Zeitschrift für Analysis und ihre Anwendungen Journal for Analysis and its Applications Volume 27 (2008), 79–94

On a Singular Perturbation Problem for a Class of Variational Inequalities

J. A. Álvarez-Dios, M. Chipot, J. C. García and M. C. Muñiz

Abstract. The goal of this paper is to study the asymptotic behavior of a degenerate singular perturbation problem for a class of variational inequalities depending on a positive parameter ε . We also give an existence and uniqueness result.

Keywords. Variational inequalities, singular perturbation problem, asymptotic behavior

Mathematics Subject Classification (2000). 35J85,47J20

1. Introduction

Let Ω be a bounded open set of $\mathbb{R}^n, n \geq 1$. We denote by $L^2(\Omega)$ the space of square integrable functions normed by

$$|v|_{2,\Omega} = \left\{ \int_{\Omega} v^2 \, dx \right\}^{\frac{1}{2}}$$

and by $H^1(\Omega)$ the usual Sobolev space built on $L^2(\Omega)$, which we will suppose normed by

$$\|v\|_{1,2} = \left\{ |v|_{2,\Omega}^2 + ||\nabla v||_{2,\Omega}^2 \right\}^{\frac{1}{2}}.$$
(1)

 $(|\nabla v|$ denotes the Euclidean norm of the gradient. We refer the reader to [1, 6, 7] for details on Sobolev spaces.) We denote by $a \in L^{\infty}(\Omega)$ a function satisfying

$$0 \le a \le \Lambda \quad \text{a.e.} \ x \in \Omega, \ a \neq 0.$$

J.A. Álvarez-Dios, J. C. García and M.C. Muñiz: Department of Applied Mathematics, University of Santiago de Compostela, 15706 Santiago, Spain; jaaldios@usc.es, carlosgb@usc.es, mcarmen@usc.es

M. Chipot: Institut für Angewandte Mathematik. Universität Zürich. 8057 Zürich; m.m.chipot@math.unizh.ch

The first author has been supported by PGIDIT02PXIA20701AF. The second author has been supported by the Swiss National Science Foundation under the contracts # 20-67618.02 and 20-105155/1. The fourth author has been supported by Xunta de Galicia under research project PGIDIT06PXIB207052PR.

Let K be a nonempty closed convex set of $H^1(\Omega)$ and $f \in (H^1(\Omega))^*$ the dual space of $H^1(\Omega)$. We would like to study in this note problems of the type

$$\begin{cases} u_{\varepsilon} \in K \\ \int_{\Omega} \left[\varepsilon A(x, \varepsilon u_{\varepsilon}) \nabla u_{\varepsilon} \cdot \nabla (v - u_{\varepsilon}) + a u_{\varepsilon} (v - u_{\varepsilon}) \right] dx \ge \langle f, v - u_{\varepsilon} \rangle \quad \forall v \in K. \end{cases}$$
⁽³⁾

More precisely, we would like to investigate the behaviour of u_{ε} when $\varepsilon \to 0$ $(\varepsilon > 0)$. Note that if A is the identity matrix and $a(x) \ge \lambda > 0$ a.e. in Ω , then (3) is the archetype of singular perturbation problems, see [9] for instance.

In the above variational inequality A = A(x, u) is a $n \times n$ -matrix of the Caratheodory type – i.e. such that

$$x \longmapsto A(x, u)$$
 is measurable $\forall u \in \mathbb{R},$ (4)

$$u \longmapsto A(x, u)$$
 is continuous a.e. $x \in \Omega$. (5)

(Here A is considered to be a \mathbb{R}^{n^2} -valued mapping.) Moreover we suppose that A is uniformly elliptic with uniformly bounded entries. This can be expressed by the existence of λ , $\Lambda > 0$ such that

$$|A(x,u)| \le \Lambda \qquad \text{a.e. } x \in \Omega, \ \forall u \in \mathbb{R}$$
(6)

$$\lambda |\xi|^2 \le A\xi \cdot \xi \quad \text{a.e. } x \in \Omega, \ \forall u \in \mathbb{R}, \ \forall \xi \in \mathbb{R}^n.$$
(7)

(In (6), |A| denotes the operator norm of matrices subordinated to the Euclidean norm; in (7), $|\xi|$ is the Euclidean norm of ξ , $A\xi$ is the vector obtained by applying the matrix A to ξ and "." denotes the usual scalar product.)

Singular perturbations problems were studied in details in the book [9]. However very little is devoted there to perturbation of variational inequalities or to nonlinearity issues. Allowing function a to degenerate also leads to new interesting behaviours who are beyond the scope of [9]. This is what we would like to investigate here.

From a physical point of view (3) models for instance a slow steady diffusion of a colony of bacteria (see [2]), u_{ϵ} being the density of the population and $\{x \in \Omega; a(x) \neq 0\}$ a domain where some death occurs due for instance to a hostile environment. Function f is the outside supply. The set K helps in imposing some further constraints on the species at stake.

2. Existence and uniqueness of a solution

We have

Theorem 2.1. Under the assumptions of the introduction, for any $\varepsilon > 0$ there exists a solution to (3).

Proof. We use the Schauder fixed point theorem in the spirit of [3]. Let

$$\mathcal{K} = \bar{K} \cap B(0, R),$$

where \overline{K} denotes the closure of K in $L^2(\Omega)$, B(0, R) the ball of centre 0 and radius R in $L^2(\Omega)$. For $w \in \mathcal{K}$ there exists a unique u = T(w) solution to

$$\begin{cases} u \in K \\ \int_{\Omega} \left[\varepsilon A(x, \varepsilon w) \nabla u \cdot \nabla (v - u) + au(v - u) \right] dx \ge \langle f, v - u \rangle \quad \forall v \in K. \end{cases}$$
(8)

This follows from the theory of variational inequalities. Indeed by (7) we have

$$(\lambda \varepsilon \wedge 1) \int_{\Omega} \left(|\nabla u|^{2} + au^{2} \right) dx \leq \lambda \varepsilon \int_{\Omega} |\nabla u|^{2} dx + \int_{\Omega} au^{2} dx$$
$$\leq \int_{\Omega} \left(\varepsilon A(x, \varepsilon w) \nabla u \cdot \nabla u + au^{2} \right) dx \qquad (9)$$

(\wedge denotes the minimum of two numbers). Since

$$||u||_{a} = \left\{ \int_{\Omega} \left(|\nabla u|^{2} + au^{2} \right) dx \right\}^{\frac{1}{2}}$$
(10)

is a norm equivalent to the norm (1) - (see [5]) - we see that

$$a(u,v) = \int_{\Omega} \left(\varepsilon A(x,\varepsilon w) \nabla u \cdot \nabla v + auv \right) dx$$

is a continuous, coercive, bilinear form on $H^1(\Omega)$. Thus (8) admits a unique solution.

Let us fix $v_0 \in K$. Using (9), (8) we derive

$$\begin{aligned} (\lambda \varepsilon \wedge 1) \|u\|_a^2 &\leq \int_{\Omega} \left(\varepsilon A(x, \varepsilon w) \nabla u \cdot \nabla u + au^2 \right) dx \\ &\leq \int_{\Omega} \left(\varepsilon A(x, \varepsilon w) \nabla u \cdot \nabla v_0 + auv_0 \right) dx - \langle f, v_0 - u \rangle \\ &\leq (\varepsilon \vee 1) \Lambda \int_{\Omega} (|\nabla u| |\nabla v_0| + |u| |v_0|) dx + |f|_* (\|v_0\|_{1,2} + \|u\|_{1,2}), \end{aligned}$$
(11)

(see (2), (6); $|f|_*$ denotes the strong dual norm of f and \vee the maximum of two numbers). From (11) we easily derive

$$(\lambda \varepsilon \wedge 1) \|u\|_a^2 \le \|u\|_{1,2} \{ (\varepsilon \vee 1) \Lambda \|v_0\|_{1,2} + |f|_* \} + |f|_* \|v_0\|_{1,2}.$$

By the equivalence of norms $\|\cdot\|_a$, $\|\cdot\|_{1,2}$ we obtain

$$|u|_{2,\Omega} \le ||u||_{1,2} \le C,\tag{12}$$

where $C = C(\varepsilon, \lambda, \Lambda, v_0, f)$ is independent of w. Taking R > C, it follows that T maps \mathcal{K} onto \mathcal{K} . Moreover, it is easy to prove that T is compact and continuous (see (12)). This completes the existence result by the Schauder fixed point theorem.

We now turn to the issue of uniqueness. For that we assume A to be uniformly Lipschitz continuous in u, that is to say

$$|A(x,u) - A(x,v)| \le \gamma |u - v| \quad \text{a.e. } x \in \Omega, \ \forall u, v \in \mathbb{R},$$
(13)

(see (6) for the definition of the matrix norm used here). Moreover, we suppose that K is such that for every nonnegative Lipschitz function F with Lipschitz modulus less than 1 and vanishing on $(-\infty, 0)$, it holds

$$u_1 + F(u_2 - u_1), \ u_2 - F(u_2 - u_1) \in K, \ \forall u_1, u_2 \in K.$$
 (14)

Then we can show

Theorem 2.2. Under the above assumptions, in particular if (13), (14) hold, the solution of (3) is unique.

Proof. Let $u_1 = u_{\varepsilon,1}$ and $u_2 = u_{\varepsilon,2}$ be two solutions of problem (3). For simplicity we will drop the index ε . Using the test functions defined by (14) in (3) written for u_1 and u_2 respectively, we get

$$\int_{\Omega} \left[\varepsilon A(x, \varepsilon u_1) \nabla u_1 \cdot \nabla F(u_2 - u_1) + a \, u_1 F(u_2 - u_1) \right] dx \ge \langle f, F(u_2 - u_1) \rangle$$
$$- \int_{\Omega} \left[\varepsilon A(x, \varepsilon u_2) \nabla u_2 \cdot \nabla F(u_2 - u_1) + a \, u_2 F(u_2 - u_1) \right] dx \ge -\langle f, F(u_2 - u_1) \rangle.$$

By adding we obtain

$$\varepsilon \int_{\Omega} \left(A(x, \varepsilon u_1) \nabla u_1 - A(x, \varepsilon u_2) \nabla u_2 \right) \cdot \nabla F(u_2 - u_1) \, dx + \int_{\Omega} a \, (u_1 - u_2) F(u_2 - u_1) \, dx \ge 0,$$

which can also be written as

$$\int_{\Omega} \left\{ \varepsilon A(x, \varepsilon u_2) \nabla (u_2 - u_1) \cdot \nabla F(u_2 - u_1) \, dx + a \, (u_2 - u_1) F(u_2 - u_1) \right\} dx$$

$$\leq \varepsilon \int_{\Omega} \left(A(x, \varepsilon u_1) - A(x, \varepsilon u_2) \right) \nabla u_1 \cdot \nabla F(u_2 - u_1) \, dx.$$
(15)

We particularize F by choosing

$$F = F_{\delta}(x) = \begin{cases} 0 & \text{if } x < 0\\ x & \text{if } 0 \le x \le \delta\\ \delta & \text{if } x > \delta. \end{cases}$$

Noticing that

 $(u_2 - u_1)F_{\delta}(u_2 - u_1) \ge F_{\delta}(u_2 - u_1)^2, \ \nabla(u_2 - u_1) = \nabla F_{\delta}(u_2 - u_1) \text{ on } \Omega_{\delta}$ where $\Omega_{\delta} = \{x \in \Omega; \ 0 < (u_2 - u_1)(x) < \delta\}$, we derive from (15)

$$\int_{\Omega} \left\{ \varepsilon A(x, \varepsilon u_2) \nabla F_{\delta}(u_2 - u_1) \cdot \nabla F_{\delta}(u_2 - u_1) + a F_{\delta}(u_2 - u_1)^2 \right\} dx$$

$$\leq \int_{\Omega} \varepsilon \left(A(x, \varepsilon u_1) - A(x, \varepsilon u_2) \right) \nabla u_1 \cdot \nabla F_{\delta}(u_2 - u_1) dx.$$

By arguing like in (9), it follows that we have

$$(\lambda \varepsilon \wedge 1) \|F_{\delta}(u_2 - u_1)\|_a^2 \leq \int_{\Omega} \varepsilon \big(A(x, \varepsilon u_1) - A(x, \varepsilon u_2)\big) \nabla u_1 \cdot \nabla F_{\delta}(u_2 - u_1) dx.$$

Using (13) we get

$$\begin{aligned} (\lambda \varepsilon \wedge 1) \|F_{\delta}(u_2 - u_1)\|_a^2 &\leq \varepsilon^2 \gamma \int_{\Omega_{\delta}} |u_1 - u_2| |\nabla u_1| |\nabla F_{\delta}(u_2 - u_1)| \, dx \\ &\leq \varepsilon^2 \gamma \left\{ \int_{\Omega_{\delta}} |u_1 - u_2|^2 |\nabla u_1|^2 dx \right\}^{\frac{1}{2}} \|F_{\delta}(u_2 - u_1)\|_a, \end{aligned}$$

by the Cauchy–Schwarz inequality. Using again the equivalence of the norms given by (1), (10), we derive that

$$||F_{\delta}(u_2 - u_1)||_{1,2}^2 \le C \int_{\Omega_{\delta}} |u_1 - u_2|^2 |\nabla u_1|^2 dx$$

where C is independent of δ . It implies

$$\int_{\Omega} F_{\delta}(u_2 - u_1)^2 \, dx \le C \int_{\Omega_{\delta}} |u_1 - u_2|^2 |\nabla u_1|^2 \, dx$$

and thus

$$\int_{\Omega} \chi_{\{u_2 - u_1 > \delta\}} \, \delta^2 \, dx \le C \int_{\Omega} \chi_{\Omega_\delta} \, \delta^2 |\nabla u_1|^2 \, dx.$$

 χ denotes the characteristic function of sets, $\{u_2 - u_1 > \delta\} = \{x \in \Omega; (u_2 - u_1)(x) > \delta\}$. Dividing by δ^2 it comes

$$\int_{\Omega} \chi_{\{u_2 - u_1 > \delta\}} \, dx \le C \int_{\Omega} \chi_{\Omega_{\delta}} \, |\nabla u_1|^2 \, dx.$$

Letting $\delta \to 0$, since

$$\chi_{\Omega_{\delta}} \to 0, \ \chi_{\{u_2 - u_1 > \delta\}} \to \chi_{\{u_2 - u_1 > 0\}}$$
a.e.

we obtain by the Lebesgue theorem $\int_{\Omega} \chi_{\{u_2-u_1>0\}} dx = 0$ and thus $u_2 \leq u_1$. Exchanging the roles of u_1 and u_2 , the result follows.

3. Asymptotic behaviour of u_{ε}

3.1. The convergence of $\varepsilon u_{\varepsilon}$. Before investigating the behavior of u_{ε} , it is useful (see [4]) to consider $\varepsilon u_{\varepsilon}$. Some notation is in order. Let k_0 be an arbitrary element in K. We define

$$K_{\varepsilon}(k_0) = \varepsilon(K - k_0) = \{\varepsilon(k - k_0), \ k \in K\}, \quad K_0 = \bigcap_{\varepsilon > 0} K_{\varepsilon}(k_0).$$

Then we have

Lemma 3.1. Let k_0 be an arbitrary element of K.

- (i) {K_ε(k₀)}_{ε>0} is a nondecreasing sequence of closed convex sets, i.e., ε < ε' implies K_ε(k₀) ⊂ K_{ε'}(k₀).
- (ii) K_0 is a closed convex set containing 0 independent of $k_0 \in K$.

Proof. (i) $K - k_0$ is closed, convex, containing 0 and so is $K_{\varepsilon}(k_0) = \varepsilon(K - k_0)$. Next, assuming $\varepsilon < \varepsilon'$ and considering $\varepsilon(k - k_0) \in K_{\varepsilon}(k_0)$, we have

$$\varepsilon(k-k_0) = \frac{\varepsilon}{\varepsilon'}\varepsilon'(k-k_0) = \frac{\varepsilon}{\varepsilon'}\varepsilon'(k-k_0) + \left(1 - \frac{\varepsilon}{\varepsilon'}\right)0 \in K_{\varepsilon'}(k_0).$$

(ii) K_0 is a closed convex set as an intersection of closed convex sets. It contains 0 since $0 \in K_{\varepsilon}(k_0)$, for all $\varepsilon > 0$. Let us show that K_0 is independent of the element $k_0 \in K$. For that consider $v \in \bigcap_{\varepsilon > 0} K_{\varepsilon}(k_0)$. Then, for every $\varepsilon > 0$ there exists $k \in K$ such that $v = \varepsilon(k - k_0)$. Taking $k'_0 \in K$ and $\varepsilon' > \varepsilon$ we have $v = \varepsilon(k - k_0) = \varepsilon(k - k'_0) + \varepsilon(k'_0 - k_0)$, and then by (i) $v - \varepsilon(k'_0 - k_0) = \varepsilon(k - k'_0) \in K_{\varepsilon'}(k'_0)$. Letting $\varepsilon \to 0$, since v is a fixed element, we get $v \in K_{\varepsilon'}(k'_0)$, for all $\varepsilon' > 0$. This shows that $\bigcap_{\varepsilon > 0} K_{\varepsilon}(k_0) \subset \bigcap_{\varepsilon > 0} K_{\varepsilon}(k'_0)$, and the result follows by exchanging k_0 and k'_0 .

We now introduce

$$W_a = \{ v \in K_0, \ av = 0 \text{ a.e. in } \Omega \}.$$
 (16)

Since W_a is clearly a closed convex set of $H^1(\Omega)$, fixing $\varepsilon = 1$ in Theorem 2.1 it follows that there exists a w_0 solution to

$$\begin{cases} w_0 \in W_a \\ \int_{\Omega} A(x, w_0) \nabla w_0 \cdot \nabla (v - w_0) \, dx \ge \langle f, v - w_0 \rangle \quad \forall v \in W_a. \end{cases}$$
(17)

Remark 3.2. The above bilinear form seems not to be coercive on $H^1(\Omega)$, however on W_a one has

$$\int_{\Omega} A(x,w) \nabla u \cdot \nabla v \, dx = \int_{\Omega} \left(A(x,w) \nabla u \cdot \nabla v + auv \right) dx \quad \forall u, v \in W_a.$$

If in addition we suppose that W_a satisfies (14), then the solution to (17) is unique. The proof follows from Theorem 2.2 where we take $\varepsilon = 1$. Then we have

Theorem 3.3. Suppose that u_{ε} is solution to (3). If W_a satisfies (14) and if (2), (4)–(7), (13) hold, we have

$$\lim_{\varepsilon \to 0} \varepsilon u_{\varepsilon} = w_0 \quad in \ H^1(\Omega) \ strong,$$

where w_0 is the unique solution to (17).

Remark 3.4. Note at this point that we do not assume the solution to (3) to be unique. Only (17) is supposed to have a unique solution.

We will need the following lemma (see [2, 8]),

Lemma 3.5 (Minty). The problem (3) is equivalent to

$$\begin{cases} u_{\varepsilon} \in K \\ \int_{\Omega} \left[\varepsilon A(x, \varepsilon u_{\varepsilon}) \nabla v \cdot \nabla (v - u_{\varepsilon}) + a \, v(v - u_{\varepsilon}) \right] dx \ge \langle f, v - u_{\varepsilon} \rangle \ \forall v \in K. \end{cases}$$
(18)

Proof. We reproduce the proof for the reader's convenience. First if (3) holds then

$$\begin{split} \int_{\Omega} \left[\varepsilon A(x, \varepsilon u_{\varepsilon}) \nabla v \cdot \nabla (v - u_{\varepsilon}) + a \, v(v - u_{\varepsilon}) \right] dx \\ &= \int_{\Omega} \left[\varepsilon A(x, \varepsilon u_{\varepsilon}) \nabla (v - u_{\varepsilon}) \cdot \nabla (v - u_{\varepsilon}) + a(v - u_{\varepsilon})^2 \right] dx \\ &+ \int_{\Omega} \left[\varepsilon A(x, \varepsilon u_{\varepsilon}) \nabla u_{\varepsilon} \cdot \nabla (v - u_{\varepsilon}) + a u_{\varepsilon} (v - u_{\varepsilon}) \right] dx \\ &\geq \langle f, v - u_{\varepsilon} \rangle \quad \forall v \in K \end{split}$$

(by (2), (3), (7)). Next if (18) holds, replacing v by $u_{\varepsilon} + t(v - u_{\varepsilon})$ which is in K for any $t \in (0, 1), v \in K$, we get

$$\int_{\Omega} \left[\varepsilon A(x, \varepsilon u_{\varepsilon}) \nabla \{ u_{\varepsilon} + t(v - u_{\varepsilon}) \} \cdot \nabla t(v - u_{\varepsilon}) \right. \\ \left. + a \left\{ u_{\varepsilon} + t(v - u_{\varepsilon}) \right\} t(v - u_{\varepsilon}) \right] dx \ge t \langle f, v - u_{\varepsilon} \rangle.$$

Dividing by t and letting $t \to 0$ we get (3).

We now turn to the proof of Theorem 3.3.

Proof of Theorem 3.3. Let us take a fixed element u^* in K. Considering $v = (1 - \varepsilon)u_{\varepsilon} + \varepsilon u^* \in K$ in (3) we get

$$\varepsilon \int_{\Omega} A(x, \varepsilon u_{\varepsilon}) \nabla u_{\varepsilon} \cdot \nabla (-\varepsilon u_{\varepsilon} + \varepsilon u^*) \, dx + \int_{\Omega} a \, u_{\varepsilon} (-\varepsilon u_{\varepsilon} + \varepsilon u^*) \, dx \ge \langle f, -\varepsilon u_{\varepsilon} + \varepsilon u^* \rangle.$$

This implies setting $v_{\varepsilon} = \varepsilon u_{\varepsilon}$

$$\int_{\Omega} A(x, v_{\varepsilon}) \nabla v_{\varepsilon} \cdot \nabla v_{\varepsilon} \, dx + \frac{1}{\varepsilon} \int_{\Omega} a \, v_{\varepsilon}^2 \, dx$$
$$\leq \varepsilon \int_{\Omega} A(x, v_{\varepsilon}) \nabla v_{\varepsilon} \cdot \nabla u^* \, dx + \int_{\Omega} a \, v_{\varepsilon} u^* \, dx + \langle f, v_{\varepsilon} - \varepsilon u^* \rangle.$$

Using (6), (7) we derive

$$\lambda \int_{\Omega} |\nabla v_{\varepsilon}|^{2} dx + \frac{1}{\varepsilon} \int_{\Omega} av_{\varepsilon}^{2} dx$$

$$\leq \varepsilon \int_{\Omega} (\Lambda |\nabla v_{\varepsilon}| |\nabla u^{*}| + a |v_{\varepsilon}| |u^{*}|) dx + |f|_{*} ||v_{\varepsilon}||_{1,2} + \varepsilon |f|_{*} ||u^{*}||_{1,2}.$$
(19)

Assuming $\varepsilon \leq 1$, $\varepsilon \Lambda < 1$ – recall that $\varepsilon \to 0$ – we get

$$(\lambda \wedge 1) ||v_{\varepsilon}||_{a}^{2} \leq ||v_{\varepsilon}||_{a} ||u^{*}||_{a} + |f|_{*} ||v_{\varepsilon}||_{1,2} + |f|_{*} ||u^{*}||_{1,2}.$$

Due to the equivalence of norms $\|\cdot\|_a$, $\|\cdot\|_{1,2}$ we obtain, for some constants independent of ε , $\|v_{\varepsilon}\|_{1,2}^2 \leq C \|v_{\varepsilon}\|_{1,2} + C'$. It follows that

$$\|v_{\varepsilon}\|_{1,2} \le C''. \tag{20}$$

and -up to a sequence - there exists $v_0 \in K$ such that when $\varepsilon \to 0$,

$$v_{\varepsilon} \rightharpoonup v_0 \quad \text{in } H^1(\Omega)$$
 (21)

$$v_{\varepsilon} \to v_0 \quad \text{in } L^2(\Omega)$$
 (22)

$$v_{\varepsilon} \to v_0$$
 a.e. in Ω . (23)

From (19), (20) we derive $\int_{\Omega} av_{\varepsilon}^2 dx \leq \varepsilon C$, where C is independent of ε . Using Fatou's lemma we infer

$$\int_{\Omega} av_0^2 dx = 0, \quad \text{i.e. } av_0 = 0 \quad \text{a.e. in } \Omega.$$
(24)

Next we would like to show that $v_0 \in K_0$. Consider $k_0 \in K$. We have $v_{\varepsilon} = \varepsilon u_{\varepsilon} = \varepsilon (u_{\varepsilon} - k_0) + \varepsilon k_0$, and thus for $\varepsilon' > \varepsilon$, by Lemma 3.1, $v_{\varepsilon} - \varepsilon k_0 = \varepsilon (u_{\varepsilon} - k_0) \in K_{\varepsilon'}(k_0)$. Letting $\varepsilon \to 0$ we get $v_0 \in K_{\varepsilon'}(k_0)$ for all ε' . It follows that $v_0 \in K_0$ and by (24) $v_0 \in W_a$. Next, considering (18) and multiplying the inequality by ε we have

$$\int_{\Omega} \left(A(x, v_{\varepsilon}) \nabla(\varepsilon v) \cdot \nabla(\varepsilon v - v_{\varepsilon}) + a \, v(\varepsilon v - v_{\varepsilon}) \right) dx \ge \langle f, \varepsilon v - v_{\varepsilon} \rangle \, \forall v \in K.$$
(25)

Consider $w \in W_a$ an arbitrary element. Since $w \in K_0$, for every ε there exists $w_{\varepsilon} \in K$ such that $w = \varepsilon(w_{\varepsilon} - k_0)$. Taking

$$v = w_{\varepsilon} = \frac{w}{\varepsilon} + k_0 \tag{26}$$

in (25) we obtain

$$\int_{\Omega} \left(A(x, v_{\varepsilon}) \nabla (w + \varepsilon k_0) \cdot \nabla (w - v_{\varepsilon} + \varepsilon k_0) + a \left(\frac{w}{\varepsilon} + k_0 \right) (w - v_{\varepsilon} + \varepsilon k_0) \right) dx \ge \langle f, w - v_{\varepsilon} + \varepsilon k_0 \rangle.$$
(27)

Since $w \in W_a$, then aw = 0 a.e. $x \in \Omega$ and (27) leads to

$$\int_{\Omega} A(x, v_{\varepsilon}) \nabla w \cdot \nabla (w - v_{\varepsilon}) \, dx + \varepsilon \int_{\Omega} A(x, v_{\varepsilon}) \nabla w \cdot \nabla k_0 \, dx \\
+ \varepsilon \int_{\Omega} A(x, v_{\varepsilon}) \nabla k_0 \cdot \nabla (w - v_{\varepsilon} + \varepsilon k_0) \, dx + \int_{\Omega} a \, k_0 \, (-v_{\varepsilon} + \varepsilon k_0) \, dx \qquad (28) \\
\geq \langle f, w - v_{\varepsilon} \rangle + \varepsilon \, \langle f, k_0 \rangle.$$

It follows from (23) that $A(x, v_{\varepsilon})\nabla w \to A(x, v_0)\nabla w$ in $L^2(\Omega)$, and passing to the limit in (28) we obtain

$$\int_{\Omega} A(x, v_0) \nabla w \cdot \nabla (w - v_0) \, dx \ge \langle f, w - v_0 \rangle \quad \forall w \in W_a.$$

Using Lemma 3.5 with $\varepsilon = 1$, we see that v_0 also satisfies

$$\begin{cases} v_0 \in W_a \\ \int_{\Omega} A(x, v_0) \nabla v_0 \cdot \nabla(w - v_0) \, dx \ge \langle f, w - v_0 \rangle \quad \forall w \in W_a, \end{cases}$$

i.e., $v_0 = w_0$ the unique solution to (17). Since the possible limit of $v_{\varepsilon} = \varepsilon u_{\varepsilon}$ is unique, it is the whole sequence v_{ε} that satisfies (21)–(23). Let us now show that the convergence is in fact strong. For that we multiply (3) by ε and take $v = w_{\varepsilon}$ given by (26). We obtain

$$\int_{\Omega} \left(A(x, v_{\varepsilon}) \nabla v_{\varepsilon} \cdot \nabla (w + \varepsilon k_0 - v_{\varepsilon}) + a \, u_{\varepsilon} (w + \varepsilon k_0 - v_{\varepsilon}) \right) dx \ge \langle f, w + \varepsilon k_0 - v_{\varepsilon} \rangle.$$

Thus rearranging this inequality and taking into account that $\frac{1}{\varepsilon} > 1$, we get

$$\int_{\Omega} \left(A(x, v_{\varepsilon}) \nabla v_{\varepsilon} \cdot \nabla v_{\varepsilon} + a v_{\varepsilon}^{2} \right) dx \leq \int_{\Omega} A(x, v_{\varepsilon}) \nabla v_{\varepsilon} \cdot \nabla (w + \varepsilon k_{0}) dx + \int_{\Omega} a u_{\varepsilon} \varepsilon k_{0} dx - \langle f, w + \varepsilon k_{0} - v_{\varepsilon} \rangle.$$

$$(29)$$

Thus we derive taking $w = w_0$ in (29)

$$\begin{split} &(\lambda \wedge 1) \| v_{\varepsilon} - w_{0} \|_{a}^{2} \\ &\leq \int_{\Omega} \left(A(x, v_{\varepsilon}) \nabla (v_{\varepsilon} - w_{0}) \cdot \nabla (v_{\varepsilon} - w_{0}) + a \left(v_{\varepsilon} - w_{0} \right)^{2} \right) dx \\ &= \int_{\Omega} \left(A(x, v_{\varepsilon}) \nabla v_{\varepsilon} \cdot \nabla v_{\varepsilon} + a \left(v_{\varepsilon} \right)^{2} \right) dx \\ &- \int_{\Omega} \left\{ A(x, v_{\varepsilon}) \nabla w_{0} \cdot \nabla v_{\varepsilon} + A(x, v_{\varepsilon}) \nabla v_{\varepsilon} \cdot \nabla w_{0} \right\} dx + \int_{\Omega} A(x, v_{\varepsilon}) \nabla w_{0} \cdot \nabla w_{0} dx \\ &\leq \int_{\Omega} A(x, v_{\varepsilon}) \nabla v_{\varepsilon} \cdot \nabla (w + \varepsilon k_{0}) dx + \int_{\Omega} a u_{\varepsilon} \varepsilon k_{0} dx - \langle f, w + \varepsilon k_{0} - v_{\varepsilon} \rangle \\ &- \int_{\Omega} \left\{ A(x, v_{\varepsilon}) \nabla w_{0} \cdot \nabla v_{\varepsilon} + A(x, v_{\varepsilon}) \nabla v_{\varepsilon} \cdot \nabla w_{0} \right\} dx + \int_{\Omega} A(x, v_{\varepsilon}) \nabla w_{0} \cdot \nabla w_{0} dx, \end{split}$$

which converges towards zero when $\varepsilon \to 0$. This completes the proof of the theorem.

3.2. Convergence of u_{ε} . Suppose that we are in dimension 1. Then – due to the embedding $H^1(\Omega) \subset \mathcal{C}(\bar{\Omega})$ – we derive from Theorem 3.3 that $v_{\varepsilon} \to w_0$ in $\mathcal{C}(\bar{\Omega})$. In particular

$$u_{\varepsilon} = \frac{v_{\varepsilon}}{\varepsilon} \to \operatorname{sign} w_0 \cdot \infty \quad \text{ on } [w_0 \neq 0],$$

and we can expect convergence of u_{ε} only on the set $[w_0 = 0]$. Due to (16) and since $w_0 \in W_a$ we have $w_0 = 0$ on $\Omega' = \{x \in \Omega; a(x) > 0\}$. Now we would like to investigate the behavior of u_{ε} on this set. For this we will suppose

$$f \in L^2(a\,dx)^*,\tag{30}$$

where we have set

$$L^{2}(a \, dx) = \left\{ v \text{ measurable on } \Omega \text{ such that } \int_{\Omega} av^{2} \, dx < +\infty \right\}$$
$$L^{2}(a \, dx)^{*} = \text{the dual of } L^{2}(a \, dx).$$

It is clear that $L^2(a dx)$ is a Hilbert space for the scalar product $(u, v)_a = \int_{\Omega} auv \, dx$, and its dual can be identified to $L^2(a \, dx)$ via the Riesz representation theorem. If f satisfies (30) we have

$$\langle f, v \rangle \le C |v|_a = C \left\{ \int_{\Omega} av^2 \, dx \right\}^{\frac{1}{2}} \le C ||v||_a, \tag{31}$$

and thus $f \in H^1(\Omega)^*$. So, there exists u_{ε} solution to (3). Moreover, we have

Theorem 3.6. Let $f \in L^2(a dx)^*$ and let u_{ε} be a solution to (3). Then it holds that

$$u_{\varepsilon} \to u_0 \text{ in } L^2(a \, dx),$$

where u_0 is the solution to

$$\begin{cases} u_0 \in \overline{K} \ (the \ closure \ of \ K \ in \ L^2(a \ dx)) \\ \int_{\Omega} a \ u_0(v - u_0) \ dx \ge \langle f, v - u_0 \rangle \quad \forall v \in \overline{K}. \end{cases}$$
(32)

Proof. Let v_0 be a fixed element in K. Taking $v = v_0$ in (3) and setting $A = A(x, \varepsilon u_{\varepsilon})$ we obtain

$$\varepsilon \int_{\Omega} (A \nabla u_{\varepsilon} \cdot \nabla (v_0 - u_{\varepsilon}) + a \, u_{\varepsilon} (v_0 - u_{\varepsilon})) \, dx \ge \langle f, v_0 - u_{\varepsilon} \rangle.$$

Using (7) we deduce

$$\varepsilon\lambda \int_{\Omega} |\nabla u_{\varepsilon}|^2 \, dx + \int_{\Omega} a \, u_{\varepsilon}^2 \, dx \le \varepsilon \int_{\Omega} A \nabla u_{\varepsilon} \cdot \nabla v_0 \, dx + \int_{\Omega} a \, u_{\varepsilon} v_0 \, dx + \langle f, u_{\varepsilon} - v_0 \rangle dx + \langle f, u_{\varepsilon}$$

Recalling (6) we get – see also (31) –

$$\begin{split} \varepsilon\lambda | |\nabla u_{\varepsilon}||_{2,\Omega}^{2} + |u_{\varepsilon}|_{a}^{2} &\leq \varepsilon\Lambda | |\nabla u_{\varepsilon}||_{2,\Omega} | |\nabla v_{0}||_{2,\Omega} + |u_{\varepsilon}|_{a}|v_{0}|_{a} + |f|_{a}^{*}\{|u_{\varepsilon}|_{a} + |v_{0}|_{a}\},\\ \text{where } |f|_{a}^{*} \text{ denotes the strong dual norm of } f. \text{ Setting } N(u_{\varepsilon}) &= \{\varepsilon\lambda | |\nabla u_{\varepsilon}||_{2,\Omega}^{2} + |u_{\varepsilon}|_{a}^{2}\}^{\frac{1}{2}} \text{ one easily deduces that the following holds:} \end{split}$$

$$N(u_{\varepsilon})^{2} \leq \left\{ \sqrt{\varepsilon} \frac{\Lambda}{\sqrt{\lambda}} | |\nabla v_{0}||_{2,\Omega} + |v_{0}|_{a} + |f|_{a}^{*} \right\} N(u_{\varepsilon}) + |f|_{a}^{*} |v_{0}|_{a}$$

and thus for some constant C independent of ε ($\varepsilon < 1$) we obtain

$$N(u_{\varepsilon})^2 \le C. \tag{33}$$

So, up to a subsequence we have $u_{\varepsilon} \rightharpoonup u$ in $L^2(a \, dx)$. From (3) we derive

$$\int_{\Omega} au_{\varepsilon}v \, dx \ge \langle f, v - u_{\varepsilon} \rangle - \varepsilon \int_{\Omega} A \nabla u_{\varepsilon} \cdot \nabla v \, dx + \int_{\Omega} au_{\varepsilon}^{2} \, dx$$
$$\ge \langle f, v - u_{\varepsilon} \rangle - \varepsilon \Lambda | |\nabla u_{\varepsilon}| |_{2,\Omega} | |\nabla v| |_{2,\Omega} + \int_{\Omega} au_{\varepsilon}^{2} \, dx$$
$$\ge \langle f, v - u_{\varepsilon} \rangle - \sqrt{\varepsilon} C' + \int_{\Omega} au_{\varepsilon}^{2} \, dx \tag{34}$$

by (33). Passing to the limit inf in ε we get

$$\int_{\Omega} a \, u \, v \, dx \ge \langle f, v - u \rangle + \int_{\Omega} a u^2 \, dx, \quad \forall v \in K.$$

By density the above inequality holds for every $v \in \overline{K}$ and $u = u_0$ solution to (32). By uniqueness of the limit it follows that the whole sequence u_{ε} converges to u_0 in $L^2(a \, dx)$ weakly. Taking $v = u_0$ in (34) and passing to the lim sup in ε we obtain lim sup $\int_{\Omega} a u_{\varepsilon}^2 dx \leq \int_{\Omega} a u_0^2 dx \leq \liminf \int_{\Omega} a u_{\varepsilon}^2 dx$. Thus it holds $\lim_{\varepsilon \to 0} \int_{\Omega} a u_{\varepsilon}^2 dx = \int_{\Omega} a u_0^2 dx$. This establishes the strong convergence of u_{ε} and completes the proof.

In the case where $u_0 \in K$ we can estimate more precisely the rate of convergence of u_{ε} toward u_0 and show

Theorem 3.7. Suppose that $u_0 \in K$. Then we have

$$||u_{\varepsilon}||_{1,2} \le C_1, \quad |u_{\varepsilon} - u_0|_a \le \sqrt{\varepsilon} C_2,$$

where C_1 and C_2 are two constants independent of ε .

Proof. Since $u_0 \in K$, we can choose $v = u_0$ in (3) and $v = u_{\varepsilon}$ in (32). Adding up we obtain $\varepsilon \int_{\Omega} A \nabla u_{\varepsilon} \cdot \nabla (u_0 - u_{\varepsilon}) dx - \int_{\Omega} a (u_{\varepsilon} - u_0)^2 dx \ge 0$. This can also be written as $\varepsilon \int_{\Omega} A \nabla (u_{\varepsilon} - u_0 + u_0) \cdot \nabla (u_0 - u_{\varepsilon}) dx - \int_{\Omega} a (u_{\varepsilon} - u_0)^2 dx \ge 0$. Therefore

$$\varepsilon \int_{\Omega} A \nabla (u_0 - u_{\varepsilon}) \cdot \nabla (u_0 - u_{\varepsilon}) \, dx + \int_{\Omega} a \, (u_{\varepsilon} - u_0)^2 dx \le \varepsilon \int_{\Omega} A \nabla u_0 \cdot \nabla (u_0 - u_{\varepsilon}) \, dx.$$

Thus

$$\varepsilon\lambda||\nabla(u_{\varepsilon}-u_{0})||_{2,\Omega}^{2}+|u_{\varepsilon}-u_{0}|_{a}^{2}\leq\varepsilon\Lambda||\nabla u_{0}||_{2,\Omega}||\nabla(u_{\varepsilon}-u_{0})||_{2,\Omega}$$

(see (6), (7)). It follows that $||\nabla(u_{\varepsilon} - u_0)||_{2,\Omega} \leq \frac{\Lambda}{\lambda}||\nabla u_0||_{2,\Omega}$ and $|u_{\varepsilon} - u_0|_a^2 \leq \frac{\kappa}{\lambda}||\nabla u_0||_{2,\Omega}$. This completes the proof since $\|\cdot\|_a$ is equivalent to $\|\cdot\|_{1,2}$. \Box

4. Some examples

4.1. The case where K is bounded. In this case $K_0 = W_a = \{0\}$ but one can also see directly – since u_{ε} is bounded – that $v_{\varepsilon} = \varepsilon u_{\varepsilon} \to 0$ in $H^1(\Omega)$.

4.2. The case of a vector space. If K = V is a closed subspace of $H^1(\Omega)$, then $K_0 = V$, $W_a = \{v \in V; av = 0 \text{ a.e. in } \Omega\}$, and w_0 is the weak solution to

$$w_0 \in W_a, \qquad \int_{\Omega} A(x, w_0) \nabla w_0 \cdot \nabla v \, dx = \langle f, w \rangle \quad \forall w \in W_a$$

(see also [4]). Note that $w_0 = 0$ when a > 0 a.e. in Ω .

Now if $f \in (L^2(a \, dx))^*$ by the Riesz representation theorem there exists a unique $u \in L^2(a \, dx)$ such that

$$\langle f, v \rangle = (u, v)_a, \quad \forall v \in L^2(a \, dx)$$
 (35)

and u_0 is such that – see (32) –

$$u_0 \in \overline{V}, \qquad (u_0, v)_a = (u, v)_a, \quad \forall v \in \overline{V},$$

where \overline{V} denotes the closure of V in $L^2(a \, dx)$ (to see that replace v by $u_0 \pm v$ in (32)). In the case where V is dense in $L^2(a \, dx)$ one has

$$u_0 = u \tag{36}$$

This is the case in particular when $V = H^1(\Omega), H^1_0(\Omega)$.

4.3. The case of the obstacle problem. Consider for instance

$$K = \{ v \in H_0^1(\Omega); v \ge \varphi \text{ a.e. in } \Omega \}$$

where φ is a function satisfying $\varphi \in H^1(\Omega)$, $\varphi \leq 0$ on Γ . Then clearly $\varphi^+ \in K$ and

$$K_{\varepsilon}(\varphi^{+}) = \{\varepsilon(v - \varphi^{+}); v \in K\}$$

= $\left\{ w \in H_{0}^{1}(\Omega); \frac{w}{\varepsilon} + \varphi^{+} \ge \varphi \text{ a.e. in } \Omega \right\}$
= $\{ w \in H_{0}^{1}(\Omega); w \ge -\varepsilon\varphi^{-} \text{ a.e. in } \Omega \}.$

It follows that $K_0 = \{ w \in H_0^1(\Omega); w \ge 0 \text{ a.e. in } \Omega \}$, $W_a = \{ w \in K_0; aw = 0 \text{ a.e. in } \Omega \}$. This determines the solution w_0 in this case.

Suppose now to simplify that $a = a_0 \chi_{\Omega'}$, where $\Omega' \subset \Omega$ is a measurable subset and a_0 a function satisfying $0 < \lambda \leq a_0 \leq \Lambda$ a.e. in Ω' . It is easy to see in this case that $L^2(a \, dx) = L^2(\Omega')$. Thus

$$\overline{K} = \{ v \in L^2(a \, dx); \ v \ge \varphi \text{ a.e. in } \Omega' \}.$$
(37)

Indeed, one has $K \subset \overline{K}$. Moreover if $v \in L^2(a \, dx)$ satisfies $v \geq \varphi$ a.e. in Ω' , consider $v_n \in H^1_0(\Omega)$ such that $v_n \to v\chi_{\Omega'}$ in $L^2(\Omega)$ (recall that $H^1_0(\Omega)$ is dense in $L^2(\Omega)$). Then $v_n \lor \varphi \in K$, $v_n \lor \varphi \to v$ in $L^2(\Omega')$. This shows (37). If we introduce u such that (35) holds, then problem (32) can be written

$$u_0 \in \overline{K}, \qquad (u_0, v - u_0)_a \ge (u, v - u_0)_a, \quad \forall v \in \overline{K}.$$
 (38)

We claim that it holds that

$$u_0 = u \lor \varphi. \tag{39}$$

Indeed, first $u \lor \varphi \in \overline{K}$. Moreover for $v \in \overline{K}$ – i.e. $v \ge \varphi$ a.e. in Ω' – it holds that

$$\int_{\Omega'} a\left\{ (u \lor \varphi) - u \right\} \left\{ v - (u \lor \varphi) \right\} dx = \int_{\Omega' \cap \{u < \varphi\}} a\left\{ \varphi - u \right\} \left\{ v - \varphi \right\} dx \ge 0,$$

i.e., $u \lor \varphi$ satisfies (38) and (39) is proved.

4.4. An example in one dimension. Taking $\Omega = (0, 1)$, $\Omega' = (0, \frac{1}{2})$, $a = \chi_{\Omega'}$ and $\eta \in \mathbb{R}$, let us choose K as $K = \{v \in H^1(\Omega), v - \eta \in H^1_0(\Omega)\}$. It is easy to see that K is a closed, convex and nonempty subset from $H^1(\Omega)$. In order to linearize our problem, we take A(x, u) and f equal to one; thus problem (3) reads

$$u_{\varepsilon} \in K; \quad \varepsilon \int_{\Omega} u_{\varepsilon}'(v' - u_{\varepsilon}') \, dx + \int_{\Omega'} u_{\varepsilon}(v - u_{\varepsilon}) \, dx \ge \int_{\Omega} (v - u_{\varepsilon}) \, dx, \quad \forall v \in K.$$

Taking $v = u_{\varepsilon} \pm w$ where $w \in H_0^1(\Omega)$ we see after an integration by parts that u_{ε} is solution to

$$u_{\varepsilon} \in K;$$
 $\int_{\Omega} (-\varepsilon u_{\varepsilon}'' + u_{\varepsilon} \chi_{\Omega'} - 1) w \, dx = 0, \quad \forall w \in H_0^1(\Omega),$

and this implies that u_{ε} solves the following ordinary differential equation:

$$\begin{split} -\varepsilon u_{\varepsilon}'' + u_{\varepsilon} &= 1 \quad \text{in } (0, \frac{1}{2}), \qquad -\varepsilon u_{\varepsilon}'' = 1 \quad \text{in } (\frac{1}{2}, 1) \\ u_{\varepsilon}(0) &= \eta = u_{\varepsilon}(1) \end{split}$$

with the continuity conditions $u_{\varepsilon}^{-}(\frac{1}{2}) = u_{\varepsilon}^{+}(\frac{1}{2}), u_{\varepsilon}^{\prime-}(\frac{1}{2}) = u_{\varepsilon}^{\prime+}(\frac{1}{2})$. Using $u_{\varepsilon}(0) = \eta$ it is straightforward to obtain

$$u_{\varepsilon}(x) = 1 + (\eta - 1)e^{\frac{-x}{\sqrt{\varepsilon}}} + 2A \sinh\left(\frac{x}{\sqrt{\varepsilon}}\right), \quad x \in (0, \frac{1}{2}),$$

where A is given in terms of $u^* = u_{\varepsilon}^-(\frac{1}{2}) = u_{\varepsilon}^+(\frac{1}{2})$ by

$$A = \frac{u^* - 1 + (1 - \eta)e^{\frac{-1}{2\sqrt{\varepsilon}}}}{2\sinh\left(\frac{1}{2\sqrt{\varepsilon}}\right)}$$

Moreover, in the interval $(\frac{1}{2}, 1)$ the solution reads

$$u_{\varepsilon}(x) = 2 u^{\star}(1-x) + \eta (2x-1) + \frac{1}{4\varepsilon}(-2x^2 + 3x - 1).$$

Finally, using the continuity condition for the derivatives at $x = \frac{1}{2}$ we obtain

$$u^{\star} = \frac{2\eta\sqrt{\varepsilon} + \frac{1}{4\sqrt{\varepsilon}} + (\eta - 1)e^{\frac{-1}{2\sqrt{\varepsilon}}} + \left[(\eta - 1)e^{\frac{-1}{2\sqrt{\varepsilon}}} + 1\right]\coth\left(\frac{1}{2\sqrt{\varepsilon}}\right)}{2\sqrt{\varepsilon} + \coth\left(\frac{1}{2\sqrt{\varepsilon}}\right)}.$$

Applying theorem 3.3 it yields that $\varepsilon u_{\varepsilon} \to w_0$ where w_0 solves the problem

$$w_0 \in W_a, \qquad \int_0^1 w'_0(v' - w'_0) \, dx \ge \int_0^1 (v - w_0) \, dx, \quad \forall v \in W_a$$

with $W_a = \{v \in H_0^1(\Omega), v = 0 \text{ a.e. in } \Omega'\}$. Taking $v = w_0 \pm w$ we get after integration by parts

$$w_0 \in W_a, \qquad \int_{\frac{1}{2}}^1 (-w_0'' - 1)w \, dx = 0, \quad \forall w \in W_a,$$

and then we deduce that w_0 solves

$$w_0 = 0$$
 in $(0, \frac{1}{2})$, $-w_0'' = 1$ in $(\frac{1}{2}, 1)$
 $w_0(\frac{1}{2}) = 0 = w_0(1).$

Therefore we have that

$$w_0 = \begin{cases} 0, & \text{in } (0, \frac{1}{2}) \\ \frac{1}{4}(-2x^2 + 3x - 1) & \text{in } (\frac{1}{2}, 1). \end{cases}$$

Figure 1 shows $\varepsilon u_{\varepsilon}$ for several values of ε and its limit w_0 taking η equal to one.

Figure 1: $\varepsilon u_{\varepsilon}$ and w_0 .

Let us choose to simplify $\eta = 1$. We obtain by straightforward computations in the interval $(0, \frac{1}{2})$

$$u_{\varepsilon}(x) = 1 + \frac{(u^{\star} - 1)}{\sinh\left(\frac{1}{2\sqrt{\varepsilon}}\right)} \sinh\left(\frac{x}{\sqrt{\varepsilon}}\right)$$

with

$$u^{\star} - 1 = \frac{1}{4\sqrt{\varepsilon} \left(2\sqrt{\varepsilon} + \coth\left(\frac{1}{2\sqrt{\varepsilon}}\right)\right)}.$$

Thus we deduce that $u_{\varepsilon}(x) \to 1$ in $(0, \frac{1}{2})$ but the convergence is not strong in $L^2(0, \frac{1}{2})$; indeed, we have

$$\int_0^{\frac{1}{2}} (u_{\varepsilon}(x) - 1)^2 dx = \frac{1}{16\varepsilon \left(2\sqrt{\varepsilon} + \coth\left(\frac{1}{2\sqrt{\varepsilon}}\right)\right)^2} \frac{1}{\left(\sinh\left(\frac{1}{2\sqrt{\varepsilon}}\right)\right)^2} \int_0^{\frac{1}{2}} \sinh\left(\frac{x}{\sqrt{\varepsilon}}\right)^2 dx.$$

Then

$$\int_0^{\frac{1}{2}} (u_{\varepsilon}(x) - 1)^2 dx = \frac{\sqrt{\varepsilon} \sinh\left(\frac{1}{\sqrt{\varepsilon}}\right) - 1}{64 \varepsilon \left(2\sqrt{\varepsilon} + \coth\left(\frac{1}{2\sqrt{\varepsilon}}\right)\right)^2 \left(\sinh\left(\frac{1}{2\sqrt{\varepsilon}}\right)\right)^2},$$

and this integral goes to infinity when $\varepsilon \to 0$. This is due to the fact that f defined by $\langle f, v \rangle = \int_{\Omega} v(x) dx$ does not belong to $L^2(a dx)^*$. On the other hand for this value of η , if we choose f such that $\langle f, v \rangle = \int_{\Omega'} v(x) dx$, f belongs to $L^2(a dx)^*$ and u_{ε} solution to

$$u_{\varepsilon} \in K; \quad \varepsilon \int_{\Omega} u_{\varepsilon}'(v' - u_{\varepsilon}') \, dx + \int_{\Omega'} u_{\varepsilon}(v - u_{\varepsilon}) \, dx \ge \int_{\Omega'} (v - u_{\varepsilon}) \, dx, \quad \forall v \in K,$$

is the solution of (see above)

$$-\varepsilon u_{\varepsilon}'' + u_{\varepsilon} = 1 \quad \text{in } (0, \frac{1}{2}), \qquad -\varepsilon u_{\varepsilon}'' = 0 \quad \text{in } (\frac{1}{2}, 1)$$
$$u_{\varepsilon}(0) = 1 = u_{\varepsilon}(1)$$

with the continuity conditions $u_{\varepsilon}^{-}(\frac{1}{2}) = u_{\varepsilon}^{+}(\frac{1}{2})$ and $u_{\varepsilon}^{\prime-}(\frac{1}{2}) = u_{\varepsilon}^{\prime+}(\frac{1}{2})$. It is straightforward to deduce that u_{ε} equals 1 for all $\varepsilon > 0$ and the convergence towards f is then here strong.

References

- [1] Brezis, H., Analyse Fonctionelle Théorie et Applications. Paris: Mason 1983.
- [2] Chipot, M., Elements of Nonlinear Analysis. Basel: Birkhäuser 2000.
- [3] Chipot, M. and Michaille, G., Uniqueness Results and Monotonicity Properties for Strongly Nonlinear Elliptic Variational Inequalities. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) (1989), 137 – 166.
- [4] Chipot, M. and Muñiz, M. C., On some degenerate singular perturbation problems. Asymptotic Analysis 24 (2000), 209 – 232.
- [5] Chipot, M., *l goes to plus infinity*. Basel: Birkhäuser 2001.
- [6] Evans, L. C., Partial Differential Equations. Graduate Studies Math. 19. Providence (RI): Amer. Math. Soc. 1998.
- [7] Gilbarg, D. and Trudinger, Neil S., Elliptic Partial Differential Equations of Second Order. New York: Springer 1985.
- [8] Kinderlehrer, D. and Stampacchia, G., An Introduction to Variational Inequalities. New York: Academic Press 1980.
- [9] Lions, J. L., Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal. Lecture Notes Math. 323. Berlin: Springer 1973.

Received January 16, 2006; revised April 19, 2006