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Unilateral Contact Problems

for two Perpendicular Elastic Structures

Alexander Khludnev and Günter Leugering

Abstract. We consider the problem of unilateral contact between two elastic per-
pendicular plates. The main focus is on the boundary conditions along the contact
zone. We propose a mixed domain formulation. Some limit cases for the considered
problem are justified. In particular, a unilateral contact between a plate and a beam
is also analyzed.
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1. Introduction

Let Ω ⊂ R2 be a bounded domain with smooth boundary Γ. Denote by q =
(q1, q2) a unit normal vector to Γ. The domain Ω is supposed to be representative
of the middle surface of an elastic plate. We consider another elastic plate
perpendicular to Ω with a middle surface D, Ω ∩D = ∅. The boundary of the
domain D will be denoted by ∂D. Let Ω ∩ ∂D = γ and ν = (ν1, ν2) be a unit
normal vector to γ located in the plane Ω. Also denote by n = (n1, n2) a unit
normal internal vector to ∂D located in the plane D (see Fig. 1). We assume
that ∂D is a smooth curve, γ is a connected set, ∂D = γ ∪ γ0, γ ∩ γ0 = ∅, and
γ does not intersect the boundary Γ of the domain Ω.

In this paper we analyze a unilateral contact between the two elastic plates
described above. We model the first plate which lies in the horizontal plane
in its reference configuration by a Kirchhoff plate while the upright plate is
modeled using an elastic solid. The contact may occur along the line γ. The
mathematical model will describe a vertical displacement of the first plate and
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a horizontal displacement (in the plane D) of the second plate. In fact, we have
a thin elastic obstacle for the first plate and unilateral contact with an elastic
structure on the boundary for the second plate. In this case an equilibrium
equation for the first plate is considered in the cracked domain Ωγ = Ω \ γ̄,
and inequality type boundary conditions are imposed on γ. It is well known
that crack models with possible contact between crack faces include inequality
type boundary conditions (see the book [7]). Meanwhile, it turned out that the
inequality type boundary conditions on γ in our case are in fact different.

Figure 1: Elastic body in contact with a plate

Note that problems of unilateral contact for elastic plates with rigid obsta-
cles has been analyzed in a number of works ( [1–3, 6]). In particular, a thin
rigid obstacle is considered in [12]. As for Signorini-type problems for elastic
bodies we can find a significant number of publications (see references in [6]).
The first question to be dealt with in the contact problem under consideration
is concerned with the proper boundary conditions along γ. In this paper we
present a complete system of such conditions. A mixed domain formulation will
be also proposed. We further analyze the passage to the limits when elasticity
moduli of the considered plates converge to infinity, i.e., when the elastic plates
converge to the rigid ones. In both cases we arrive at more simple models which
have already been analyzed in the literature.

In the last section of this paper we consider a contact problem between
an elastic plate and elastic beam, perpendicular to the plate. Both variational
and differential formulations of the problem are considered. In particular, a
complete system of boundary conditions is given.

Contact problems between structural elements such as plates and beams
are important in the understanding of the elastic behavior of multi-link flexi-
ble structures. Such structures are crucial in buildings, suspension bridges and
space-stations, to mention just a few applications. The problem under consid-
eration in this paper focuses on a exemplary situation, the contact of two such
structural elements. Obviously, one may consider more general structural ele-
ments, such as Reissner-Mindlin plates and Timoshenko beams together with
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their asymptotic models when the shear-stiffnes tends to infinity. Moreover, the
full problem would also take into account vertical displacements of the upright
plate and in-plane deformations of the horizontal plate which might occur upon
contact. However, in order to fix ideas and keep the presentation simple, we
restrict ourselves to a Kirchhoff plate and a 2-d elastic body, representative of
an upright plate undergoing in-plane displacements only. As for mathematical
models for multi-link elastic structures we refer the reader to the book [10].

2. Problem formulation

First we give both the differential and variational formulation of the contact
problem between the two plates. We search for functions u(x) = (u1(x), u2(x)),
w(y), x = (x1, x2) ∈ D, y = (y1, y2) ∈ Ωγ , such that

−div(Aε(u)) = g in D (1)

∆2w = f in Ωγ (2)

u = 0 on γ0 (3)

w = wq = 0 on Γ (4)

un− w ≥ 0, σn ≤ 0, στ = 0, σn(un− w) = 0 on γ (5)

[w] = [wν ] = 0, [m(w)] = 0, [tν(w)] = σn on γ. (6)

Here ε(u) = {εij(u)} is a strain tensor, σ = {σij} is a stress tensor, i, j = 1, 2,

σn = σijnjni, στ = σn− σn · n, στ = (σ1
τ , σ

2
τ ),

σn = (σ1jnj, σ2jnj) , εij(u) = 1
2
(ui,j + uj,i), i, j = 1, 2,

A = {aijkl} is a tensor of elasticity moduli, i, j, k, l = 1, 2,

aijkl = ajikl = aijlk, aijklξklξij ≥ c|ξ|2, c > 0,

[v] = v+−v− is a jump of a function v on γ, where v± correspond to the positive
and negative (with respect to ν) faces γ±, respectively. All functions with two
lower indices are assumed to be symmetric in those indices, i.e., ξij = ξji etc.
The following notations are also used in (1)–(6):

wν =
∂w

∂ν
, wq =

∂w

∂q
, m(w) = w,ijνjνi,

tν(w) = w,ijksksjνi + w,ijjνi, (s1, s2) = (−ν2, ν1).

Summation convention over repeated indices is assumed, g = (g1, g2) ∈ L2(D),
f ∈ L2(Ω) are given functions.
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Note that (1)–(2) are equilibrium equations with the Hooke law σ = Aε(u)
in (1), σ = σ(u) ; m(w), tν(w) are the bending moment and transverse force,
respectively, for the first plate. Relations (3)–(4) provide the plates clamping
on γ0 and Γ, respectively. The first inequality in (5) guarantees a mutual
nonpenetration between the two elastic plates.

We note the boundary conditions involving moments m(w) and forces tν(w)
are somewhat more specialized as those appearing in the literature. In partic-
ular, one typically considers formulae

m(w) = µ∆w + (1 − µ)
∂2w

∂ν2
, tν(w) =

∂

∂ν

(

∆w + (1 − µ)
∂2w

∂s2

)

,

where µ corresponds to the Poisson ratio, see e.g. [7,10]. In this case a bilinear
form in the Green formula used below would be different. We emphasize that
these more complex boundary conditions can be dealt with in the context of
the methods developed in this paper, and in fact they can be recovered for the
Poisson ratio µ = 0. However, the formulae would be much more involved, and
might obscure this first attempt of treating the kind of contact problems under
consideration in this paper.

Below we give a variational formulation of the problem (1)–(6) which pro-
vides, in particular, the existence of a solution. Next we derive relations (1)–(6)
from the variational formulation of the problem.

Let us introduce the following energy spaces

H1
γ0

(D) := {v ∈ H1(D) | v = 0 on γ0}

H2
0 (Ω) := {v ∈ H2(Ω) | v = vq = 0 on Γ}.

Denote

K :=
{

(u,w) | u = (u1, u2) ∈ H1
γ0

(D), w ∈ H2
0 (Ω), un− w ≥ 0 on γ

}

and consider the energy functional

Π(u,w) :=
1

2

∫

D

σ(u)ε(u) −

∫

D

gu+
1

2

∫

Ω

w,ijw,ij −

∫

Ω

fw.

We can find a solution of the minimization problem

inf
(u,w)∈K

Π(u,w) (7)

which is equivalent to the variational inequality problem:

Find (u,w) ∈ K such that (8)














∫

D

σ(u)ε(ū− u) −

∫

D

g(ū− u)

+

∫

Ω

w,ij(w̄,ij − w,ij) −

∫

Ω

f(w̄ − w) ≥ 0 ∀(ū, w̄) ∈ K.

(9)
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Note that the functional Π is coercive and weakly lower semicontinuous on
[H1

γ0
(D)]2 × H2

0 (Ω). Moreover, the set K is weakly closed. Hence, the con-
strained minimization problem (7) has (a unique) solution satisfying the varia-
tional inequality (8)–(9).

Theorem 2.1. Problems (1)–(6), (7), and (8),(9) are equivalent. Moreover,
there exists a unique solution (u,w) to (7), and hence to (1)–(6), and to (8), (9).

Proof. We proceed to derive relations (1)–(6) from (8)–(9) and clarify in what
sense the boundary conditions (5)–(6) hold. First note that equations (1), (2)
follow from (9) in the distributional sense. Indeed, it suffices to substitute into
(9) test functions (ū, w̄) = (u± ψ,w± ϕ), ψ = (ψ1, ψ2) ∈ C∞

0 (D), ϕ ∈ C∞
0 (Ωγ).

This implies (1), (2).

Let us take (ū, w̄) = (u+ψ,w) as test functions in (9). Here ψ = (ψ1, ψ2) ∈
H1

γ0
(D), ψn = ψn ≥ 0 on γ. This yields

∫

D

σ(u)ε(ψ) −

∫

D

gψ ≥ 0. (10)

The following Green formula holds [7]:

∫

D

σ(u)ε(ψ) = −

∫

D

divσ(u) · ψ − 〈σn, ψn〉 1

2
,∂D − 〈στ , ψτ 〉 1

2
,∂D. (11)

Here 〈·, ·〉 1

2
,∂D denotes the duality pairing between H−

1

2 (∂D) and H
1

2 (∂D),

where the space H−
1

2 (∂D) is the dual of H
1

2 (∂D), ψ = ψnn + ψτ . We take
into account the equilibrium equation

−divσ(u) = g in D.

Notice that this equation coincides with (1). Hence (10) implies

−〈σn, ψn〉 1

2
,∂D − 〈στ , ψτ 〉 1

2
,∂D ≥ 0. (12)

We have no restrictions for ψτ , consequently, the inequality (12) provides

〈στ , ψτ 〉 1

2
,∂D = 0.

Since ψ = 0 on γ0, this relation can be written in the form

〈στ , ψτ 〉
00
1

2
,γ

= 0, (13)

where 〈·, ·〉001
2
,γ

denotes the duality pairing between the space H
1

2

00(γ) and its dual
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H
−

1

2

00 (γ). The norm in the space H
1

2

00(γ) is defined as follows (see e.g. [5]):

‖v‖2

H
1
2
00

(γ)
:= ‖v‖2

H
1
2 (γ)

+

∫

γ

ρ−1v2,

where ρ(y) = dist(y, ∂γ). Consequently, from (13) it follows that

στ = (σ1
τ , σ

2
τ ) = 0 in the sense of H

−
1

2

00 (γ). (14)

To derive (13), we have used the following property of the space H
1

2

00(γ). Let v
be a function defined on γ. Denote by v̄ an extension of v by zero outside γ,
i.e.,

v̄ =

{

v on γ
0 on ∂D \ γ .

Then v̄ ∈ H
1

2 (∂D) if and only if v ∈ H
1

2

00(γ) (see [7]). The similar property is

used in a sequel with respect to the space H
3

2

00(γ).

Inequality (12) also implies

σn ≤ 0 in the sense of H
−

1

2

00 (γ). (15)

Consider next an extension of γ into to a closed curve Σ of class C1,1 such
that Σ ⊂ Ω. In this case the domain Ω is divided into two subdomains Ω1,Ω2

with boundaries Σ and Σ ∪ Γ, respectively (see Fig. 2).

Figure 2: Extension of γ

We choose (ū, w̄) = (u,w+ϕ) as test functions in (9), ϕ ≤ 0 on γ, ϕ ∈ H2
0 (Ω).

This provides

∫

Ω

w,ijϕ,ij −

∫

Ω

fϕ ≥ 0. (16)
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Consider the space

W := {v ∈ H2(Ω1) |∆
2v ∈ L2(Ω1)}.

Then for v ∈ W we can define m(v) ∈ H−
1

2 (Σ), tν(v) ∈ H−
3

2 (Σ), and the
following Green formula holds ( [7, 13]):

∫

Ω1

ϕ∆2v =

∫

Ω1

ϕ,ijv,ij + 〈tν(v), ϕ〉 3

2
,Σ − 〈m(v), ϕν〉 1

2
,Σ ∀ϕ ∈ H2(Ω1). (17)

Here 〈·, ·〉 i
2
,Σ means the duality pairing between the space H−

i
2 (Σ) and its dual

H
i
2 (Σ), i = 1, 3. This Green formula allows us to derive from (16) the inequality

−〈[m(w)], ϕν〉 1

2
,Σ + 〈[tν(w)], ϕ〉 3

2
,Σ ≥ 0.

Since ϕν is arbitrary on Σ it follows

[m(w)] = 0 in the sense of H−
1

2 (Σ), (18)

〈[tν(w)], ϕ〉 3

2
,Σ ≥ 0 ∀ϕ ∈ H2

0 (Ω), ϕ ≤ 0 on γ. (19)

Note that we can substitute (ū, w̄) = (u±ψ,w±ϕ) as test functions in (9), where

ψn = ϕ on γ, ψ = (ψ1, ψ2) ∈ H1
γ0

(D), ϕ ∈ H2
0 (Ω). In this case ψn ∈ H

1

2

00(γ).

Assume additionally that ϕ = 0 on Σ \ γ. In this case ϕ ∈ H
3

2

00(γ). The space

H
3

2

00(γ) is defined as follows [5]:

H
3

2

00(γ) :=

{

v ∈ H
3

2

0 (γ)

∣

∣

∣

∣

∫

γ

|∇v|2

ρ
<∞

}

, ρ(y) = dist(y, ∂γ).

This substitution gives
∫

D

σ(u)ε(ψ) −

∫

D

gψ +

∫

Ω

w,ijϕ,ij −

∫

Ω

fϕ = 0. (20)

By (1), (2), (14), (18), the application of the Green formulae (11), (17) in (20)
implies 〈[tν(w)], ϕ〉 3

2
,Σ − 〈σn, ψn〉

00
1

2
,γ

= 0. Since ϕ = 0 on Σ \ γ the last relation

can be written in the form

〈[tν(w)], ϕ〉003
2
,γ
− 〈σn, ψn〉

00
1

2
,γ

= 0. (21)

Here 〈·, ·〉003
2
,γ

denotes a duality pairing between H
−

3

2

00 (γ) and H
3

2

00(γ). Since in

our case 〈σn, ψn〉
00
3

2
,γ

= 〈σn, ψn〉
00
1

2
,γ

from (21) it follows

[tν(w)] = σn in the sense of H
−

1

2

00 (γ). (22)
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We should note the following. Let us take (ū, w̄) = (u + ψ,w + ϕ) as a test
function in (21), where ψn − ϕ ≥ 0 on γ, ψ = (ψ1, ψ2) ∈ H1

γ0
(D), ϕ ∈ H2

0 (Ω).
This implies

∫

D

σ(u)ε(ψ) −

∫

D

gψ +

∫

Ω

w,ijϕ,ij −

∫

Ω

fϕ ≥ 0.

Application of the Green formulae (11), (17) to this inequality, by (1), (2), (14)
and (18), gives

〈[tν(w)], ϕ〉 3

2
,Σ − 〈σn, ψn〉

00
1

2
,γ
≥ 0 ∀(ψ, ϕ) ∈ K. (23)

In fact, the inequality (23) provides exactly the formulation of the conditions
(see (5)–(6)) σn ≤ 0, [tν(w)] = σn on γ. Also note that (15), (19), (22) follow
from (23).

By choosing (ū, w̄) = (0, 0), (ū, w̄) = 2(u,w) in (9) we can easily derive
〈[tν(w)], w〉 3

2
,Σ − 〈σn, un〉

00
1

2
,γ

= 0 which is a precise formulation for the last

conditions from (5), (6).

The arguments used show that the first term in (23) does not depend on
the choice of Σ. Furthermore, this term is independent of values of ϕ on Σ \ γ̄,
ie., if ϕ1 = ϕ2 on γ, then 〈[tν(w)], ϕ1〉 3

2
,Σ = 〈[tν(w)], ϕ2〉 3

2
,Σ.

The system of boundary conditions (3)–(6) is complete, in particular, the
variational inequality (8),(9) can be derived from (1)–(6). This concludes the
proof of the theorem.

It is interesting to compare the above division of Ω into the subdomains
Ω1,Ω2 with more simple approaches used in domain decomposition methods
(see [11]).

3. Mixed problem formulation

In this section we provide the mixed formulation for the problem (1)–(6). First
rewrite this problem in the following form:

Find functions u(x) = (u1(x), u2(x)), σ(x) = {σij(x)}, i, j = 1, 2, w(y),
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m(y) = {mij(y)}, i, j = 1, 2, x ∈ D, y ∈ Ωγ , such that

−divσ = g in D (24)

A−1σ = ε(u) in D (25)

∇∇m = f in Ωγ (26)

mij = w,ij in Ωγ , i, j = 1, 2 (27)

u = 0 on γ0 (28)

w = wq = 0 on Γ (29)

un− w ≥ 0, σn ≤ 0, στ = 0, σn(un− w) = 0 on γ (30)

[w] = [wν ] = 0, [mν ] = 0, [T ν(m)] = σn on γ, (31)

where we use the following notations:

∇∇m = mij,ij, mν = mijνjνi,

T ν(m) = mij,ksksjνi +mij,jνi, (s1, s2) = (−ν2, ν1).

The tensor A−1 is obtained by inverting the Hooke law σ = Aε(u).

Introduce the so called admissible set for stresses and moments

L :=

{

(σ̄, m̄)

∣

∣

∣

∣

∣

σ̄, divσ̄ ∈ L2(D), m̄,∇∇m̄ ∈ L2(Ωγ),

σ̄n ≤ 0, σ̄τ = 0, [m̄ν ] = 0, [T ν(m̄)] = σ̄n on γ

}

.

Here σ̄ = {σ̄ij}, m̄ = {m̄ij}, i, j = 1, 2, and boundary conditions for σ̄, m̄ in the
definition of L hold in the following sense:

σ̄τ (σ̄
1
τ , σ̄

2
τ ) = 0 in the sense of H

−
1

2

00 (γ),

[m̄ν ] = 0 in the sense of H
−

1

2

00 (Σ).

The inequality σ̄n ≤ 0 and the equality [T ν(m̄)] = σ̄n hold in the sense

〈[T ν(m̄)], w̄〉 3

2
,Σ − 〈σ̄n, ūn〉

00
1

2
,γ
≥ 0 ∀(ū, w̄) ∈ K.

We multiply (25), (27) by σ̄− σ, m̄−m, respectively, integrate over D, Ωγ and
sum up. Here (σ̄, m̄) ∈ L. This implies the following problem formulation:

We have to find functions u(x) = (u1(x), u2(x)), σ(x) = {σij(x)}, i, j =
1, 2, w(y),m(y) = {mij(y)}, i, j = 1, 2, x ∈ D, y ∈ Ωγ , such that

u ∈ L2(D), w ∈ L2(Ωγ), (σ,m) ∈ L (32)

−divσ = g in D (33)

∇∇m = f in Ωγ (34)
∫

D

A−1σ(σ̄ − σ) +

∫

D

u(divσ̄ − divσ)

+

∫

Ωγ

m(m̄−m) −

∫

Ωγ

w(∇∇m̄−∇∇m)















≥ 0 ∀ (σ̄, m̄) ∈ L. (35)
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The problem (32)–(35) is the mixed formulation of the problem (1)–(6). Note
that (1)–(6) is equivalent to (32)–(35). To prove this it suffices to derive (1)–(6)
from (32)–(35). In what follows this derivation is given. First note that (35)
implies in the distributional sense

A−1σ = ε(u) in D, mij = w,ij in Ωγ, i, j = 1, 2. (36)

Hence, by (32), the inclusions u = (u1, u2) ∈ H1(D), w ∈ H2(Ωγ) follow.
It is possible to prove the fulfillment of the boundary conditions (4). Let us
demonstrate that

[w] = [wν ] = 0 on γ. (37)

To this end we find a solution w̃ of the problem

∆2w̃ = f in Ωγ (38)

w̃ = w̃q = 0 on Γ (39)

m(w̃) = ϕ, tν(w̃) = ξ on γ±, (40)

where ϕ, ξ are arbitrary functions from L2(γ). The problem (38)–(40) admits a
variational formulation. Indeed, we have to find a function w̃ such that

w̃ ∈ H2
Γ(Ωγ) (41)

∫

Ωγ

w̃,ijv,ij −

∫

Ωγ

fv −

∫

γ

ξ[v] +

∫

γ

ϕ[vν ] = 0 ∀v ∈ H2
Γ(Ωγ), (42)

where H2
Γ(Ωγ) = {v ∈ H2(Ωγ) | v = vq = 0 on Γ}. We see that the solution w̃

of the problem (41)-(42) satisfies the conditions

[m(w̃)] = 0 in the sense of H−
1

2 (Σ)

[tν(w̃)] = 0 in the sense of H−
3

2 (Σ).

We take in (35) test functions of the form (σ̄, m̄) = (σ,m) ± (0, m̃), m̃ =
{m̃ij}, m̃ij = w̃,ij, i, j = 1, 2. This provides the relation

∫

Ωγ

m · m̃−

∫

Ωγ

w · ∇∇m̃ = 0

which in its own turn, by (36), gives 〈T ν(m̃), [w]〉 3

2
,Σ−〈m̃ν , [wν ]〉 1

2
,Σ = 0. Mean-

while, from (41), (42) it follows

〈T ν(m̃), [v]〉 3

2
,Σ − 〈m̃ν , [vν ]〉 1

2
,Σ =

∫

γ

ξ[v] −

∫

γ

ϕ[vν ] ∀v ∈ H2
Γ(Ωγ).
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Hence
∫

γ
ξ[w]−

∫

γ
ϕ[wν ] = 0, and the arbitrariness of ϕ, ξ proves the fulfillment

of the boundary conditions (37) which, in turn, is desired. In particular, we
obtain w ∈ H2

0 (Ω).

Now we shall prove that the function u from (32)–(35) satisfies the condition

u = 0 on γ0. (43)

Recall that u = (u1, u2) ∈ H1(D) and divide γ0 into two parts: γ0 = γ1 ∪ γ2,

where γi are regular curves, i = 1, 2. Denote

H1
γ1

(D) = {v ∈ H1(D) | v = 0 on γ1}.

Let ξ = (ξ1, ξ2) ∈ L2(γ2) be any function. There exists a solution of the problem

ũ = (ũ1, ũ2) ∈ H1
γ1

(D) (44)
∫

D

σ(ũ)ε(v) −

∫

D

gv +

∫

γ2

ξv = 0 ∀v = (v1, v2) ∈ H1
γ1

(D), (45)

where σ(ũ) = Aε(ũ). It is clear that this solution satisfies the relations

−div(Aε(ũ)) = g in D

ũ = 0 on γ1

σ(ũ)n = 0 on γ

σ(ũ)n = ξ on γ2.

Denote σ̃ = σ(ũ) and choose a cut-off function η equal to 1 in a neighborhood
of any fixed point of γ2, supp η ⊂ γ2. In this case ±(ησ̃, 0) ∈ L. We can choose
a test function (σ̄, m̄) = (σ,m) ± (ησ̃, 0) in (35). It gives

∫

D

A−1σ · ησ̃ +

∫

D

u · div(ησ̃) = 0

and consequently, by (36), 〈(ησ̃)n, u〉 1

2
,∂D = 0. This relation can be written in

the form

〈σ̃n, ηu〉 1

2
,∂D = 0. (46)

On the other hand, the identity (45) implies

〈σ̃n, v〉 1

2
,∂D =

∫

γ2

ξv ∀v = (v1, v2) ∈ H1
γ1

(D). (47)

Since ηu = (ηu1, ηu2) ∈ H1
γ1

(D), from (46), (47) we conclude
∫

γ2
ξηu = 0. The

arbitrariness of ξ provides ηu = 0 on γ2 which implies the needed boundary
condition (43).
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Now we want to prove that the solution of (32)–(35) satisfies the boundary
condition

un− w ≥ 0 on γ. (48)

Consider the solution w̃ of the problem

w̃ ∈ H2
Γ(Ωγ) (49)

∫

Ωγ

w̃,ijv,ij −

∫

Ωγ

fv −

∫

γ+

ϕv = 0 ∀v ∈ H2
Γ(Ωγ), (50)

where ϕ ∈ L2(γ), ϕ ≤ 0. This solution satisfies the following relations

∆2w̃ = f in Ωγ

w̃ = w̃q = 0 on Γ

m(w̃) = 0 on γ±

tν(w̃) = ϕ on γ+

tν(w̃) = 0 on γ−.

Simultaneously, we find a solution ũ of the problem

ũ = (ũ1, ũ2) ∈ H1
γ0

(D) (51)
∫

D

σ(ũ)ε(v) −

∫

D

gv +

∫

γ

ϕvn = 0 ∀v = (v1, v2) ∈ H1
γ0

(D), (52)

where vn = vn, σ(ũ) = Aε(ũ). It is clear that ũ satisfies

−div(Aε(ũ)) = g in D

ũ = 0 on γ0

σn(ũ) = ϕ, στ (ũ) = 0 on γ.

Now we define the tensors σ̃ = σ(ũ), m̃ = {m̃ij}, m̃ij = w̃,ij, i, j = 1, 2. Then
the function (σ̄, m̄) = (σ,m) + (σ̃, m̃) can be chosen as a test function in (35).
Indeed, σ̃n ≤ 0, σ̃τ = 0, [m̃ν ] = 0 on γ. Moreover, the identity (50) gives

〈[T ν(m̃)], w̄〉 3

2
,Σ =

∫

γ

ϕw̄ ∀w̄ ∈ H2
0 (Ω),

and from (52) it follows

−〈σ̃n, ūn〉
00
1

2
,γ

= −

∫

γ

ϕūn ∀ū = (ū1, ū2) ∈ H1
γ0

(D).
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Summing the last two relations we arrive at the equality

〈[T ν(m̃)], w̄〉 3

2
,Σ − 〈σ̃n, ūn〉

00
1

2
,γ

=

∫

γ

ϕ(w̄ − ūn) . (53)

If w̄ − ūn ≤ 0 on γ, ie., (ū, w̄) ∈ K, the right-hand side of (53) is nonnegative
and thus (σ̃, m̃) ∈ L, hence, (σ̄, m̄) = (σ,m) + (σ̃, m̃) ∈ L. Consequently, a
substitution of (σ̄, m̄) into (35) implies

∫

D

A−1σ · σ̃ +

∫

D

u · divσ̃ +

∫

Ωγ

m · m̃−

∫

Ωγ

w · ∇∇m̃ ≥ 0.

This inequality yields

〈[T ν(m̃)], w〉 3

2
,Σ − 〈σ̃n, un〉

00
1

2
,γ
≥ 0

and, by (53),
∫

γ
ϕ(w − un) ≥ 0. Since ϕ ≤ 0 is arbitrary we obtain w − un ≤ 0

on γ which completes the proof of (48).

Finally we demonstrate that the solution of (32)–(35) satisfies the boundary
condition

σn(un− w) = 0 on γ. (54)

We can take (σ̄, m̄) = (0, 0), (σ̄, m̄) = 2(σ,m) in (35) as test functions. This
provides the relation

∫

D

A−1σ · σ +

∫

D

u · divσ +

∫

Ωγ

m ·m−

∫

Ωγ

w · ∇∇m = 0

and consequently 〈[T ν(m)], w〉 3

2
,Σ−〈σn, un〉

00
3

2
,γ

= 0 which means that (54) holds.

Thus the main result of this section can be formulated as follows.

Theorem 3.1. The mixed formulation (32)–(35) of the contact problem between
two plates is equivalent to (1)–(6).

To conclude this section, we note that the smooth and mixed domain for-
mulations in the theory of cracks with possible contact between crack faces can
be found in [8, 9].

4. Asymptotic analysis

In practice, the model (1)–(6) includes a number of parameters which may
change. This section concerns passages to limits when these parameters con-
verge to limit values. We shall analyze two limit cases:
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i) Instead of the law σ = Aε(u) in (1) we consider the family of laws

σλ =
A

λ
ε(u), λ > 0, (55)

and perform the passage to the limit as λ→ 0.

This problem corresponds to the case where the stiffness of the upright elastic
body tends to infinity. Thus, in the limit we expect a rigid thin obstacle for the
vertical deformation of the horizontal Kirchhoff plate.

ii) Instead of the equation (2) we consider the family of equations

1

λ
∆2w = f, λ > 0,

and investigate a passage to the limit λ→ 0.

This asymptotic problem corresponds to an increasing bending stiffness of the
horizontal plate. As a result, in the limit one expects a rigid obstacle for the
in-plane deformation of the upright elastic body.

First we analyze the case i). For any fixed λ > 0 one has a unique solution
to the following problem:

Find (uλ, wλ) ∈ K, such that (56)














∫

D

σλ(uλ)ε(ū− uλ) −

∫

D

g(ū− uλ)

+

∫

Ω

wλ
,ij(w̄,ij − wλ

,ij) −

∫

Ω

f(w̄ − wλ) ≥ 0 ∀(ū, w̄) ∈ K.

(57)

Here σλ(uλ) = σλ are defined from (55). Substituting (ū, w̄) = (0, 0), (ū, w̄) =
2(u,w) in (57) as test functions we find

∫

D

σλ(uλ)ε(uλ) −

∫

D

guλ +

∫

Ω

wλ
,ijw

λ
,ij −

∫

Ω

fwλ = 0. (58)

Relation (58) implies

‖wλ‖H2
0
(Ω) ≤ c1,

1

λ
‖uλ‖2

H1
γ0

(D) ≤ c2

with constants c1, c2 being uniform in λ. It can be assumed that for a subse-
quence uλ, wλ, with the previous notation, as λ→ 0

wλ → w0 weakly in H2
0 (Ω),

uλ → 0 strongly in H1
γ0

(D).
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Since uλn − wλ ≥ 0 on γ the limit function w0 satisfies the inequality w0 ≤ 0
on γ. Let us take w̄ ∈ H2

0 (Ω), w̄ ≤ 0 on γ. In this case (0, w̄) ∈ K. Substitute
this element (0, w̄) into (57) as a test function. It implies

∫

Ω

wλ
,ij(w̄,ij − wλ

,ij) −

∫

Ω

f(w̄ − wλ) ≥
1

λ

∫

D

σ(uλ)ε(uλ) −

∫

D

guλ .

Since lim infλ→0
1
λ

∫

D
σ(uλ)ε(uλ) ≥ 0 from the above inequality it follows

w0 ∈M (59)
∫

Ω

w0
,ij(w̄,ij − w0

,ij) −

∫

Ω

f(w̄ − w0) ≥ 0 ∀ w̄ ∈M. (60)

Here M := {v ∈ H2
0 (Ω) | v ≤ 0 on γ}. It is seen that the problem (59)–

(60) describes a contact problem for the plate with a thin rigid obstacle. This
obstacle is situated along γ. Like above, we can find a complete system of
boundary conditions holding on γ in the problem (59), (60) as follows:

[w0] = [w0
ν ] = 0, [m(w0)] = 0 on γ,

w0 ≤ 0, [tν(w0)] ≤ 0, [tν(w0)]w0 = 0 on γ.

We have thus shown:

Theorem 4.1. Let λ > 0 and (uλ, wλ) be the unique solution to problem (56),
(57). If λ tends to zero, the corresponding solution (uλ, wλ) tends to (0, w0)
weakly in H1

γ0
(D) × H2

0 (Ω), where w0 is the unique solution of the variational
inequality (59), (60). The latter, in turn, is equivalent to the obstacle problem
for the plate.

Now consider the case ii). For any fixed λ > 0 there exists a unique solution
of the variational inequality:

Find (uλ, wλ) ∈ K, such that (61)














∫

D

σ(uλ)ε(ū− uλ) −

∫

D

g(ū− uλ)

+
1

λ

∫

Ω

wλ
,ij(w̄,ij − wλ

,ij) −

∫

Ω

f(w̄ − wλ) ≥ 0 ∀(ū, w̄) ∈ K.

(62)

It is seen that (62) implies the relation
∫

D

σ(uλ)ε(uλ) −

∫

D

guλ +
1

λ

∫

Ω

wλ
,ijw

λ
,ij −

∫

Ω

fwλ = 0

which provides the following estimates being uniform with respect to λ,

1

λ
‖wλ‖2

H2
0
(Ω) ≤ c3, ‖uλ‖H1

γ0
(D) ≤ c4.
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By choosing subsequences we can assume that as λ→ 0

wλ → 0 strongly in H2
0 (Ω)

uλ → u0 weakly in H1
γ0

(D).

Obviously, the limit function u0 satisfies the inequality u0n ≥ 0 on γ. Let us take
a test function in (62) in the form (ū, 0), ūn ≥ 0 on γ, ū = (ū1, ū2) ∈ H1

γ0
(D).

This provides the relation

∫

Ω

fwλ +

∫

D

σ(uλ)ε(ū− uλ) −

∫

D

g(ū− uλ) ≥
1

λ

∫

Ω

wλ
,ijw

λ
,ij . (63)

By the inequality lim infλ→0
1
λ

∫

Ω
wλ

,ijw
λ
,ij ≥ 0, a passage to the limit in (63) can

be performed, hence we arrive at the variational inequality

u0 ∈ N (64)
∫

D

σ(u0)ε(ū− u0) −

∫

D

g(ū− u0) ≥ 0 ∀ū ∈ N, (65)

where N := {v = (v1, v2) ∈ H1
γ0

(D) | vn ≥ 0 on γ}.

One can see that the limit problem (64)–(65) is precisely the Signorini con-
tact problem in the domain D (see [4]). We have shown the following theorem.

Theorem 4.2. Let λ > 0 be given, and let (uλ, wλ) be the unique solution
of the variational inequality (61),(62). If λ tends to zero, the corresponding
solution (uλ, wλ) tends to (u0, 0) ( uλ → u0 weakly in H1

γ0
(D), wλ → 0 strongly

in H2
0 (Ω)), where u0 is the unique solution to the variational inequality (64),

(65), which, in turn, corresponds to the Signorini problem for the elastic body.

5. A contact between a plate and a rod

In this section we analyze a contact problem between an elastic plate and an
elastic rod (representative of a beam). The middle surface of the plate is denoted
by Ω. The properties of Ω are described in Section 1. The beam is situated
perpendicular to the plate (see Fig. 3). Let 0 ∈ Ω be a point of possible contact
between the plate and the beam. A middle line of the rod is denoted by α. We
assume that α is the interval (0, 1), and the point x = 0 is a contact one for the
beam. The end point x = 1 of the beam is clamped. The boundary Γ of the
plate is also clamped. Underline that the beam is assumed to have a nonzero
displacement only along the axes x.
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Figure 3: Rod in contact with plate

Consider the Sobolev space H̃1(α) := {v ∈ H1(α) | v = 0 at x = 1} and
introduce the energy functional on the space H̃1(α) ×H2

0 (Ω)

G(u,w) :=
1

2

∫

α

bu2
x −

∫

α

hu+
1

2

∫

Ω

w,ijw,ij −

∫

Ω

fw,

where f ∈ L2(Ω), h ∈ L2(α), b ∈ L∞(α) are given functions, b ≥ c0 > 0, c0 =
const. Consider the set of admissible displacements

S := {(u,w) ∈ H̃1(α) ×H2
0 (Ω) | u(0) − w(0) ≥ 0 }.

We use the same notations for zero x = 0 and for zero y = 0 which should not
lead to a confusion.

It is possible to find a solution of the minimization problem

inf
(u,w)∈S

G(u,w). (66)

This solution exists and satisfies the variational inequality:

Find (u,w) ∈ S, such that (67)














∫

α

bux(ūx − ux) −

∫

α

h(ū− u)

+

∫

Ω

w,ij(w̄,ij − w,ij) −

∫

Ω

f(w̄ − w) ≥ 0 ∀(ū, w̄) ∈ S.

(68)

For the problem (67)–(68) we can formulate the questions similar to those
analyzed in Sections 3, 4 for the problem (8), (9). In particular, the mixed prob-
lem formulation can be given. Also it is possible to investigate the passages to
limits when elasticity parameters of the plate and the beam are going to infinity.
We restrict ourselves to finding a complete system of boundary conditions for the
problem (67)–(68). Choose a closed curve Σ of the class C1,1,Σ ⊂ Ω, such that
0 ∈ Σ. Denote by ν = (ν1, ν2) a unite normal vector to the curve Σ. Hence, the
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domain Ω is divided into two subdomains Ω1,Ω2 with boundaries Σ and Σ∪Γ,
respectively. In our considerations ν is oriented towards Ω2 (see Fig. 2). First
of all we write the differential formulation of the problem (67)–(68). Denote
Ω0 = Ω \ {0}. We have to find functions u(x), w(y), x ∈ α, y = (y1, y2) ∈ Ω0,

such that

−(bux)x = h in α (69)

∆2w = f in Ω0 (70)

u = 0 at x = 1 (71)

w = wq = 0 on Γ (72)

u(0) − w(0) ≥ 0, bux(0) ≤ 0, bux(0)(u(0) − w(0)) = 0 on Σ (73)

[m(w)] = 0, [tν(w)] = bux(0)δΣ on Σ, (74)

where δΣ is a distribution on Σ defined by the formula δΣ(ξ) = ξ(0). Note that
Σ is an arbitrary curve with the above properties.

Theorem 5.1. The problems (66), (67)–(68) and (69)–(74) are equivalent.
Moreover, there exists a unique solution (u,w) to problem (66), which, in turn,
is the solution to problems (67)–(68) and (69)–(74), respectively.

Proof. It can be easily checked that equations (69), (70) follow from (67), (68).
This equations hold in the distributional sense. In what follows we derive bound-
ary conditions (73), (74) and clarify in what sense they are fulfilled. We can
take in (68) test functions of the form (ū, w̄) = (u,w+ϕ), ϕ ∈ H2

0 (Ω), ϕ(0) ≤ 0.
This gives the inequality

∫

Ω

w,ijϕ,ij −

∫

Ω

fϕ ≥ 0.

Consequently, applying the Green formula like (17) for the subdomains Ω1,Ω2,

and (69)–(72) we derive

−〈[m(w)], ϕν〉 1

2
,Σ + 〈[tν(w)], ϕ〉 3

2
,Σ ≥ 0 ∀ϕ ∈ H2

0 (Ω), ϕ(0) ≤ 0

which, in its own turn, provides

[m(w)] = 0 in the sense of H−
1

2 (Σ), (75)

〈[tν(w)], ϕ〉 3

2
,Σ ≥ 0 ∀ϕ ∈ H2

0 (Ω), ϕ(0) ≤ 0. (76)

In particular, we have 〈[tν(w)], ϕ〉 3

2
,Σ = 0 provided that ϕ(0) = 0. Hence

〈[tν(w)], ϕ〉 3

2
,Σ depends only on ϕ(0), and thus 〈[tν(w)], ϕ〉 3

2
,Σ = kϕ(0), k =

const. As we will see below, k = bux(0). Note that the values bux(0), bux(1)
make sense since bux, (bux)x ∈ L2(α).
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Substitute next in (68) test functions of the form (ū, w̄) = (u+ψ,w), where
ψ ∈ H̃1(α) is an arbitrary function, ψ(0) ≥ 0. It provides the relation

∫

α

buxψx −

∫

α

hψ ≥ 0

which, by (69), (71), proves that

bux(0) ≤ 0. (77)

Now we substitute in (68) test functions of the form (ū, w̄) = (u + ψ,w + ϕ),
where (ψ, ϕ) ∈ S. In this case the following inequality follows:

∫

α

buxψx −

∫

α

hψ +

∫

Ω

w,ijϕ,ij −

∫

Ω

fϕ ≥ 0. (78)

Consequently, by (69)–(72), (75),

〈[tν(w)], ϕ〉 3

2
,Σ − bux(0)ψ(0) ≥ 0 ∀(ψ, ϕ) ∈ S. (79)

This inequality holds for all curves Σ with the properties mentioned above.
Relation (79) provides a fulfillment of the following boundary conditions (see
(73), (74)) [tν(w)] = bux(0)δΣ on Σ, bux(0) ≤ 0. Observe that (76), (77) follow
from (79).

If ψ = u, w = ϕ the left-hand side of (79) is equal to zero. Indeed, let us
take (ū, w̄) = (0, 0), (ū, w̄) = 2(u,w) in (68) as test functions. This yields

〈[tν(w)], w〉 3

2
,Σ − bux(0)u(0) = 0

which proves the fulfillment of the conditions (see (73), (74)) [tν(w)] = bux(0)δΣ
on Σ, bux(0)(u(0) − w(0)) = 0.

To conclude the section we prove that (71)–(74) is a complete system of
boundary conditions. This means that the variational inequality (67)–(68) can
be derived from (69)–(74), provided that the solution of (69)–(74) is quite
smooth. Indeed, multiply (69), (70) by ū − u, w̄ − w, respectively, integrate
over α,Ω0 and sum up, (ū, w̄) ∈ S. Thus we obtain

−

∫

α

((bux)x + h)(ū− u) +

∫

Ω0

(∆2w − f)(w̄ − w) = 0. (80)

We can divide here the domain Ω0 into two subdomains Ω1,Ω2 by choosing a
curve Σ like before. It allows us to use the Green formula (17) for the domains
Ω1,Ω2. Hence (80), (71), (72), (74) imply the relation

0 =

∫

α

bux(ūx − ux) −

∫

α

h(ū− u) +

∫

Ω

w,ij(w̄,ij − w,ij) −

∫

Ω

f(w̄ − w)

+ bux(0)(ū(0) − u(0)) − 〈[tν(w)], w̄ − w〉 3

2
,Σ.

(81)
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Note that we have changed the integration domain Ω1 ∪ Ω2 by Ω in (81). This
is possible since [w] = [wν ] = 0 on Σ. To complete the proof it suffices to notice
that, by (73), (74), the sum of two last terms in (81) is nonpositive. Hence,
the remaining part is nonnegative which implies (67), (68). This concludes the
proof of the theorem.

Notice that we can rewrite the problem (69)–(74) in the form where the
smooth domain Ω is used,

−(bux)x = h in α (82)

∆2w = f + bux(o)δ0 in Ω (83)

u = 0 at x = 1 (84)

w = wq = 0 on Γ (85)

u(0) − w(0) ≥ 0, bux(0) ≤ 0, bux(0)(u(0) − w(0)) = 0 . (86)

Here δ0 is the Dirac measure, i.e., δ0(ξ) = ξ(0), ξ ∈ C∞
0 (Ω). Indeed, if ϕ(0) =

ψ(0) in (78) we obtain
∫

α

buxψx −

∫

α

hψ +

∫

Ω

w,ijϕ,ij −

∫

Ω

fϕ = 0 ∀ϕ ∈ C∞

0 (Ω)

which implies (83). On the other hand, from (82)–(86) the variational inequality
(67)–(68) follows.

6. Extensions and open problems

Remark 6.1. It is plain that the problems considered in this paper are to be
seen as exemplary problems.

1. The first extension concerns oblique contact problems, where a plate
and an elastic body or a beam which form an arbitrary angle with the plate
are in contact. Contact problems of this sort involve vertical as well as in-
plane deformations of the elastic object. This problem will be the subject to a
forthcoming publication.

2. The problems discussed in this paper can be extended to more complex
flexible structures. In particular, one might consider an elastic frame which is
in contact with an elastic body or a (system of linked ) plate(s).

3. It would be very interesting to extend the analysis of this paper to
problem with frictional contact.
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