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Abstract. The present paper is devoted to the study of growth envelopes of aniso-
tropic function spaces. An affirmative answer is given to the question of H. Triebel
[Wavelet bases in anisotropic function spaces. In: Function Spaces, Differential Oper-
ators and Nonlinear Analysis (FSDONA-04). Praha: Math. Inst. Acad. Czech Rep.
2005, pp. 370 – 387; Conjecture 13], whether the growth envelopes are independent
of anisotropy. As an application, related anisotropic Hardy inequalities are presented
and we also discuss a connection to some anisotropic fractal sets.
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1. Introduction

The concept of envelopes in function spaces turns out to be an important tool for
studying spaces of Besov or Triebel–Lizorkin type in limiting situations. The
investigation of envelopes of function spaces was initiated by D. D. Haroske
in [10] and H. Triebel in [17]. A systematic study of this concept started only
rather recently, see, e.g. [17, Chapter II] and [11, 12]. The interested reader
is referred to the monograph [17] for further information on the history of this
concept. For recent contributions on growth envelopes of spaces of generalized
smoothness we refer to [3]–[7].

In this work we consider growth envelopes of anisotropic Besov and Triebel–
Lizorkin spaces in the subcritical and critical case. The main purpose of this
paper is to give an affirmative answer to the conjecture posed by H. Triebel
in [19], where the question was raised whether the results on growth envelopes
for anisotropic function spaces are affected by anisotropy.
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Let us now present the contents of this work in some detail. The next section
collects the necessary background material. In Subsection 2.1 some general no-
tation is introduced. Subsection 2.2 covers results from the theory of anisotropic
function spaces, namely interpolation properties, embeddings and characteriza-
tion by atomic decompositions whereas Subsection 2.3 collects the fundamentals
on growth envelopes. In Section 3 we present some embedding results which are
useful when discussing growth envelopes for anisotropic function spaces. Sec-
tion 4 is devoted to the study of growth envelopes of anisotropic function spaces
in the subcritical case and Section 5 deals with the critical case. In both cases
we prove that the growth envelopes are independent of the anisotropy. The last
section deals with related anisotropic Hardy type inequalities and a connection
to some anisotropic fractal sets.

2. Preliminaries

2.1. General notation. For a real number a, [a] stands for the greatest integer
less than or equal to a and let a+ := max(a, 0). By c, c1, c2, etc. we denote
positive constants independent of appropriate quantities. For two non-negative
expressions (i.e., functions or functionals) A, B, the symbol A . B (or A & B)
means thatA ≤ cB (or cA ≥ B). IfA . B andA & B, we writeA ∼ B and say
that A and B are equivalent. For p ∈ [1,∞], the conjugate number p′ is defined
by 1

p
+ 1

p′
= 1 with the convention that 1

∞
= 0. Given two quasi-Banach spaces

X and Y , we write X ↪→ Y if X ⊂ Y and the natural embedding is bounded. In
the following let both dx and | · | stand for the Lebesgue measure in R

n. Recall
that the distribution function µf (λ) and the non-increasing rearrangement f ∗

of a complex-valued Lebesgue measurable function f are given by

µf (λ) := |{x ∈ R
n : |f(x)| > λ}|

and
f ∗(t) := inf{λ : µf (λ) ≤ t}, t ≥ 0,

respectively. Analogously, for a complex-valued sequence (am)m∈Zn , its non-
increasing rearrangement is given as the sequence (a∗l )l∈N, where

a∗l := inf
{
λ ≥ 0 : #{m ∈ Z

n : |am| > λ} < l
}
, l ∈ N.

Let 0 < r, v ≤ ∞. Then the Lorentz space Lrv(R
n) consists of all Lebesgue

measurable complex-valued functions f on R
n for which the quasi-norm

‖f |Lrv(R
n)‖ :=





(∫∞
0

(
t

1

r f ∗(t)
)v dt

t

)1

v

, for 0 < v <∞

sup
t>0

t
1

r f ∗(t), for v =∞
(1)

is finite.
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2.2. Anisotropic function spaces. In this subsection we introduce the an-
isotropic Besov and Triebel–Lizorkin spaces and describe some important prop-
erties. Let us start by recalling briefly the basic ingredients needed to introduce
these spaces by the Fourier analytical approach. Throughout the paper we call
the vector

α = (α1, . . . , αn) with 0 < α1 ≤ · · · ≤ αn <∞ and
n∑

j=1

αj = n (2)

an anisotropy in R
n. For t > 0, r ∈ R and x = (x1, . . . , xn) ∈ R

n we put
tαx := (tα1x1, . . . t

αnxn) and trαx := (tr)αx. For x = (x1, . . . , xn) ∈ R
n, x 6= 0,

let |x|α be the unique positive number t such that

x21
t2α1

+ · · ·+
x2n
t2αn

= 1

and put |0|α = 0. It turns out that | · |α is an anisotropic distance function in
C∞(Rn)\{0} according to [8, Definition 2.1]. Note that in the isotropic case,
which means α1 = · · · = αn = 1, |x|α is the Euclidean distance of x to the
origin.

Let ϕα0 ∈ S(Rn) be a function such that ϕα0 (x) = 1 for supl |xl| ≤ 1
and ϕα0 (y) = 0 for supl 2

−αl|yl| ≥ 1, with x = (x1, . . . , xn) ∈ R
n and y =

(y1, . . . , yn) ∈ R
n. We define

ϕαj (x) := ϕα0 (2
−jαx)− ϕα0 (2

−(j−1)αx), x ∈ R
n, j ∈ N. (3)

Then since
∑∞

j=0 ϕ
α
j (x) = 1 for all x ∈ R

n, the sequence (ϕαj )j∈N0
is an aniso-

tropic resolution of unity with suppϕα0 ⊂ Rα
1 and suppϕαj ⊂ Rα

j+1\R
α
j−1, j ∈ N,

where Rα
j are rectangles given by Rα

j := {x : |xl| ≤ 2αlj, l = 1, . . . , n}, j ∈ N0.

Definition 2.1. Let α be an anisotropy as in (2) and let ϕα = (ϕαj )j∈N0
be an

anisotropic dyadic resolution of unity in the sense of (3).

(i) For 0 < p, q ≤ ∞ and s ∈ R the anisotropic Besov space Bs,α
pq (Rn) is

defined to be the set of all tempered distributions f ∈ S ′(Rn) such that

∥∥f |Bs,α
pq (Rn)

∥∥ :=

(
∞∑

j=0

2jsq
∥∥(ϕαj f̂)∨|Lp(R

n)
∥∥q
) 1

q

(4)

is finite. In the limiting case q =∞ the usual modification is required.

(ii) For 0 < p < ∞, 0 < q ≤ ∞ and s ∈ R the anisotropic Triebel–Lizorkin

space F s,α
pq (Rn) is defined to be the set of all tempered distributions f ∈

S ′(Rn) such that

∥∥f |F s,α
pq (Rn)

∥∥ :=

∥∥∥∥∥∥

(
∞∑

j=0

2jsq|(ϕαj f̂)
∨(·)|q

)1

q ∣∣Lp(R
n)

∥∥∥∥∥∥
(5)

is finite. In the limiting case q =∞ the usual modification is required.
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Remark 2.2. We occasionally use the symbol As,α
pq (R

n) to consider the spaces
Bs,α
pq (Rn) and F s,α

pq (Rn) simultaneously. It turns out that As,α
pq (R

n) are quasi-
Banach spaces which are independent of ϕα, in the sense of equivalent quasi-
norms, according to either (4) or (5). Taking α = (1, . . . , 1) brings us back to
the isotropic case usually denoted by Bs

pq(R
n) and F s

pq(R
n). The above Fourier

analytical approach is due to H. Triebel [16]. For further information the reader
may consult [13, 18], specially in the later monograph one can find historical
considerations.

We start by stating an anisotropic Littlewood–Paley theorem. Details may
be found in [13, 4.2.2].

Proposition 2.3. Let α be an anisotropy as in (2) and let 1 < p <∞. Then

F
0,α
p,2 (R

n) = Lp(R
n).

Let us continue by describing the interpolation property of anisotropic Besov
spaces according to [9, Appendix C.2, Lemma 2].

Proposition 2.4. Let α be an anisotropy as in (2). Furthermore, let 0 <

q0, q1 ≤ ∞, s0, s1 ∈ R such that s0 6= s1 and let s = (1 − θ)s0 + θs1 with

0 < θ < 1. Then

(Bs0,α
pq0

(Rn), Bs1,α
pq1

(Rn))θ,q = Bs,α
pq (Rn) for all 0 < p, q ≤ ∞.

We refer to [9, Appendix C.3, Proposition 7] for the next assertion on
embeddings between anisotropic Besov and Triebel–Lizorkin spaces.

Proposition 2.5. Let α be an anisotropy as in (2). Let 0 < p0 < p < p1 ≤ ∞,

s1 < s < s0 and 0 < q ≤ ∞. Then

Bs0,α
p0p

(Rn) ↪→ F s,α
pq (Rn) ↪→ Bs1,α

p1p
(Rn),

provided that s0 −
n
p0

= s− n
p
= s1 −

n
p1
.

Let us proceed with a review of the needed notation to state the atomic
decomposition result. Hereby, we closely follow the exposition of W. Farkas
from [8]. Let α be an anisotropy as in (2). Let Qα

νm be the rectangle in R
n with

sides parallel to the axes of coordinates, centered at

2−ναm = (2−να1m1, . . . , 2
−ναnmn), m ∈ Z

n, ν ∈ N0,

and with sides lengths 2−(ν−1)α1 , . . . , 2−(ν−1)αn . In particular, Qα
0m are rectangles

of sides lengths 2α1 , . . . , 2αn centered atm ∈ Z
n. If Qα

νm is such a rectangle in R
n

and d > 0, then dQα
νm is the rectangle in R

n concentric with Qα
νm and with side

lengths d2−(ν−1)α1 , . . . , d2−(ν−1)αn . Remark that for fixed ν ∈ N0 and d > 0,
there are at most (2d)n cubes dQα

νm, m ∈ N, that overlap. For x ∈ R
n and

γ ∈ N
n
0 we put αγ = γα :=

∑n

j=1 γjαj and xγ := x
γ1

1 . . . xγnn . We are now in a
position to introduce the respective building blocks.
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Definition 2.6. Let α be an anisotropy according to (2). Let K ≥ 0 and d > 1.
A continuous function a : R

n → C with all derivatives Dγa for αγ ≤ K is said
to be an 1αK-atom if

(i) supp a ⊂ dQα
0m for some m ∈ Z

n,

(ii) |Dγa(x)| ≤ 1 for αγ ≤ K, x ∈ R
n.

Let s ∈ R, 0 < p ≤ ∞, K,L ≥ 0 and d > 1. A continuous function a : R
n → C

with all derivatives Dγa for αγ ≤ K is said to be an (s, p)αK,L-atom if

(i) supp a ⊂ dQα
νm for some ν ∈ N0, m ∈ Z

n,

(ii) |Dγa(x)| ≤ 2−ν(s−
n
p
−γα) for αγ ≤ K, x ∈ R

n,

(iii)
∫

Rn x
βa(x)dx = 0 for β ∈ N

n
0 with βα < L.

Definition 2.7. If 0 < p, q ≤ ∞, the Besov sequence space bpq is the collection
of all sequences λ = (λνm)ν∈N0,m∈Zn ⊂ C such that

∥∥λ|bpq
∥∥ :=

(
∞∑

ν=0

( ∑

m∈Zn

|λνm|
p

) q

p

) 1

q

(with the usual modification if either p =∞ or q =∞) is finite.

In the sequel, to shorten the notation, we use the following abbreviation:

σp := n

(
1

p
− 1

)

+

.

Below we formulate the atomic decomposition of anisotropic Besov spaces
Bs,α
pq (Rn) as presented in [8, Theorem 3.3].

Theorem 2.8. Let 0 < p, q ≤ ∞, s ∈ R and α be an anisotropy according

to (2). Let K,L ≥ 0 with

K ≥

{
0 for s < 0

s+ αn for s ≥ 0,

and L > σp−s be fixed. A tempered distribution f ∈ S ′(Rn) belongs to Bs,α
pq (Rn)

if, and only if, it can be written as

f =
∞∑

ν=0

∑

m∈Zn

λνm a
α
νm, converging in S ′(Rn), (6)

where aανm are 1αK-atoms (ν = 0) or (s, p)αK,L-atoms (ν ∈ N) and λ ∈ bpq.

Furthermore,

inf ‖λ|bpq‖, (7)

where the infimum is taken over all admissible representations (6), is an equiv-

alent quasi-norm in Bs,α
pq (Rn).
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2.3. Growth envelopes. The notion of growth envelopes was introduced by
D. D. Haroske in [10] and H. Triebel in [17]. Following [10], we present the
basic definitions and properties concerning growth envelopes in quasi-Banach
function spaces in the sense of [1]. However, we shall be rather concise and we
mainly refer to [10, 11, 12, 17] for heuristics, motivations and details on this
subject.

Definition 2.9. Let X be some quasi-Banach function space on R
n.

(i) The growth envelope function E
G
X : (0,∞)→ [0,∞) is defined by

E
G
X(t) := sup

‖f |X‖≤1

f ∗(t), t > 0. (8)

(ii) Assume X 6↪→ L∞(Rn). Let ε ∈ (0, 1), H(t) := − log EGX(t), t ∈ (0, ε],
and let µH be the associated Borel measure. The number u

X
, 0 < u

X
≤

∞, is defined as the minimum (assuming it exists) of all numbers v,
0 < v ≤ ∞, such that

(∫ ε

0

( f ∗(t)

E
G
X(t)

)v
µH(dt)

)1

v

≤ c ‖f |X‖ (9)

(with the usual modification if v = ∞) holds for some c > 0 and all
f ∈ X. The couple EG(X) =

(
E

G
X(·), u

X

)
is called growth envelope for

the function space X.

As it will be useful in the sequel, we recall some properties of the growth
envelopes. In view of Definition 2.9 (i) we obtain – strictly speaking – equiva-
lence classes of growth envelope functions when working with equivalent (quasi-)
norms in X. However, for convenience we do not want to distinguish between
representative and equivalence class in what follows and thus stick at the no-
tation introduced in Definition 2.9 (i). Note that E

G
X is a monotonically de-

creasing function. Concerning Definition 2.9 (ii) it is obvious that (9) holds for
v =∞ and any X. Moreover, one verifies that

sup
0<t≤ε

g(t)

E
G
X(t)

≤ c1

(∫ ε

0

( g(t)

E
G
X(t)

)v1
µH(dt)

) 1

v1

≤ c2

(∫ ε

0

( g(t)

E
G
X(t)

)v0
µH(dt)

) 1

v0

(10)

for 0 < v0 < v1 <∞ and all non-negative monotonically decreasing functions g
on (0, ε]; cf. [17, Proposition 12.2, p. 183-184]. So we observe that the left-hand
sides in (9) are monotonically ordered in v and it is natural to look for the
smallest possible one.
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Proposition 2.10.

(i) Let X be some quasi-Banach function space on R
n. Then X ↪→ L∞(Rn)

if, and only if, EGX(·) is bounded.

(ii) Let Xi, i = 1, 2, be some quasi-Banach function spaces on R
n. Then

X1 ↪→ X2 implies that there is some positive constant c such that for all

t > 0,
EGX1(t) ≤ c EGX2(t).

(iii) Let Xi, i = 1, 2, be some quasi-Banach function spaces on R
n with X1 ↪→

X2. Assume that EGX1(t) ∼ EGX2(t), t ∈ (0, ε), for some ε > 0. Then,

the corresponding indices u
Xi
, i = 1, 2, satisfy

u
X1
≤ u

X2
.

For the proof of the previous proposition and further properties of growth
envelopes we refer to [10], in particular to Propositions 2.4 and 3.5, and the
forthcoming book [12].

3. Embeddings into Lloc
1 (Rn) and L∞(Rn)

In this section we study some embedding results which will be useful when
discussing growth envelopes for anisotropic function spaces.

The proposition below gives a sufficient condition under which the aniso-
tropic spaces of Besov and Triebel–Lizorkin type consist only of regular dis-
tributions. We refer to [14, Theorem 3.3.2] for a complete characterization of
the inclusion of the isotropic spaces of Besov and Triebel–Lizorkin type into
Lloc1 (Rn).

Proposition 3.1. Let 0 < p, q ≤ ∞ (with p <∞ in the F -case), s ∈ R and α

be an anisotropy according to (2). If s > σp, then it holds

As,α
pq (R

n) ⊂ Lloc1 (Rn).

Proof. Using the same strategy as in the proof of [14, Theorem 3.3.2], we shall
have established the proposition if we prove that

As,α
pq (R

n) ↪→ Lmax(1,p)(R
n) for s > σp. (11)

We shall prove this first for A = B. Let s > σp and let f ∈ Bs,α
pq (Rn). By

Theorem 2.8,

f =
∞∑

ν=0

∑

m∈Zn

λνm a
α
νm, (12)
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where λ = (λνm) ∈ bpq and a
α
νm are 1K-atoms (ν = 0) or (s, p)αK,L-atoms (ν ∈ N),

according to Definition 2.6.

Let first 1 < p <∞. Then s > 0 and choose ε ∈ (0, s). For L,M ∈ N with
M > L, we have

∥∥∥
M∑

ν=L

∑

m∈Zn

λνm a
α
νm(·)

∣∣∣Lp(R
n)
∥∥∥
p

≤

∫

Rn

(
M∑

ν=L

∑

m∈Zn

|λνm| 2
−ν(s−n

p
)
χdQα

νm
(x)

)p
dx

≤

∫

Rn

(
M∑

ν=L

2−ενp
′

)p

p′ M∑

ν=L

2−ν(s−
n
p
−ε)p

(
∑

m∈Zn

|λνm| χdQα
νm
(x)

)p
dx

≤ c1

(
M∑

ν=L

2−ενp
′

)p

p′ M∑

ν=L

2−ν(s−
n
p
−ε)p

∫

Rn

∑

m∈Zn

|λνm|
p χdQα

νm
(x) dx

≤ c1

(
M∑

ν=L

2−ενp
′

)p

p′ M∑

ν=L

2−ν(s−
n
p
−ε)p

∑

m∈Zn

|λνm|
p |dQα

νm|

≤ c2

(
M∑

ν=L

2−ενp
′

)p

p′ M∑

ν=L

2−ν(s−ε)p
∑

m∈Zn

|λνm|
p,

where χdQα
νm

denotes the characteristic function of the rectangle dQα
νm. Note

that the constant c1 depends only on p and on the number of those rectangles
for which each fixed x ∈ R

n belongs. Thus, since 1
p
< 1, we get

∥∥∥
M∑

ν=L

∑

m∈Zn

λνm a
α
νm(·)

∣∣∣Lp(R
n)
∥∥∥

≤ c

(
M∑

ν=L

2−ενp
′

) 1

p′
(

M∑

ν=L

∑

m∈Zn

|λνm|
p2−ν(s−ε)p

)1

p

≤ c

(
M∑

ν=L

2−ενp
′

) 1

p′ M∑

ν=L

(
∑

m∈Zn

|λνm|
p

)1

p

2−ν(s−ε). (13)

Now, if 0 < q ≤ 1, the right-hand side of (13) can be estimated from above by

c

(
M∑

ν=L

2−ενp
′

) 1

p′




M∑

ν=L

(
∑

m∈Zn

|λνm|
p

)q

p

2−ν(s−ε)q




1

q

≤ c ‖λ| bpq‖

(
M∑

ν=L

2−ενp
′

) 1

p′

,
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which, since ε > 0, enables us to conclude that convergence in (12) is not only
in S ′(Rn) but also in Lp(R

n), and hence f ∈ Lp(R
n).

We now show that the same conclusion can be drawn for q > 1. By Hölder’s
inequality, the right-hand side of (13) can be estimated from above by

c

(
∞∑

ν=0

2−ενp
′

)1

p

′


M∑

ν=L

(
∑

m∈Zn

|λνm|
p

) q

p




1

q( M∑

ν=L

2−ν(s−ε)q
′

) 1

q′

≤ c1 ‖λ| bpq‖

(
M∑

ν=L

2−ν(s−ε)q
′

) 1

q′

.

Once more, since s − ε > 0, we see that the convergence in (12) is not only in
S ′(Rn) but also in Lp(R

n), leading to f ∈ Lp(R
n).

The same reasoning applies to the case 0 < p ≤ 1. For M,L ∈ N with
M > L, we have

∥∥∥∥
M∑

ν=L

∑

m∈Zn

λνma
α
νm(·)

∣∣∣L1(Rn)

∥∥∥∥ ≤
∫

Rn

M∑

ν=L

∑

m∈Zn

|λνm| 2
−ν(s−n

p
)
χdQα

νm
(x) dx

≤

M∑

ν=L

∑

m∈Zn

|λνm| 2
−ν(s−n

p
)|dQα

νm|

≤ c

M∑

ν=L

∑

m∈Zn

|λνm| 2
−ν(s−n

p
+n)

≤ c

M∑

ν=L

2−ν(s−
n
p
+n)

(
∑

m∈Zn

|λνm|
p

)1

p

. (14)

If 0 < q ≤ 1, the right-hand side of (14) can be estimated from above by

c1




M∑

ν=L

2−ν(s−
n
p
+n)q

(
∑

m∈Zn

|λνm|
p

)q

p




1

q

≤ c1




M∑

ν=L

(
∑

m∈Zn

|λνm|
p

)q

p




1

q

,

which implies, since λ ∈ bpq, that the convergence of (12) is not only in S ′(Rn)
but also in L1(R

n).
If q > 1, using Hölder’s inequality, the right-hand side of (14) can be esti-

mated from above by

c1




M∑

ν=L

(
∑

m∈Zn

|λνm|
p

)q

p




1

q( M∑

ν=L

2−ν(s−
n
p
+n)q′

) 1

q′

≤ c1‖λ|bpq‖

(
M∑

ν=L

2−ν(s−
n
p
+n)q′

) 1

q′

,
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and once more, since s− n
p
+ n > 0 in this case, the convergence in (12) is not

only in S ′(Rn) but also in L1(R
n), so that f ∈ L1(R

n).

If p =∞, then s > 0 and we get

|f(x)| ≤
∞∑

ν=0

∑

m∈Zn

|λνm|2
−νsχdQα

νm
(x) ≤ c2

∞∑

ν=0

2−νs sup
m∈Zn

|λνm|. (15)

If 0 < q ≤ 1, then the right-hand side of (15) has the upper estimate

c2

(
∞∑

ν=0

2−νsq
(

sup
m∈Zn

|λνm|

)q
) 1

q

≤ c2‖λ| b∞q‖,

leading to f ∈ L∞(Rn).

If q > 1, then the right-hand side of (15) can be estimated from above by

c2

(
∞∑

ν=0

2−νsq
′

) 1

q′
(

∞∑

ν=0

(
sup
m∈Zn

|λνm|

)q
)1

q

≤ c3 ‖λ| b∞q‖

and, once more, f ∈ L∞(Rn).

We shall now be concerned with the proof of (11) for A = F . Assuming
s > σp, there is a σ such that s > σ > σp. Define p1 by the equation s − n

p
=

σ − n
p1
. By virtue of Proposition 2.5 we get F s,α

pq (Rn) ↪→ Bσ,α
p1p

(Rn). We check
at once that σ > σp1 . Namely, we have σ = s − n

p
+ n

p1
> −n + n

p1
. Then the

desired inclusion follows from what has been proved above.

Regarding the embeddings of the anisotropic spaces into L∞(Rn), we have
the following:

Proposition 3.2. Let 0 < p, q ≤ ∞ and let α be an anisotropy according to (2).

(i) Then B
n
p
,α

pq (Rn) ↪→ L∞(Rn) if, and only if, 0 < p ≤ ∞ and 0 < q ≤ 1.

(ii) Let 0 < p <∞.

Then F
n
p
,α

pq (Rn) ↪→ L∞(Rn) if, and only if, 0 < p ≤ 1 and 0 < q ≤ ∞.

Proof. We only prove here the “if part” as the reverse implications will follow
immediately from our results on growth envelopes (see Remark 5.2).

Starting the proof for (i), let 0 < q ≤ 1 and let f ∈ B
n
p
,α

pq (Rn). By the
atomic decomposition theorem (cf. Theorem 2.8) f =

∑∞
ν=0

∑
m∈Zn λνm a

α
νm,

where λ = (λνm) ∈ bpq and aανm are 1K-atoms (ν = 0) or (s, p)αK,L - atoms
(ν ∈ N) according to Definition 2.6. Let x ∈ R

n. By the properties of atoms
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we obtain

|f(x)| ≤
∞∑

ν=0

∑

m∈Zn

|λνm||a
α
νm(x)|

≤

∞∑

ν=0

∑

{m∈Zn: x∈dQα
νm}

|λνm|

≤ c(p, d, n)
∞∑

ν=0

(
∑

{m∈Zn: x∈dQα
νm}

|λνm|
p

)1

p

≤ c(p, d, n)
∞∑

ν=0

(
∑

m∈Zn

|λνm|
p

)1

p

≤ c(p, d, n)




∞∑

ν=0

(
∑

m∈Zn

|λνm|
p

)q

p




1

q

.

In the last inequality we have used only the fact that q ≤ 1. The result of the
“if part” of (i) now follows.

To prove the “if part” of (ii), we again apply Proposition 2.5. Assume that
p ≤ 1. By what has been proved above and taking some p1 > p, we obtain

F
n
p
,α

pq (Rn) ↪→ B
n
p1
,α

p1p (Rn) ↪→ L∞(Rn).

4. Growth envelopes of anisotropic function spaces
in the subcritical case

It turns out that the notion of growth envelope, as introduced in Subsection 2.3,
makes sense only for anisotropic function spaces of regular distributions. Due
to Proposition 3.1 we shall consider only function spaces As,α

pq (R
n) such that

s > σp.

This section deals with growth envelopes of anisotropic spaces As,α
pq (R

n) in
the subcritical case whether the critical case is postponed to the next section.
In this section, the spaces of interest for us will be As,α

pq (R
n) with

σp < s <
n

p
, 0 < p <∞, and 0 < q ≤ ∞ (16)

the so-called subcritical case. Let us remark that according to Theorem 4.3, the
growth envelope functions of As,α

pq (R
n), in the subcritical case, are unbounded

and, hence, the embedding As,α
pq (R

n) ↪→ L∞(Rn) does not hold.
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Figure 1: Sub-critical case

Proposition 4.1. Let α be an anisotropy according to (2). Furthermore let s, p
and q be as in (16) and define r ∈ (1,∞) by the equation s − n

p
= −n

r
. Then

there is a constant c > 0 such that

EGB
s,α
pq (Rn)(t) ≤ c t−

1

r for t ∈ (0, 1]. (17)

Moreover, for each v ∈ [q,∞] there is a positive constant c, depending only

on v, such that

(∫ 1

0

(
t

1

r f ∗(t)
)v dt

t

)1

v

≤ c ‖f |Bs,α
pq (Rn)‖ for all f ∈ Bs,α

pq (Rn), (18)

with the modification as in (1) on the left-hand side for v =∞.

Proof. Our method will be an adaptation of the reasoning used on pp. 189–191
of [17], but we have to examine very carefully the influence of the anisotropy.

As (1
p
, s) belongs to the subcritical strip (see Figure 1), there are s0, s1 ∈ R

such that s0 < s < s1 and (1
p
, si), i = 0, 1, also belong to the subcritical strip.

Define ri by si −
n
p
= − n

ri
, i = 0, 1. Plainly ri ∈ (1,∞) and by elementary

embeddings, Proposition 2.5 and Proposition 2.3 we obtain

B
si,α
p1 (Rn) ↪→ Bsi,α

pri
(Rn) ↪→ F

0,α
ri2

(Rn) = Lri(R
n) for i = 0, 1.

We complete the proof by using the real interpolation method. By virtue of
Proposition 2.4, with 0 < θ < 1 and s = (1− θ)s0 + θs1, we have

(
B
s0,α
p1 (Rn), Bs1,α

p1 (Rn)
)
θ,v

= Bs,α
pv (Rn)

for any 0 < v ≤ ∞. Since 1 < r0 < r1 <∞ and 1
r
= (1−θ)

r0
+ θ

r1
, we obtain

(
Lr0(R

n), Lr1(R
n)
)
θ,v

= Lrv(R
n).
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Thus the interpolation property yields,

Bs,α
pv (Rn) =

(
B
s0,α
p1 (Rn), Bs1,α

p1 (Rn)
)
θ,v

↪→ (Lr0(R
n), Lr1(R

n))θ,v = Lrv(R
n).

Translating the above embedding into the language of inequalities, there is a
constant c > 0 such that

(∫ 1

0

(
t

1

r f ∗(t)
)v dt

t

)1

v

≤ c ‖f |Bs,α
pv (Rn)‖ for all f ∈ Bs,α

pv (Rn).

Taking into account that v ≥ q we have, by elementary embeddings, that
‖f |Bs,α

pv (Rn)‖ ≤ c ‖f |Bs,α
pq (Rn)‖, which completes the proof of (18). To es-

tablish (17) we now use the already proved inequality (18) with v = ∞, to
obtain

sup
0<t<ε

t
1

r f ∗(t) ≤ c ‖f |Bs,α
pq (Rn)‖.

This, together with (8), finishes the proof.

Proposition 4.2. Let α, p, q, s and r be as in Proposition 4.1. Then there are

an ε ∈ (0, 1) and a constant c > 0 such that

EGB
s,α
pq (Rn)(t) ≥ c t−

1

r for all t ∈ (0, ε]. (19)

Moreover, for each v ∈ (0, q) there is no positive constant c for which

(∫ ε

0

(
t

1

r f ∗(t)
)v dt

t

)1

v

≤ c ‖f |Bs,α
pq (Rn)‖

holds for all f ∈ Bs,α
pq (Rn).

Proof. Our proof is based upon ideas found in Steps 2 and 3 in the proof of [17,
Theorem 15.2] with necessary modification which comes from the influence of
the anisotropy. Let us consider the function ϕ given by

ϕ(x) :=

{
exp

(
− 1

1−|x|2

)
for |x| < 1

0 for |x| ≥ 1,
(20)

and define

fj(x) := 2
jn

r ϕ(2jαx), x ∈ R
n, j ∈ N. (21)

It turns out that the fj’s are, up to an unimportant constant, atoms in Bs,α
pq (Rn)

according to the Definition 2.6 when considering the subcritical case. We first
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note that no moment conditions are needed. Let us check the remaining condi-
tions from the definition of atoms. For j ∈ N, we have

supp fj ⊂ {x ∈ R
n : |2jαx| ≤ 1} ⊂ {x ∈ R

n : |xk| ≤ 2−jαk, k = 1, . . . , n} ⊂ cQα
j0

and

|Dγfj(x)| = 2
jn

r |Dγϕ(2jαx)| ≤ sup
|y|≤1

sup
αγ≤K

|Dγϕ(y)| 2−αγ 2
jn

r ≤ c 2−j(s−
n
p
−γα)

.

For the distribution function of fj we obtain

µfj(λ) =
∣∣ {x ∈ R

n : |fj(x)| > λ}
∣∣

=
∣∣{x ∈ R

n : |ϕ(2jαx)| > 2−
jn

r λ
}∣∣

=
∣∣{2−jαy : |ϕ(y)| > 2−

jn

r λ
}∣∣

= 2−jαµϕ(2
− jn

r λ), j ∈ N.

Note that in the last equality we have used the fact that
∑n

j=1 αj = n. Conse-

quently, f ∗j (d2
−jn) ∼ 2

jn

r , j ∈ N, for some d > 0, and therefore

E
G
Bs,α
pq (Rn)(d2−jn) ≥ cf ∗j (d2

−jn) ∼ 2
jn

r , j ∈ N.

Then the monotonicity of the growth envelope function together with its defi-
nition proves (19).

The next step of the proof is to show the sharpness expressed by the second
assertion of our proposition. Suppose that, contrary to our claim, there exist a
v < q and a constant c > 0 such that

(∫ ε

0

(
t

1

r f ∗(t)
)v dt

t

)1

v

≤ c ‖f |Bs,α
pq (Rn)‖ (22)

holds for all f ∈ Bs,α
pq (Rn). Consider, for each J ∈ N, fJ ∈ B

s,α
pq (Rn) defined by

fJ(x) =
J∑

j=1

2
jn

r ϕ
(
2jαx− x0

)
,

where ϕ has the same meaning as before and x0 ∈ Z
n is chosen in such a way

that the supports of ϕ(2jα · −x0), j ∈ N, are disjoint. Note that it is sufficient
to take x0 = (x01, . . . , x

0
n) ∈ R

n such that |x0k| > 1 + 2
2αk−1

, k = 1, . . . , n. Then
it follows that

f ∗(d2−jn) ≥ c 2
jn

r , j = 1, . . . , J, (23)
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with some c, d > 0. Plugging (23) into (22) and using an equivalent quasi-norm
(7) coming from atomic decomposition as stated in Theorem 2.8, we obtain

(
J∑

j=1

1

)1

v

≤ c1‖f |B
s,α
pq (Rn)‖ ≤ c2

(
J∑

j=1

1

)1

q

,

where the constants c1, c2 > 0 are independent of J . This is a clear contradiction
to the fact that v < q, which completes the proof.

It is now easy to see that by virtue of (17) jointly with (19) we immediately

obtain EG Bs,α
pq (t) ∼ t−

1

r . Moreover, the second part of Proposition 4.2 shows
that q is the optimal index. This already gives the proof for the first part of
the following theorem.

Theorem 4.3. Let α, p, q, s and r be as in Proposition 4.1. Then

(i) EG B
s,α
pq (Rn) =

(
t−

1

r , q
)
;

(ii) EG F
s,α
pq (Rn) =

(
t−

1

r , p
)
.

Proof. It only remains to verify (ii). Let s0, s1 ∈ R and 0 < p0 < p < p1 ≤ ∞
be such that ( 1

pi
, si), i = 0, 1, belong to the subcritical strip, i.e. σpi < si <

n
pi
,

i = 0, 1, and s0 −
n
p0

= s − n
p
= s1 −

n
p1

= −n
r
. Then, by Proposition 2.5, we

have

Bs1,α
p1p

(Rn) ↪→ F s,α
pq (Rn) ↪→ Bs0,α

p0p
(Rn). (24)

Then, by part (i) and Proposition 2.10(ii), we obtain

t−
1

r ∼ E
G
Bs1,α
p1q

(t) . E
G
F s,α
pq (t) . E

G
Bs0,α
p0q

(t) ∼ t−
1

r , t ∈ (0, ε),

for some ε ∈ (0, 1). This fact, together with (24), Proposition 2.10 (iii) and part
(i) of the present theorem, leads us to p = u

B
s1,α
p1p

(Rn)
≤ u

F
s,α
pq (Rn)

≤ u
B
s0,α
p0p

(Rn)
= p,

which finishes the proof.

5. Growth envelopes of anisotropic function spaces in the
critical case

In this section we consider the spaces As,α
pq (R

n) in the critical case, which means
that the corresponding parameters satisfy

s =
n

p
and

{
0 < p <∞, 1 < q ≤ ∞, if A = B

1 < p <∞, 0 < q ≤ ∞, if A = F .

According to Proposition 3.2, the embedding As,α
pq (R

n) ↪→ L∞(Rn), in the crit-
ical case, does not hold.
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Theorem 5.1. Let α be an anisotropy according to (2).

(i) Let 0 < p ≤ ∞ and 1 < q ≤ ∞. Then

EG B
n
p
,α

pq (Rn) =
(
| log t|

1

q′ , q
)
.

(ii) Let 1 < p <∞ and 0 < q ≤ ∞. Then

EG F
n
p
,α

pq (Rn) =
(
| log t|

1

p′ , p
)
.

Proof. Although our proof runs along similar lines as the proof of Theorem 13.2
of [17], there are subtle adjustments necessary to fit the argument to the
anisotropic situation. We divide the proof into 3 steps. In the first two steps
we compute the growth envelope function in B and F -case. Hereby we closely
follow the argument given in [10]. The last step contains the proof of the cor-
rectness of corresponding indices.

Step 1. Let us work with p and q as assumed in (i). The first objective is
to prove that there exists a constant c > 0 such that

(∫ ε

0

(
f ∗(t)

| log t|

)q
dt

t

)1

q

≤ c ‖f |B
n
p
,α

pq (Rn)‖ for all f ∈ B
n
p
,α

pq (Rn) (25)

with the obvious modification in the case q = ∞. Remark that by virtue of
elementary embeddings, there is no loss of generality in assuming that 1<p < ∞
and 1< q ≤ ∞. Let us consider an optimal atomic decomposition of a given

f ∈ B
n
p
,α

pq (Rn) in the form

f =
∞∑

ν=0

fν with fν(x) =
∑

m∈Zn

bνm a
α
νm(x).

Additionally, the formula




∞∑

ν=0

(
∑

m∈Zn

|bνm|
p

)q

p




1

p

gives an equivalent quasi-norm on B
n
p
,α

pq (Rn). It may be worth reminding that
aαν,m have the following properties:

– supp aανm ⊂ {y ∈ R
n : |yk − 2−ναkmk| < d 2−ναk , k = 1, . . . , n} for some

d > 1, ν ∈ N0, m ∈ Z
n;

– |Dγaανm(x)| ≤ 2νγα for αγ ≤ K, x ∈ R
n.
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Let us now denote by χνl(t) the characteristic function of the interval (C2−νn(l−
1), C2−νnl] with C > 0 to be computed later, ν ∈ N0 and l ∈ N. Furthermore,
for fixed ν ∈ N0, let (b∗νl)l∈N stand for the non-increasing rearrangement of
(bνm)m∈Zn . We now prove that

f ∗ν (t) ≤ c

∞∑

l=1

b∗νl χνm(t), with t > 0 and ν ∈ N0. (26)

Let ∈ N0 and D := (4d)n. Then

(D−1fν)
∗(t) = inf

{
λ > 0 :

∣∣∣∣
{
x ∈ R

n :
∣∣∣D−1

∑

m∈Zn

bνma
α
νm(x)

∣∣∣ > λ
}∣∣∣∣ ≤ t

}
.

Suppose that t ∈ (C2−νn(l− 1), C2−νnl] for some l ∈ N and C > 0 to be chosen
later. We remark that if x ∈ R

n is such that

b∗νl ≤ D−1
∣∣∣
∑

m∈Zn

bνm a
α
νm(x)

∣∣∣

≤ D−1
∑

m∈Zn

|bνm||a
α
νm(x)|χ2dQα

νm
(x)

≤ D−1
∑

m∈Zn

|bνm|χ2dQα
νm
(x),

then, for such an x, b∗νl < |bνm′ |, where m′ is such that |bνm′ | is the biggest from
all D possibilities of x ∈ 2dQα

νm. Hence x ∈ 2dQα
νm such that b∗νl < |bνm|. By

the definition of b∗νl, for any k ∈ N the number of m’s such that |bνm| ≥ b∗νl +
1
k

is less or equal to l − 1. Therefore, we get

∣∣∣∣
{
x ∈ R

n :
∣∣∣D−1

∑

m∈Zn

bνma
α
νm(x)

∣∣∣ > b∗νl

}∣∣∣∣

=

∣∣∣∣
⋂

k∈N

{
x ∈ R

n :
∣∣∣D−1

∑

m∈Zn

bνma
α
νm(x)

∣∣∣ > b∗νl +
1

k

}∣∣∣∣

= lim
k→∞

∣∣∣∣
{
x ∈ R

n :
∣∣∣D−1

∑

m∈Zn

bνma
α
νm(x)

∣∣∣ > b∗νl +
1

k

}∣∣∣∣

≤ lim
k→∞

∣∣∣∣∣
⋃

{m: |bνm|≥b∗νl+
1

k
}

2dQα
νm

∣∣∣∣∣

≤ lim
k→∞

∑

{m: |bνm|≥b∗νl+
1

k
}

|2dQα
νm|

≤ (l − 1)2n+1dn2−νn < t.
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Taking C := 2n+1dn we arrive at f ∗ν (t) ≤ D b∗νl for t ∈ (C2−νn(l − 1), C2−νnl],
which proves (26). The rest of the proof of (25) is an exact analogue of the
proof of Theorem 13.2 of [17]. For a detailed exposition we refer the reader to
this monograph. Let us only mention that it relies on a clever application of
the Hardy-Littlewood maximal inequality. By virtue of (25) we immediately
obtain

sup
0<t<ε

f ∗(t)

| log t|
1

q′

≤ c
∥∥∥f
∣∣B

n
p
,α

pq (Rn)
∥∥∥,

which shows that

E
G
B

n
p
,α

pq (t) ≤ c | log t|
1

q′ for 0 < p <∞, 1 < q ≤ ∞. (27)

To prove the F -result, we again exploit embeddings described in Proposition 2.5
jointly with the properties of growth envelope functions to get

E
G
F

n
p
,α

pq (t) ≤ c | log t|
1

p′ for 1 < p <∞, 0 < q ≤ ∞.

Step 2. We shall prove the converse of the inequality (27), that is

E
G
B

n
p
,α

pq (t) ≥ c | log t|
1

q′ for 0 < p <∞, 1 < q ≤ ∞.

To see this, we again benefit from the construction of extremal functions (see
[17] for the isotropic case). Let us consider

f(x) :=
∞∑

j=1

bj ϕ(2
(j−1)αx), x ∈ R

n, (28)

where the function ϕ is given by (20) and b = (bj)
∞
j=1 is a sequence of positive

numbers with b ∈ `q. In a similar way as in the subcritical case we may check
that aj(x) := ϕ(2(j−1)αx) with x ∈ R

n and j ∈ N are, up to constants, (n
p
, p)αK,0-

atoms. Next, let x ∈ R
n be such that 1

4
≤ |2(k−1)αx| ≤ 1

2
for some k ∈ N. Easy

computation shows that putting

k0(α) =

{
2α−11 − 1 for 2α−11 ∈ N

[2α−11 ] otherwise

yields f(x) =
∑k+k0(α)

j=1 bj ϕ(2
(j−1)αx). Hence we immediately obtain

f(x) ≤ e−1
k+k0(α)∑

j=1

bj and f(x) ≥ e−
4

3

k∑

j=1

bj.
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Consequently, for λ with 0 < λ < c
∑k

j=1 bj, where c = e−
4

3 we get

µf (λ) ≥

∣∣∣∣
{
x ∈ R

n : |f(x)| ≥ c

k∑

j=1

bj

}∣∣∣∣

≥

∣∣∣∣
{
x ∈ R

n :
1

4
≤ |2(k−1)αx| ≤

1

2

}∣∣∣∣

= 2−(k−1)n
∣∣∣∣
{
y :

1

4
≤ |y| ≤

1

2

}∣∣∣∣
= c′2−kn.

Therefore it follows that, for 0 < t < c′2−kn,

f ∗(t) ≥ c

k∑

j=1

bj. (29)

For each J ∈ N we consider the function f = fJ defined by (28) with the special
sequence b = (bj)

∞
j=1 given by

bj :=

{
J
− 1

q for j = 1, . . . , J

0 otherwise .

It is easy to see that ‖b |`q‖ = 1. Thus, (29) yields

f ∗J (c
′2−(J+1)n) ≥ c

J∑

j=1

bj = c J
− 1

q′ . (30)

Put c′2−(J+1)n ≤ t ≤ c′2−Jn for some J ∈ N. Then, using monotonicity of the

growth envelope function EG B
n
p
,α

pq (·) together with (30) yields

EG B
n
p
,α

pq (t) ≥ EG B
n
p
,α

pq (2−(J+1)n) ≥ c f ∗J (2
−(J+1)n) ≥ c J

1

q ≥ c | log t|
1

q′ .

The F -counterpart follows from the embedding B
n
p
,α

rp (Rn) ↪→ F
n
p
,α

pq (Rn) with

0 < r < p, since then EG F
n
p
,α

pq (t) ≥ EG B
n
p
,α

r,p (t) ≥ c | log t|
1

p′ .

Step 3. In the reminder of the proof we show that the indices q in the
B-case and p in the F -case cannot be improved. The proof of this part for
B-spaces is essentially a repetition of the arguments used to prove the isotropic
case. For the sake of completeness we repeat the main steps of this proof. We
proceed by assuming that there exist a v < q and a constant c > 0 such that

(∫ ε

0

(
f ∗(t)

| log t|
1

q′

)v
dt

t| log t|

)1

v

≤ c ‖f |B
n
p
,α

pq (Rn)‖ (31)
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holds for all f ∈ B
n
p
,α

pq (Rn). This stands in contrary to our claim. We again
consider the function f given by (28), but this time we work with the sequence
b = (bj)

∞
j=1 defined by

bj :=

{
0 for j = 1

j
− 1

q (log(j))−
1

v for j ≥ 2.

Note that b ∈ `q and hence the right-hand side of (31) is bounded. Plugging
the inequality (29) into the left-hand side of (31) we may estimate it from

below by c1
∑∞

k=M(kbk)
vk
− v

q′
−1

= c1
∑∞

k=M k−1(log k)−1 = ∞, which gives a
contradiction. The theorem is proved, since the correctness of the exponent for
the F -case follows as in the subcritical case.

Remark 5.2. The necessity of the conditions in Proposition 3.2 are a conse-
quence of the last theorem, due to Proposition 2.10 (i).

6. Anisotropic Hardy inequalities

This section deals with inequalities of Hardy type related to the anisotropic func-
tion spaces Bs,α

pq (Rn) and F s,α
pq (Rn). Hardy inequalities related to the isotropic

function spaces of Besov and Triebel–Lizorkin type have been studied in [17,
Section 16]. The results we present in this section are essentially adaptations of
reasoning used there to the anisotropic case. In the following applications use
will be made of envelopes results obtained in the last two sections.

In the sequel, if ε > 0 then Kα
ε := {x ∈ R

n : |x|α < ε} is the anisotropic
ball centered at the origin with (anisotropic) radius ε. The Lebesgue measure
of such a ball is |Kα

ε | = c εn with c independent of ε.

Theorem 6.1. Let ε > 0 and let κ be a positive monotonically decreasing

function on (0, ε]. Let α be an anisotropy according to (2), s > 0 and s− n
p
= −n

r

with 1 < r <∞.

(i) Let 0 < q ≤ r. Then

∫

Kα
ε

∣∣∣κ(|x|α)|x|
n
r
α f(x)

∣∣∣
q dx

|x|nα
≤ c

∥∥f |Bs,α
pq (Rn)

∥∥q (32)

for some c > 0 and all f ∈ Bs,α
pq (Rn) if, and only if, κ is bounded.

(ii) Let 0 < q ≤ ∞. Then

∫

Kα
ε

∣∣∣κ(|x|α)|x|
n
r
α f(x)

∣∣∣
p dx

|x|nα
≤ c

∥∥f |F s,α
pq (Rn)

∥∥p

for some c > 0 and all f ∈ F s,α
pq (Rn) if, and only if, κ is bounded.
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Proof. We begin by proving (32) with κ = 1. Let c > 0 and consider

b(x) := |x|−cnα for x ∈ Kα
ε \ {0}.

Then b∗(t) ∼ t−c for all t ∈ (0, |Kα
ε |). We now apply this observation with

c = 1
q
− 1

r
to estimate

∫

Kα
ε

∣∣∣|x|
n
r
α f(x)

∣∣∣
q dx

|x|nα
=

∫

Kα
ε

bq(x)|f(x)|q dx

≤

∫ |Kα
ε |

0

b∗q(t)f ∗q(t) dt

∼

∫ c1ε
n

0

(
t

1

r f ∗(t)
)q dt

t

≤ c2
∥∥f |Bs,α

pq (Rn)
∥∥q.

For the first inequality we have used a well-known property (see [1, Chapter II,
Corollary 4.5]). The second inequality follows from Proposition 4.1. The proof
of (i) is completed by showing that κ has to be bounded if (32) holds. For
simplicity, let us assume that ε = 1. Suppose that, contrary to our claim,
κ(t) → ∞ as t ↓ 0. The argument here makes essential use of the extremal
function given by (21). For more details we refer the reader to the proof of
Proposition 4.2. After plugging these functions into (32), we conclude that
κ(2−j) ≤ c, for any sufficiently large j, which is a contradiction. The proof
of (ii) can be handled in much the same way as in the proof of Theorem 4.3 (ii),
namely by using Proposition 2.5. This method enable us to avoid the use of
extremal functions in F -spaces that might require moment conditions, as was
done in [17, Step 5 in the proof of Theorem 13.2] for the isotropic case.

Theorem 6.2. Let ε ∈ (0, 1) and let κ be a positive monotonically decreasing

function on (0, ε]. Moreover, let α be an anisotropy according to (2).

(i) Let 0 < p <∞ and 1 < q <∞. Then

∫

Kα
ε

∣∣∣∣
κ(|x|α)f(x)

log |x|α

∣∣∣∣
q
dx

|x|nα
≤ c

∥∥f |B
n
p
,α

pq (Rn)
∥∥q (33)

for some c > 0 and all f ∈ B
n
p
,α

pq (Rn) if, and only if, κ is bounded.

(ii) Let 1 < p <∞ and 0 < q ≤ ∞. Then

∫

Kα
ε

∣∣∣∣
κ(|x|α)f(x)

log |x|α

∣∣∣∣
p
dx

|x|nα
≤ c

∥∥f |F
n
p
,α

pq (Rn)
∥∥p

for some c > 0 and all f ∈ F
n
p
,α

pq (Rn) if, and only if, κ is bounded.
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Proof. Let us first prove (33) with κ = 1. We consider

a(x) := |x|
−n

q
α

∣∣ log |x|α
∣∣−1 for x ∈ Kα

ε \ {0}. (34)

Computing the measure-preserving rearrangement of a yields

a∗(t) ∼ t
− 1

q | log t|−1

for all t ∈ (0, |Kα
ε |). To prove this we have used asymptotic inversion, in

particular the assertions of Proposition 1.1.15 and Appendix 5/2. of [2]. Hence,

∫

Kα
ε

∣∣∣∣
f(x)

log |x|α

∣∣∣∣
q
dx

|x|nα
=

∫

Kα
ε

aq(x)|f(x)|q dx

≤

∫ |Kα
ε |

0

a∗q(t)f ∗q(t) dt

∼

∫ c1ε
n

0

∣∣∣∣
f ∗(t)

log t

∣∣∣∣
q
dt

t

≤ c2
∥∥f |B

n
p
,α

pq (Rn)
∥∥q,

which gives (33). Once again, for the first inequality we have used a well-
known property of rearrangements. The second inequality follows from Propo-
sition 5.1 (i). For the reverse implication we must show that κ is bounded.
Again for simplicity, let us assume that ε = 1. To obtain a contradiction,
we suppose that κ(t) → ∞ as t ↓ 0. Moreover, assume that f(x) is a positive
monotonically decreasing function in Kα

1 . By virtue of monotonicity of κ we get

sup
0<t<δ

κ(t)f ∗(t)

| log t|
1

q′

≤ c1

(∫ δ

0

(
κ(t)f ∗(t)

| log t|

)q
dt

t

)1

q

= c1

(∫

Kα
ε

∣∣∣∣
κ(|x|α)f(x)

log |x|α

∣∣∣∣
q
dx

|x|nα

)1

q

≤ c1
∥∥f |B

n
p
,α

pq (Rn)
∥∥.

(35)

This time we make use of the extremal functions given by

fJ(x) :=
J∑

j=1

J
− 1

q ϕ(2(j−1)αx), x ∈ R
n, J ∈ N. (36)

More details are found in the proof of Theorem 5.1, Step 2, especially (30).
Inserting (36) into (35), we obtain a contradiction to our assumption. The
proof of (ii) can be handled as in the proof of Theorem 6.1.
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Now, we shall be concerned with an application of Theorem 6.2 in the
context of some anisotropic fractals. Following the recent work of E. Tamási [15],
we consider the next definition.

Definition 6.3. Let α be an anisotropy in R
n and let 0 < d < n. A compact

set Γα in R
n is called an anisotropic d-set if there are a Borel measure µ in R

n

and two positive constants c1 and c2 such that supp µ = Γ and

c1t
d ≤ µ(Bα(γ, t)) ≤ c2t

d for all 0 < t < 1 and γ ∈ Γ,

where Bα(γ, t) := {x ∈ R
n : |x − γ|α < t}. Let Dα(x) := distα(x,Γ

α) =
infy∈Γα |x−y|α be the anisotropic distance of x ∈ R

n to Γα. Moreover, for ε > 0
we define the anisotropic neighbourhood Γαε of Γα by

Γαε := {x ∈ R
n : Dα(x) < ε}.

Proposition 6.4. Let α be an anisotropy in R
n, 0 < d < n and let Γα be a

compact anisotropic d-set in R
n. Moreover, let 1 < p < ∞ and 0 < q ≤ ∞.

Then ∫

Γαε

∣∣∣∣
f(x)

logDα(x)

∣∣∣∣
p

dx

Dn−d
α (x)

≤ c
∥∥f |F

n
p
,α

pq (Rn)
∥∥p

for some c > 0 and all f ∈ F
n
p
,α

pq (Rn).

Proof. Consider Γj :=
{
x ∈ R

n : 2−
j+1

n−d < Dα(x) ≤ 2−
j

n−d

}
, j ≥ J. Stan-

dard calculations show that |Γj| ∼ 2−j. In analogy to (34), we take into
account the function a(x) := | logDα(x)|

−pDd−n
α (x). It follows that a∗(t) ∼

t−1| log t|−p, 0 < t < δ < 1. The rest of the proof runs as the proof of the
previous theorem.
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