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Weighted Norm Inequality for a

Maximal Operator on Homogeneous Space

Iara A. A. Fernandes and Sergio A. Tozoni

Abstract. Let X = G/H be a homogeneous space, X̃ = X × [0,∞), µ a doubling

measure on X induced by a Haar measure on the group G, β a positive measure on X̃
and W a weight on X. Consider the maximal operator given by

Mf(x, r) = sup
s≥r

1

µ(B(x, s))

∫

B(x,s)
|f(y)| dµ(y), (x, r) ∈ X̃.

In this paper, we obtain, for each p, q, 1 < p ≤ q <∞, a necessary and sufficient condi-
tion for the boundedness of the maximal operatorM from Lp(X,Wdµ) to Lq(X̃, dβ).
As an application, we obtain a necessary and sufficient condition for the boundedness
of the Poisson integral of functions defined on the unit sphere Sn of the Euclidian
space R

n+1, from Lp(Sn,Wdσ) to Lq(B, dν), where σ is the Lebesgue measure on Sn,
W is a weight on Sn and ν is a positive measure on the unit ball B of R

n+1.

Keywords. Maximal function, Poisson integral, homogeneous space, Ap-weights,
sphere
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1. Introduction

Let G be a locally compact Hausdorff topological group with unit element e,
H a compact subgroup of G and π : G 7→ G/H the canonical map. Let dg
denote a left Haar measure on G, which we assume to be normalized in the case
of G to be compact. If A is a Borel subset of G we will denote by |A| the Haar
measure of A. The homogeneous space X = G/H is the set of all left cosets
π(g) = gH, g ∈ G, provided with the quotient topology. The Haar measure dg
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induces a measure µ on the Borel σ-field on X. For f ∈ L1(X),

∫

X

f(x) dµ(x) =

∫

G

f ◦ π(g) dg.

We observe that the group G acts transitively on X by the map

(g, π(h)) 7→ gπ(h) = π(gh),

that is, for all x, y ∈ X, there exists g ∈ G such that gx = y. We also observe
that the measure µ on X is invariable on the action of G, that is, if f ∈ L1(X),
g ∈ G and Rgf(x) = f(g−1x), then

∫

X

f(x) dµ(x) =

∫

X

Rgf(x) dµ(x).

A quasi-distance on X is a map d : X ×X 7→ [0,∞) satisfying:

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(gx, gy) = d(x, y) for all g ∈ G, x, y ∈ X;

(iv) there exists a constant K ≥ 1 such that, for all x, y, z ∈ X,

d(x, y) ≤ K[d(x, z) + d(z, y)];

(v) the balls B(x, r) = {y ∈ X : d(x, y) < r}, x ∈ X, r > 0, are relatively
compact and measurable, and the balls B(11, r), r > 0, form a basis of
neighborhoods of 11 = π(e);

(vi) (doubling condition) there exists a constant A ≥ 1 such that, for all r > 0
and x ∈ X,

µ(B(x, 2r)) ≤ Aµ(B(x, r)).

Given a quasi-distance d on X, there exists a distance ρ on X and a positive
real number γ such that d is equivalent to ργ (see [4]). Therefore the family of
d-balls is equivalent to the family of ργ-balls and ργ-balls are open sets.

It follows by (iii) in the definition of a quasi-distance that B(gx, r) =
gB(x, r) for all g ∈ G, x ∈ X and r > 0, and hence µ(B(gx, r)) = µ(B(x, r)).
Thus we can write X =

⋃
j≥1 gjB(x, r) where (gj) is a sequence of elements of G

and consequently µ(B(x, r)) > 0. In particular, X is separable.

In this paper X will denote a homogeneous space provided with a quasi-
distance d. We also write X̃ = X × [0,∞) and if B = B(x, r) we write B̃ =
B(x, r)× [0, r]. We define the maximal operator M by

Mf(x, r) = sup
s≥r

1

µ(B(x, s))

∫

B(x,s)

|f(y)| dµ(y)
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for all real-valued locally integrable function f on X and (x, r) ∈ X̃. If r = 0
the above supremum is taken over all s > 0 and Mf(x, 0) = f ∗(x) is the
Hardy-Littlewood maximal function.

A weight is a positive locally integrable function W (x) on the space X
and we will write W (A) =

∫
A
Wdµ. We write Lp(W ) = Lp(X,Wdµ) and

Lp(X) = Lp(X, dµ), 1 ≤ p ≤ ∞. If 1 < p < ∞, p′ is such that 1
p
+ 1

p′
= 1.

Throughout this paper β will denote a positive measure on the Borel subsets
of X̃.

The next theorem, which is proved in Section 3, is the main result of this
paper. It gives a necessary and sufficient condition for the boundedness of the
maximal operator M from Lp(X,Wdµ) to Lq(X̃, dβ), for 1 < p ≤ q <∞.

Theorem 1.1. Let 1 < p ≤ q < ∞ and let W be a weight on X such that

W 1−p′dµ is a doubling measure on X. Then the following conditions are equiv-

alent:

(i) There exists a constant C > 0, such that, for all f ∈ Lp(W ),

(∫

X̃

[Mf(x, r)]q dβ(x, r)

) 1
q

≤ C

(∫

X

|f(x)|pW (x) dµ(x)

) 1
p

.

(ii) There exists a constant C > 0, such that, for all balls B = B(z, t), 0 ≤
t <∞,

(∫

B̃

[M(W 1−p′χB)(x, r)]
q dβ(x, r)

) 1
q

≤ C

(∫

B

W 1−p′(x) dµ(x)

) 1
p

.

The above result for X = G/H, where G is a compact or an Abelian
group and p = q, was proved in Bordin–Fernandes–Tozoni [1]. For W ≡ 1, the
condition (ii) of Theorem 1.1 is given by

(∫

B̃

[M(χB)(x, r)]
q dβ(x, r)

) 1
q

≤ C
(
µ(B)

) 1
p (1)

for all balls B. Let us fix B = B(z, t), 0 < t < ∞. Then, it follows as in the
proof of inequality (7) of Lemma 3.1 that there exists a constant C > 0 such

that C ≤M(χB)(x, r) ≤ 1 for all (x, r) ∈ B̃. Therefore, from (1) we obtain

(
Cqβ(B̃)

) 1
q ≤

(∫

B̃

[M(χB)(x, r)]
q dβ(x, r)

) 1
q

≤ C
(
µ(B)

) 1
p .

Then, the condition (1) implies the condition

(
β(B̃)

) 1
q ≤ C

(
µ(B)

) 1
p (2)



70 I. A. A. Fernandes and S. A. Tozoni

for a constant C > 0 and all balls B. But, from the condition (2) we obtain

(∫

B̃

[M(χB)(x, r)]
q dβ(x, r)

) 1
q

≤
(
β(B̃)

) 1
q ≤

(
Cµ(B)

) 1
p ,

and therefore the conditions (1) and (2) are equivalent. The condition (2) is
the Carleson condition for the homogeneous space X, when p = q (see Ruiz–
Torrea [5]).

Let B = B(z, t), 0 < t < ∞ and ν = W 1−p′ . Then C ν(B)
µ(B)

≤ M(νχB)(x, r)

for all (x, r) ∈ B̃. Therefore, from the condition (ii) of Theorem 1.1 we obtain

β(B̃)
1
q =

µ(B)

ν(B)

[∫

B̃

(
ν(B)

µ(B)

)q
dβ(x, r)

] 1
q

≤ C
µ(B)

ν(B)

[∫

B̃

[M(νχB)(x, r)]
q dβ(x, r)

] 1
q

≤ C ′
µ(B)

ν(B)
ν(B)

1
p .

Then, the condition (ii) of Theorem 1.1 implies the condition

β(B̃)
1
q

µ(B)

(∫

B

W 1−p′(x) dµ(x)

) 1
p′

≤ C (3)

for a constant C > 0 and all balls B. It was proved in [5] that the condition (3)
is a necessary and sufficient condition for M to be a bounded operator from
Lp(X,Wdµ) into weak-Lq(X̃, dβ).

Now, if x ∈ R
n+1, we write |x| = (x · x) 1

2 and d(x, y) = |x− y|, where x · y
is the usual scalar product of x and y in R

n+1. Here Sn will denote the unit n-
sphere {y ∈ R

n+1 : |y| = 1} in R
n+1, σ the normalized Lebesgue measure on Sn

and h : [1 −
√
2, 1] → [0, 2] will be the function defined by h(r) =

√
2(1 − r).

The Poisson kernel for the sphere Sn is given by

Pry(x) =
1

ωn

1− r2

|ry − x|n+1

for x, y ∈ Sn and 0 ≤ r < 1, where ωn is the area of the sphere Sn. For a
real-valued integrable function f we denote by uf (ry) the Poisson integral

uf (ry) =

∫

Sn
Pry(x)f(x) dσ(x).

and we define the maximal function u∗f by

u∗f (ry) = sup
0≤s≤r

|uf (sy)|, 0 ≤ r < 1, y ∈ Sn.
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We identify Sn × [0, 1] with the ball B = {y ∈ R
n+1 : |y| ≤ 1} using the

application (y, r) 7→ ry. If f is a real-valued and integrable function on Sn

we define Mf(y) = Mf(y′, h(|y|)) for y ∈ B, y 6= 0, y′ = y/|y|. In Bordin–
Fernandes–Tozoni [1] it was proved that there exist positive constants C1 and
C2 such that, for all f ∈ L1(Sn), we have

u∗f (y) ≤ C1Mf(y), y ∈ B, 0 < |y| < 1

u∗f (y) ≥ C2Mf(y), f ≥ 0, y ∈ B, 0 < |y| < 1.

If B is the open ball B(z, t) = {x ∈ Sn : |x− z| < t}, 0 < t ≤ 2, we define

B̄ =

{
{sx : h−1(t) ≤ s ≤ 1, x ∈ B} if 0 < t ≤

√
2

{sx : 0 ≤ s ≤ 1, x ∈ B} if
√
2 ≤ t ≤ 2.

We observe that B̄ is a truncated cone in the ball B = {y ∈ R
n+1 : |y| ≤ 1} in

R
n+1 if 0 < t ≤

√
2 and a cone if

√
2 ≤ t ≤ 2.

The next theorem is consequence of the above inequalities between u∗f (y)

and Mf(y) and of Theorem 1.1.

Theorem 1.2. Let 1 < p ≤ q <∞, let W be a weight on Sn such that W 1−p′dσ
is a doubling measure on Sn and let ν be a Borel positive measure on B. Then

the following conditions are equivalent:

(i) There exists a constant C > 0, such that, for all f ∈ Lp(W ),

(∫

B

[u∗f (y)]
q dν(y)

) 1
q

≤ C

(∫

Sn
|f(x)|pW (x) dσ(x)

) 1
p

.

(ii) There exists a constant C > 0, such that, for all balls B = B(z, t), 0 <
t ≤ 2,

(∫

B̄

[u∗
W 1−p′χB

(y)]q dν(y)

) 1
q

≤ C

(∫

B

W 1−p′(x) dσ(x)

) 1
p

.

The Theorem 1.2 for p = q was obtained in [1] and, for W ≡ 1, p = q and
n = 1, it was proved by L. Carleson in [2].

2. A maximal operator of dyadic type

In this section we study a weighted norm inequality for a maximal operator of
dyadic type which we apply in the proof of Theorem 1.1, given in Section 3.

The following lemma presents the dyadic partitions for homogeneous spaces
introduced by E. Sawyer and R. L. Wheeden in [6].
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Lemma 2.1 ([6, Lemma 3.21]). Let b be a positive integer and let λ = 8K5.

Then for each integer k, −b ≤ k ≤ b, there exists an enumerable Borel partition

Ab
k of X, which elements will be called dyadic elements of X, and a positive

constant C depending only on X, such that

(i) for all Q ∈ Ab
k,−b ≤ k ≤ b, there exists xQ ∈ Q such that B(xQ, λ

k) ⊂
Q ⊂ B(xQ, λ

k+1) and µ(B(xQ, λ
k+1)) ≤ Cµ(Q);

(ii) if −b ≤ k < b, Q1 ∈ Ab
k+1, Q2 ∈ Ab

k and Q1 ∩Q2 6= ∅, then Q2 ⊂ Q1, and

0 < µ(Q1) ≤ Cµ(Q2);

Let b be a fixed positive integer. Given Q ∈ Ab =
⋃
−b≤k≤bAb

k, where Ab
k are

the partitions of X in Lemma 2.1, Q̃ will denote the subset Q× [0, α−1(µ(Q))]

of X̃ = X × [0,∞), where α : [0,∞) → [0,∞) is the function defined by
α(r) = µ(B(11, r)), 11 = π(e).

If f is a real-valued locally integrable function on X, we define, for each
(x, r) ∈ X̃,

Mb
df(x, r) = sup

x∈Q∈Ab

µ(Q)≥α(r)

1

µ(Q)

∫

Q

|f(y)| dµ(y).

If µ(Q) < α(r) for all Q ∈ Ab such that x ∈ Q, we define Mb
df(x, r) = 0.

Lemma 2.2 ([8, Lemma 3.8]). Let V be a weight on X and let 1 < p ≤ q <∞.

For each positive integer b, let {Qi}i∈I be a enumerable collection of dyadic

elements of Ab, and for each u ∈ G, let {ai(u)}i∈I and {bi(u)}i∈I be positive

numbers satisfying
∫

uQi

V (x) dµ(x) ≤ Cai(u), i ∈ I, u ∈ G (4)

∑

j:Qj⊂Qi

bj(u) ≤ C
(
ai(u)

) q
p , i ∈ I, u ∈ G, (5)

where C is a positive constant independent of b. Then

(
∑

i∈I

bi(u)

(
1

ai(u)

∫

uQi

g(x)V (x) dµ(x)

)q)1
q

≤ Cp,q

(∫

X

(g(x))pV (x) dµ(x)

)1
p

for all positive measurable function g on X and u ∈ G, where Cp,q is independent

of u, b and g.

Theorem 2.3. Given a weight W on X, a positive measure β on X̃, and

1 < p ≤ q <∞, the following conditions are equivalent:

(i) There exists a constant C > 0, such that, for all f ∈ Lp(W ) and all

positive integer b,
(∫

X̃

[Mb
df(x, r)]

q dβ(x, r)

)1
q

≤ C

(∫

X

|f(x)|pW (x) dµ(x)

)1
p

.
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(ii) There exists a constant C > 0, such that, for all Q ∈ Ab and all positive

integer b,
(∫

Q̃

[Mb
d(W

1−p′χQ)(x, r)]
q dβ(x, r)

)1
q

≤ C

(∫

Q

W 1−p′(x) dµ(x)

)1
p

.

Proof. To prove (i)⇒ (ii) it is sufficient to choose f(x) = W 1−p′χQ in (i), where
Q ∈ Ab and b is a positive integer.

Proof of (ii) ⇒ (i): Let us fix a positive integer b, f ∈ Lp(W ) and for each

k ∈ Z, let Ωk be the set Ωk = {(x, r) ∈ X̃ : Mb
d(fσ)(x, r) > 2k}, where σ =

W 1−p′ . For each k ∈ Z, we denote by C0
k the family formed by all Q ∈ Ab such

that 1
µ(Q)

∫
Q
|f(y)|σ(y)dµ(y) > 2k. Since for every Q ∈ Ab

k, −b ≤ k < b, there

exists Q′ ∈ Ab
k+1 such that Q ⊂ Q′, then every element Q ∈ C0

k is contained
in a maximal element Q′ ∈ C0

k . We denote by Ck the family {Qk
j : j ∈ Jk}

formed by all maximal elements Q ∈ C0
k . Since Ab

k is a partition of X and
all elements of Ck are maximal, we can conclude that the sets Qk

j , j ∈ Jk, are

pairwise disjoint. Therefore the sets Q̃k
j , j ∈ Jk, are also pairwise disjoint and

Ωk =
⋃
j∈Jk

Q̃k
j .

Now, for each k ∈ Z and each j ∈ Jk, let Ek
j = Q̃k

j \Ωk+1. Then the sets Ek
j

and Eh
i are disjoint for (k, j) 6= (h, i) and
{
(x, r) :Mb

d(fσ)(x, r) > 0
}
=
⋃

k∈Z

(Ωk \ Ωk+1) =
⋃

k∈Z

⋃

j∈Jk

Ek
j .

Therefore∫

X̃

[Mb
d(fσ)(x, r)]

q dβ(x, r)

=
∑

k,j

∫

Ekj

[Mb
d(fσ)(x, r)]

q dβ(x, r)

≤ 2q
∑

k,j

β(Ek
j )(2

k)q

≤ 2q
∑

k,j

β(Ek
j )

(
1

µ(Qk
j )

∫

Qkj

|f(x)|σ(x) dµ(x)
)q

= 2q
∑

k,j

β(Ek
j )

(
1

µ(Qk
j )

∫

Qkj

σ(x) dµ(x)

)q(
1

σ(Qk
j )

∫

Qkj

|f(x)|σ(x) dµ(x)
)q

≤ 2q
∑

k,j

(∫

Ekj

[Mb
d(σχQkj )(x, t)]

q dβ(x, t)

)(
1

σ(Qk
j )

∫

Qkj

|f(x)|σ(x) dµ(x)
)q

= 2q
∑

k,j

bkj

(
1

akj

∫

Qkj

|f(x)|σ(x) dµ(x)
)q
, (6)

where bkj =
∫
Ekj

[Mb
d(σχQkj )(x, t)]

q dβ(x, t) and akj = σ(Qk
j ).
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We will show that ∑

k,j

Qk
j
⊂Q0

bkj ≤ C(a0)
q
p

for all Q0 ∈ Ab, where b is a positive integer and a0 = σ(Q0). Since the Q̃k
j ’s

are disjoint in k and j, then using (ii), we have

∑

k,j

Qk
j
⊂Q0

bkj ≤
∫

Q̃0

[Mb
d(σχQ0)(x, t)]

q dβ(x, t) ≤ C

(∫

Q0

W 1−p′(x) dµ(x)

) q
p

= C(a0)
q
p .

Therefore all conditions of Lemma 2.2 are satisfied for the sequences {akj} and
{bkj}, with V = σ. Then, by Lemma 2.2 and by (6) we obtain

(∫

X̃

[Mb
df(x, t)]

q dβ(x, t)

)1
q

≤ Cp,q

(∫

X

|f(x)|pW (x) dµ(x)

)1
p

.

Remark 2.4. Let us fix g ∈ G and letg−1Ab
k = {g−1Q : Q ∈ Ab

k}, g−1Ab =
{g−1Q : Q ∈ Ab}. Then for each −b ≤ k ≤ b, g−1Ab

k is a partition of X
and Lemma 2.1 also holds, with the same constant C, when we change Ab

k for
g−1Ab

k. If f is a real-valued locally integrable function on X, we define

Mb,g
d f(x, r) = sup

x∈Q∈g−1Ab

µ(Q)≥α(r)

1

µ(Q)

∫

Q

|f(y)| dµ(y).

Then Mb
d(Rgf)(gx, r) = Mb,g

d f(x, r) where Rgf(x) = f(g−1x). Theorem 2.3

also holds, with the same proof, when we change the operatorMb
d forMb,g

d and
the family Ab for g−1Ab.

3. The boundedness of the operator M
Given a positive integer b and a real-valued locally integrable function f on X,
we define for (x, r) ∈ X̃,

Mbf(x, r) = sup
max{λ−b−1,r}≤s≤λb

1

µ(B(x, s))

∫

B(x,s)

|f(y)| dµ(y).

We define Mbf(x, r) = 0 if r > λb and we observe that Mbf(x, r) ↑ Mf(x, r)

if b ↑ ∞ for all (x, r) ∈ X̃.

Lemma 3.1. Let Mb,g
d be the maximal operator defined in Remark 2.4. Then

there exists a positive constant C such that, for all positive integer b, g ∈ G, all
real-valued locally integrable function f on X and (x, r) ∈ X̃

Mb,g
d f(x, r) ≤ CMf(x, r). (7)
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Proof. Let us fix (x, r) ∈ X̃ and g ∈ G. If µ(Q) < α(r) for all Q ∈ Ab such that
x ∈ g−1Q, we haveMb,g

d f(x, r) = 0. Thus to prove (7), it is enough to consider
Q ∈ Ab

k, −b ≤ k ≤ b, such that x ∈ g−1Q and µ(Q) ≥ α(r). By Lemma 2.1(i)
there exist xQ ∈ Q such that Q ⊂ B(xQ, λ

k+1) and µ(B(xQ, λ
k+1)) ≤ Cµ(Q).

For t = 2Kλk+1 we have B(g−1xQ, λ
k+1) ⊂ B(x, t) and hence

α(t) = µ(B(x, t)) ≥ µ(B(g−1xQ, λ
k+1)) ≥ µ(Q) ≥ α(r).

If 2a−1 < K ≤ 2a, it follows by (vi) of the definition of quasi-distance that

µ(B(x, t)) ≤ Aa+1µ(B(xQ, λ
k+1)) ≤ Aa+1Cµ(g−1Q).

Therefore

1

µ(g−1Q)

∫

g−1Q

|f(y)| dµ(y) ≤ Aa+1C

µ(B(x, t))

∫

B(x,t)

|f(y)| dµ(y) ≤ Aa+1CMf(x, r)

and hence we obtain (7).

Lemma 3.2. Let b be a positive integer. Then there exists a constant C, de-
pending only on X, such that, for all real-valued locally integrable function f
on X and all (x, r) ∈ B(11, λb)× [0, λb], we have

Mbf(x, r) ≤ C

|Gb|

∫

Gb

Mb,g
d f(x, r) dg, (8)

where Gb = {g ∈ G : d(g11, 11) < λb+3}.

Proof. First we observe that |Gb| = µ(B(11, λb+3)) > 0. Let (x, r) ∈ B(11, λb)
×[0, λb]. Then there exists a ball B = B(x, s), where max{λ−b−1, r} ≤ s ≤ λb,
such that

Mbf(x, r) ≤ 2

µ(B)

∫

B

|f(y)| dµ(y). (9)

Let −b ≤ k ≤ b such that λk−1 ≤ s < λk. If s = λb, we take k = b. We de-
note by Ω the set Ω =

{
g ∈ Gb : there exists Q ∈ Ab

k+1 such that B ⊂ g−1Q
}
.

Given g ∈ Ω let Q ∈ Ab
k+1 such that B ⊂ g−1Q. By Lemma 2.1(i) there ex-

ists xQ ∈ Q such that B(xQ, λ
k+1) ⊂ Q ⊂ B(xQ, λ

k+2) and hence B ⊂ g−1Q ⊂
B(g−1xQ, λ

k+2). If l is the integer such that 2l−1 < λ3 ≤ 2l, then by the doubling
condition we have µ(g−1Q) ≤ µ(B(g−1xQ, λ

k+2)) ≤ Alµ(B) and thus

1

µ(B)

∫

B

|f(y)| dµ(y) ≤ Al

µ(g−1Q)

∫

g−1Q

|f(y)| dµ(y).

Therefore, since x ∈ B = B(x, s) ⊂ g−1Q and µ(g−1Q) ≥ α(r), from (9) we get
Mbf(x, r) ≤ 2AlM b,g

d f(x, r), g ∈ Ω. Now suppose that there exists a positive
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constant δ such that |Ω| ≥ δ|Gb| for all positive integers b. Then integrating
both sides of the above inequality with respect to the Haar measure dg and
on Ω, we get (8) for C = 2Alδ−1.

Now we will prove that there exists a positive constant δ, depending only
on X, such that |Ω| ≥ δ|Gb|. Given y ∈ X we denote by gy an element in G
such that y = gy11. Let z ∈ gxQGk−3g−1x . Then zx ∈ B(xQ, λ

k) and hence for
y ∈ B,

d(zy, xQ) ≤ K[d(zy, zx) + d(zx, xQ)] ≤ K[d(y, x) + λk] ≤ λk+1.

Therefore y ∈ z−1Q and hence

B ⊂ z−1Q, z ∈ gxQGk−3g−1x . (10)

Let us denote by Γ the set Γ =
{
Q ∈ Ab

k+1 : Q ∩B(x, λb+2) 6= ∅
}
. Fix Q ∈ Γ

and let u ∈ Q ∩B(x, λb+2), g ∈ gxQGk−3. Then g11 ∈ B(xQ, λ
k) and

d(g11, 11) ≤ K[d(g11, xQ) + d(xQ, 11)]

≤ K[λk +K[d(xQ, u) + d(u, 11)]]

≤ K[λk +K[λk+2 +K[d(u, x) + d(x, 11)]]]

≤ 4K3λb+2

and hence

d(gg−1x 11, 11) ≤ K[d(gxg
−111, gx11) + d(x, 11)] ≤ K[d(g11, 11) + λb] < λb+3.

Thus g ∈ Gbgx and hence gxQGk−3g−1x ⊂ Gb, Q ∈ Γ. Therefore from (10)
⋃

Q∈Γ

gxQGk−3g−1x ⊂ Ω. (11)

If Q,Q′ ∈ Ab
k+1 and Q 6= Q′ then B(xQ, λ

k) ∩ B(xQ′ , λ
k) = ∅ and hence

gxQGk−3g−1x ∩ gxQ′Gk−3g−1x = ∅. Then, since G is unimodular (see [3, p. 578]), it
follows by (11) and by the doubling condition that

|Ω| ≥
∣∣∣∣
⋃

Q∈Γ

gxQGk−3g−1x
∣∣∣∣

=
∑

Q∈Γ

|gxQGk−3|

≥
∑

Q∈Γ

A−lµ
(
B(xQ, λ

k+2)
)

≥ A−lµ

( ⋂

Q∈Γ

Q

)

≥ A−lµ
(
B(x, λb+2)

)

≥ A−2l|Gb|.
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Proof of Theorem 1.1. To prove the implication (i) ⇒ (ii), it is sufficient to
choose f(x) = W 1−p′(x)χB(x) in the hypothesis.

Let us prove (ii) ⇒ (i). We fix a positive integer b, g ∈ G and Q ∈ Ab
k,

−b ≤ k ≤ b. Then, by Lemma 2.1(i) there exists xQ ∈ Q such that B(xQ, λ
k) ⊂

Q ⊂ B(xQ, λ
k+1). We write B = B(g−1xQ, λ

k+1), Q′ = g−1Q, ν = W 1−p′ and
let a be a positive integer such that 2a−1 < λ ≤ 2a. Since νdµ is a doubling
measure, there exists a positive constant Cν such that

ν(B) ≤ ν(B(g−1xQ, 2
aλk)) ≤ Ca

ν ν(B(g−1xQ, λ
k)) ≤ C1ν(Q

′).

Then by the hypothesis and (7) we obtain

(∫

Q̃′
[Mb,g

d (W 1−p′χQ′)(x, r)]
q dβ(x, r)

)1
q

≤ C2

(∫

B̃

[M(νχB)(x, r)]
q dβ(x, r)

) 1
q

≤ C3

(
ν(B)

) 1
p

≤ C4

(∫

Q′
W 1−p′(x) dµ(x)

)1
p

.

Since the constant C4 depends only on p,W and β, then by Theorem 2.3 and
by Remark 2.4, there exists a constant C5 such that,

(∫

X̃

[Mb,g
d f(x, r)]q dβ(x, r)

)1
q

≤ C5

(∫

X

|f(x)|pW (x) dµ(x)

)1
p

(12)

for all f ∈ Lp(W ) and all g ∈ G. Then, it follows by Lemma 3.2, (12) and by
Jensen’s inequality that

(∫

B(11,λb)×[0,λb]

[Mbf(x, r)]qdβ(x, r)

)1
q

≤
(∫

X̃

(
C

|Gb|

∫

Gb

Mb,g
d f(x, r)dg

)q
dβ(x, r)

)1
q

≤ C

(∫

Gb

∫

X̃

[Mb,g
d f(x, r)]qdβ(x, r)

dg

|Gb|

) 1
q

≤ C · C5

(∫

X

|f(x)|pW (x) dµ(x)

) 1
p

.

Letting b→∞ in the above inequality we obtain (i).

Remark 3.3. Suppose that W is a weight on X, that β is a positive measure
on X̃ and that 1 < p ≤ q <∞. Now consider the following condition:

(iii) There exists a constant C > 0, such that, for all positive integer b, all
g ∈ G and all Q ∈ gAb,

(∫

Q̃

[M(W 1−p′χQ)(x, r)]
q dβ(x, r)

)1
q

≤ C

(∫

Q

W 1−p′(x) dµ(x)

)1
p

.
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It follows from the proof of Theorem 1.1 that the condition (iii) is a neces-
sary and sufficient condition for the boundedness of the operator M as in
Theorem 1.1 (i), without assuming that W 1−p′dµ is a doubling measure. Con-
ditions of the type of (iii), that is, where an inequality must be satisfied for all
dyadic elements of X, for others operators, can be found in [7].

An analogous of Theorem 1.1 for fractional maximal operators, when X has
a group structure and W 1−p′dµ is a doubling measure, is the Theorem 4 in [8].
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