to a strictly parabolic problem.

Including viscosity of arbitrarily small strength ε > 0, one finds by the en-
ergy argument of [24] that all homoclinic connections of the ε = 0 equations (2)
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break, save for zero-speed solitary waves identical to those of (1.2). Moreover,
by a calculation similar to but much simpler than that of the previous section,
we find that all of these waves are unstable, with D(0) = 0, D′(0) = cε

∫

(v̄x)
2dx,

c 6= 0. That is, even infinitesimal viscosity will either break or destabilize any
solitary wave, whether stable or unstable for the ε = 0 model, leaving unclear
the physical implications of stability or instability with respect to (1.2). How-
ever, depending whether the ε = 0 version is stable or unstable, the unstable
root will be near or far from the origin, corresponding perhaps to some type of
metastable phenomenon.
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