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Decay Estimates of Solutions
to the Cauchy Problem for a Wave Equation
with a Bounded Nonlinear Dissipation
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Abstract. In this paper we prove the global existence and study decay properties of
the solutions to the Cauchy problem for a wave equation with a bounded nonlinear
dissipative term.
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1. Introduction

We consider the Cauchy problem for the nonlinear wave equation with a non-
linear weak dissipation of the type
u” — Agu+ N (2)u+ g(u') =0 in R™ x [0, +o00] ®)
u(z,0) = ug(x), u'(x,0)=u(x) in R",

where g : R — R is a continuous non-decreasing function and \ is a positive
function. When we have a bounded domain instead of R", and for the case
g(x) = §|lz|™tx (m > 0) (without the term A?(x)u), the decay property of
the solutions of (P) was investigated in detail (see [12], and for related works
8, 16]). The previous results all have a serious drawback from the point of view
of applications: they never apply if the function g is bounded such that

—o00 < lim g(z) < lim g(z) < +oc. (Q)

T——00 T—+00

If g satisfies at most condition (Q), the dissipation effect by g(u') is weak as
|u| is large and for convenience we call such a term weak dissipation. In [13],
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Nakao considered the particular case g(x) = ﬁ and he studied the decay
property of the solutions of the problem.

For the Cauchy problem (P), when g(x) = §|lz|™ 'z (m > 1) and A = 1,
Nakao [11] (see also [15]) proved that the energy decay rate is

2—n(m—1)

E(t)<(1+4t)" 0 | >0

He used a general method introduced in his paper [10] with the condition that
the data have compact support. This result was later generalized by the au-
thors [1] to the case of more general function .

Our purpose in this paper is to give a precise decay estimate of the energy
of solutions to the Cauchy problem (P) with a nonlinear weak dissipation. We
use a new method recently introduced by Martinez [9] (see also [1]) to study the
decay rate of solutions to the wave equation v’ — Ayu + g(u') = 0 in Q x R,
where {2 is a bounded domain of R™. This method is based on a new integral
inequality that generalizes a result of Haraux [5].

2. Preliminaries

A and g are functions satisfying the following hypotheses:
A is a locally bounded measurable function defined on R™ which satisfies

M) = d(|z]), (1)

where d is a decreasing C'* function such that lim, . d(y) = 0.
g : R — R is an increasing C' function and there exist four constants
1, Ca, C3, ¢4 > 0 such that

eso]™ < g(v)| < ealv|m for all Ju] < 1 (2)
c1 <|g()| < eolv]”  for all |v] > 1, (3)

where 1 < r < (n”_*;) .

We first state two well known lemmas, and then we state and prove two
other lemmas that will be needed later.

Lemma 2.1 ([2]). Let ¢ be a number with 2 < g < 400 (n=1,2) or2 < q <

2% (n > 3). Then there is a constant ¢, = c(q) such that

ullg < cllullm@ny  for v e Hl(R”).
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Lemma 2.2 (Gagliardo-Nirenberg [2]). Let 1 <r < q¢ < 400 and p > 2. Then,
the inequality

lull, < CIVFulglull ™ for we D((=A)Z)N LT

holds with some constant C' > 0 and § = (; — 3)(% + 5 — )~ provided that

n s

0<6<1 (weassume 0 <0 <1 ifm — % is a nonnegative integer).

Lemma 2.3 ([8]). Let E: Ry — R, be a non-increasing function and assume
that there are constants p > 1 and A > 0 such that

+o0 1
/ E"T (t)dt < AE(S), 0< 8 < 400,
S

then we have

cBO)(1+1)" 71 Vt>0, ifp>1

E(t) <
cE(0)e ! vVt >0, if p=1,

where ¢ and w are positive constants independent of the initial energy E(0).

Lemma 2.4 ([9]). Let E : Ry, — R, be a non increasing function and
¢ : Ry — R, an increasing C? function such that ¢(0) = 0 and ¢(t) — +oo as
t — +o00. Assume that there exist p > 1 and A > 0 such that

/ " EOE 06(1) dt < AE(S), 0< S < 400,
S

then we have

B < cE(0)(1+¢(t) 7T Vt>0, ifp>1
T E@®) <cB(0)e ™ wt>0, ifp=1,

where ¢ and w are positive constants independent of the initial energy E(0).

Proof of Lemma 2.4. Let f : Ry — Ry be defined by f(z) := E(¢'(x)) (we
remark that ¢! has a sense by the hypotheses assumed on ¢). The function f
is non-increasing, f(0) = E(0) and if we set z := ¢(t), we obtain for 0 < S <
T < +o00

¢(T) p+1 d)(T) pt1 T p+1
/ F(2)" do = / E (6 ()" de = / B /(1) dt < AF(6(S)).
@(S) o(S) S

pt+1

Setting s := ¢(S) and letting 7" — 400, we deduce that f;oo flz)= dx <
Af(s) for 0 < s < 400. Thanks to Lemma 2.3, we get the desired results. [
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Next, let E(t) be the energy associated to the solution of problem (P):
E(t) = [u']l5 + [[Vaull3 + [IA(z)ull3,

and we set E(t) = ||[u”(t)|3 4 || Vo' ()]|3 + |\ ()]|2 and d(t) = d(L +t), where
L is a positive constant such that suppuo U suppu; C {x € R", |z| < L}.

Now we recall the following local existence theorem

Theorem 2.5 ([14]). Let (ug,u;) € H*> x HY(R™). Then under the hypothesis
(1), (2) and (3), the problem (P) admits a unique local solution u(t) on some in-
terval [0, T[, T = T (ug,u1) > 0, in the class W>([0, T[; L*)NWh>=([0, T[; H")N
L>([0,T[; H?), satisfying the finite propagation property.

Remark 2.6. The finite propagation property means that if supp ug Usupp u; C
{z € R",|z| < L} for some L > 0, then suppu(t) C {z € R",|z| < L+ t}.
Thus, d(|z|) > d(L +t) =d(t) on {x € R", |z| < L +t}.

3. Main results

We suppose that

/ d?*(1) dr = 400, ifm=1
0

/ (14 1) 252G (1) dr = 400, ifm> 1.
0

Our main result is the following.

Theorem 3.1. Assume that (ug,uy) € H? x HY(R™) with compact support, the
solution of problem (P) admits a global solution and satisfies the following decay
estimate:

m = 1: When n = 1,2, then there exists a positive constant w such that

E(t) < C(E(0))exp (1 iy /0 "2(r) dT> vt > 0. (5)

When n > 3, then there exists a positive constant C'(E(0)) depending
continuously on E(0) such that

E@t) < — Vt>0. (6)
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m > 1: When m > %, then there exists a positive constant C(E(0)) depending
continuously on E(0) such that

C(E(0 (=)
E@%§<£“+ &f%;ﬂ(ﬁh) Vit > 0. (7)

When m < %, then there exists a positive constant C(E(0)) depending
continuously on E(0) such that

m—-2)
E@h£<fu+7;ﬁ?ggﬂuyh> e ©

Examples.

1) Suppose that d(t) = const. Applying Theorem 3.1 we obtain

_ﬂﬂngéWt if m=1,n=1,2
E(t) < C(E(0))t if m=1,n>3
2—n(m— 1)
E(t) < C(E(0))t m=Gm-1 if l<m<1+2
E(t) < C(E(0))(Int) ==Em=1  if m =1+ 2.
2) Suppose that d(t) = m. If we consider m = 1 and use a result of

J. Dieudonné [3, p. 95| for asymptotic development, we have

E(t) < C(E(0))et " 0™ if p =12 g <1
E(t) < C(B(0))e! 0 ifn=1,20=1% <1
E(t) < C(E(0)(Int)~ fn=12 =3 0=1
E(t) < C(EO)t =2 (Int)2 ifn>3, 0<1
E(t) < C(B(0))(Int)~ w2 ifn>3 B<i g=1
E(t) < C(E(0))(Inlnt) 72 ifn>3 g=16=1

When m > 1, then we obtain

2
" max{m,Z}-1
(1) dT) ?

2
max{m,%}—l

E(t) < C(E(0)) (/Ot(l +7—)_n( ) -

t
:cha»></" S dT)
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We have the following cases:
If n(m—1)+20(m + 1) < 2, using again Dieudonné’s result, we have

B(t) < C(B(0)) (1500 () olms)) T

_ 2-n(m—1)—20(m+1) 28(m+1)

< C(E(0)t  metm3t (Ing)matngii-t,

If n(m —1)+20(m+ 1) = 2, then

_ 2(1—B(m+1))

(t) < C(E(0)) (Int) m=xtm3i=1 Bm+1) <1
(t) < C(E(0)) (lnlnt) ™mFT  G(m+1) = 1.

IN

E
E
Lemma 3.2. Let u(t) be a solution to problem (P) on [0, Timax|[. There exists a
constant C(ug,uy) such that ||u'{| g1 mny < C(ug, u1).

Proof. Differentiating the first equation of (P) with respect to ¢, we get

e — Aty + N2(2)uy + g’ (ug)uy = 0. (9)

Multiplying (9) and (P) by 2uy, we get LE(t) + 2 [, ' (w(t))|uw(t)|* dz = 0
and LE(t) + 2[5, 9(ui(t))u(t) dz = 0. Then, we have

E(t) < E(0) and E(t) < E(0). (10)

On the other hand, ||V,«/||2, < E(0) and [|«'||2, < E(0). Then

VieR: [[Wlmg) <\ E(0) + E(0) = C(ug, w), (11)

which proves the assertion. [l

In the proof, we often use the following inequality:

1
[u@®)]2 < %Ilk(x)U(t)llz- (12)

Proof of Theorem 3.1.
A.) Proof of (5) and (6): We consider the case m = 1, that is,

ale] < lg@)] < erle] o o] <1 (13
c3 < |g(x)| < eyl for |z| > 1. (14)

A1.) The case n = 1: We denote by c or ¢; various positive constants which
my be different at different occurences. We multiply the first equation in (P) by
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E1¢'u, where ¢ is a function satisfying all the hypothesis of Lemma 2.4. After
integration by parts, we obtain
T

T T
2 / Eitl¢ dt = — [qus’ / uu’dm] + / (qE'ET'¢ + E9¢") / u da dt
S n S S

n

T T
+2 / Ei¢ | u?dxdt — / B¢ | ug(u')drdt
S Rn S Rn
T

T
< — [qus/ / uu’da:} + / (qE'ET'¢ + E1¢") / uu dx dt
n S S

n

T T
+ 2/ B¢ | w?dxdt+ c(e) / E1¢’ g(u)*dx dt
S R S

lw/|<1 A ()

T T
+ 6/ B¢ [ N(z)u®dxdt + / Ei¢’ ug(u') dx dt
s s lu'[>1

Rn
and

T
/ E e dt < — {qub’
S

T

T
+ / (qE'E"'¢' + E%¢") / wu dz dt
S

n

uu’ dx}

R" S

T T

+/ B¢/ u’ da:dt+/ E1y ug(u') dzx dt (15)
S Ju/|>1 S Ju’|>1

1

' |?dx dt .
lu/|<1 )\2(9‘/’)‘ |

T
—l—c(s)/s B¢

Further,
T

T
/ 1 /2 / / ( 1 ) / /

E1 vidrdt < C E1 — | u'g(u) de dt
/S ¢ <1 A2(2) - Js ¢ re \d?(t) 9()

and

T

1

/ EY—E")dt = ——(E'""(S) — E"*Y(T)) < cE'™(S).
s l+gq

We choose ¢(t) = fg d?(s)ds. It is clear that ¢ is a non decreasing function

of class C? on R;. The hypothesis (4) ensures that ¢(t) — +o00 as t — +oc.

By (12), the definition of F, and the Cauchy-Schwartz inequality we have

T
- [qub’ / ut dx]
n s

— B1(5)0/(5) [

n

) w(S)u'(S)dx — EYT)¢'(T) / w(T)u/(T) dx
o1 (g) | 28) | H(T)
<o) |55+ i |

< CEL(S)
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and

/ — / // / / Z/(t) + |;7//( )‘
=1¢' + B9 dz d 1 dt+ o+l
/S (qE'ET¢'+ E1¢ )/n uu dr dt </s q|E'|E (t) t /s E (t)

where ¢ = d2(t) and ¢"(t) = 2d(t)d'(t). So

So we obtain

‘Z(t | < 2|d'(t)]. d(t) is bounded,

q+1 |¢H< )| q+1 7 T q+1 7 q+1
/S E T dt < — EL(S) [d(t)}ng (S)d(S) < CEL(S).

Then we deduce from (15) that
T T
/ ET g dt < CE(S)" + / E1¢/ uw? de dt
S

S |u/|>1

- (16)
+/ E¢ ug(u') dz dt .

s u/|>1
In the last step we use the non-increasing property of E, the Sobolev imbed-
ding H'(R") C L*(R") and the Cauchy-Schwartz inequality. As n = 1, then

H'(R") C L*(R") and we conclude from the regularity of the solution u that
u € L®(Ry; L>*(R™)). By (13) and (14), we have the two following inequalities:

/ (') dx < c/ || |u' g(u")| de < c||u'||Loo(Rn)/ |u'g(u')| dx < c(—E")
Ju’|>1 Ju/|>1

[u/|>1

and

/ |ug<u'>rdm§c|\uumn>/ [ g()|dz < cllullmn (—E) <
[u/|>1 Ju/|>1 d( )

Choosing ¢ = 0 we deduce from (16) that fs (t)¢' dt < cE(S), and we may
then complete the proof of this case by applying Lemma 2.4.

A2.) The case n =2: We have |g(y)| < ci|y| if |y| < 1. Then set € > 0:

T
/ E1¢/(t) / ug(u') dx dt
S Ju'|<1

T . 1
ge/SEm%qA()uw() () (') da dt

Se/ ET Y (t)dxdt + C(e // g u') dx dt
s |u’|<1)‘ )

Se/s E19/(t) + (5)/5 EW)/U@ )\th)ugda:dt (17)

< (-p).
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Next we look at the part |v/| > 1: as we work on dimension n = 2, we have
| 1y < cfjuf| g mny < c% for all » > 1. Then set € > 0:

T
/ qub’(t)/ ug(u') dx dt
S |u/|>1
T 1 (rjll) (r+1) (TTTU
< [eoe ([ wra) ([ 1o a) e
S R™ Ju'[>1
T (Gay
< [ BoOhloe ([ o) a
S Ju'|>1
</TEQQ2+1¢’(t)L (/ u’g(u')dm)(rlndt
s d(t) \Jwi>1

cb’(t)
s d(t )
)

/
_/ ¢t G M%)Eﬁ(_g)ﬁdt
d(t)

<5/¢f

T
< c(eE(S) + £ E(0) e / ET ¢ dt. (18)
S

> (—E')T dt

T
D dt 4 C(e’)/ 4 (t)(—E'E) dt
S

Then, choosing € and ¢’ small enough, we deduce from (17) and (18) that

/ ' EYg/(t) dt < (¢ )E"(S) + ¢ /
S

S

+Ce) /S B/ (1) /| » A2%36)1/2@) dt.

We want to majorize the term fSTfRQ w?dxdt. Let R > 0 and fix t > 0. Define
St={reR*: || <R}and S, = {z € R’ : R < |«/|}. By Lemma 2.2, in
dimension n = 2 we get that there exists a positive constant ¢ depending on {2
such that

T
E1¢'(t) / u? dx dt
|u'|>1

1 2
Vo€ H'(R?) : [vllzae) < [0llfn oy 101172 ze)- (19)

From the definition of S%, we have fst Zdr < % fst W' de < Fllw/)13s ge)-
Then, since u is a strong solution, we can apply (19) to get the estimate
/|3 ®2) < cllv|| e ||u'||L2(R2 < c|[t'|| g1 (r2) E(t). Consequently,

/ P de < S| s E(E): (20)
o R

2
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Using (11) and (20), we obtain

/S " B ) dt

< cE™(S) +¢ /S ' E1(t)¢'(t) /R 2 u dx dt

< cEM(S) 4 c/ST E()¢/(1) /Si o drdt + 5 /ST E(0)(8) o] 11 o) E(0) dt
< cEM(S) 4 ¢ /S " B 1) /S dediy £ Clug,m) /S " B () d.

Now choosing R > 0 such that £ C(ug,u1) < 3, we deduce that

T

% /S B (1) (£) dt < cB(S) + ¢ /

S

E1(t)¢(t) / u? dx dt.

51
Next we look at the part Si. We have |g(y)| > ¢3|y| for all y € [—1,1]. Let

a2:inf{‘%’:1§|y|§R}>0.

With o = min(es, ), we have |g(y)| > a|y| if |y| < R. Therefore

[ mwo | i = [ 200 [t 2

¢ g(u')
<o [ Ewow [ wa)dea

(6% Sllt

= ~(E"(S) — B(T)).

Finally, we get

% /S EY(t)¢ (t)dt < cB(S) + §(E1+Q(S) — EY9(T))< <c + §>E1+q(5). (21)

We choose ¢ = 0. We deduce from (21) that fg E(t)¢'(t)dt < CE(S), where
C' is a positive constant independent of F(0). We may then complete the proof
by applying Lemma 2.4.

A3.) The case n > 3: When n > 3, we deduce from (13) and (14) that

1

cslvl? < |g(v)] < eqfv|? for all [u] <1, and ¢; < |g(v)| < eglv]” for all |v| > 1,
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where p is such that 1 < p and § < p, we will later choose the optimal p when
n > 3. By the same techniques we obtain

T T
/ B¢ (t)dt < cE'™(S) + C(e) / E1¢/(t) / u dx dt
S S Ju'|>1

+/STE‘1¢’(t) /qul %u%) ;lt.

Putting oo = f—:z, s € (0,1), we have

B¢ u?de < cE |/ [/ g(u)|* d

[w/|>1 [u’|>1
< B ||| | (g ()1
= B¢/ ||/ |54 (—E')
< B ¢l |3 - of¢) B
For s = = with ¢ = , we have then
2

E1¢’ W?dr < ¢E"T ¢ |||, — c(€)E'. (22)

u'[>1 p-1

As % < p, we have the Sobolev embedding H'(R") C L%(R”). We deduce
from (22) that E%' [, u*dx < cd E*T ¢/ — ¢(¢)E' < cd B¢/ — c(¢)E'.

[u/|>1
Choosing € = £, it follows that

E1¢/ u?dr < eET ¢ — c(e)E.

[u/|>1

On the other hand,

4 / 1 / q
/s E¢(t)4llglmu2(t)d:cdt§c/ E1¢/(t /l|<1)\ (') dx dt
9
C/s . d2(x)/ oy I
b d(
< C/S chzz(x)( E') dt.
Define ¢(t) = fot d?(s) ds, we have

4 q 1/ 1 12 T q(_ q+1
/S Egb(t)/u,'g—)\z(x)u (t)dxdtg/s EU(—E')dt < cETY(S).
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Then fST EYag/(t) dt < cET(S) < cE(S). Using Lemma 2.4, we conclude that

By < CEO)

(Ji d2(ryar)™

When n > 3, the optimal p such that § < pand 1 < pis p = 5. Then we
obtain

B < CEO)

(@)

B:) Proof of (7) and (8): We consider the case m > 1, that is,

ale™ < |g(x)| < eslz|w for |z <1

. (23)
cs < |g(x)] < calz] for || > 1,

where m is such that 1 <m and § < m.
If we multiply the first equation of (P) by E%u, we obtain

T
0 :/ E1¢ | u(u — Au+ N (z)u+ g(u')) dx dt
s Rn
T

T
= [qub'/ uu’dm} —/ (qE'Eq_lgb’—Fqub")/ wu' dx dt
n S S

n

T T
= 2/ E'¢ | u*dxdt+ / B [ (u? + [ Muf + | Vul?) dedt
s Rn s

R”

T
—|—/ E1¢" | ug(u')dxdt
s

Rn
and

T
E1¢/(t) / u? dx dt

S [u/|>1

+ /S 0 /Wl W (1) di

T 1 )
a¢f ') d dt.
+/S Eqb(t)A/lgl @)’ (u') da dt

/5 ' By (t) dt < cEM(S) + C(e) /

Therefore, by the same estimation as in the case n = 2, we obtain

T B T
[ om0 [ e < @ Lm0 [ opear
S Ju/|>1 g
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Putting oo = f—_z, s € (0,1), we have

Eq(b/ u/2 dr < CEq¢/ ’u/|a(1fs)‘u/g(u/)|s dr

[w/|>1 [u’|>1
< B[ || [ (g ()|
= B |30 (B
< CEHE g — o) B (24)
Choosing s = mL—&-l with g = mT’l, we have then
B | u? dy < E/E'Wgrlgb/Hu/H"E:i —()E (25)
u'|>1 m=

As 2 < m, we use the Sobolev embedding H'(R") C L%(Rn). We deduce
from (25) that E?¢’ f|u,|>1u’2 dv < ¢ E" ¢/ — c(¢\E' < cd B¢/ — c(e)E.
Choosing € = <, it follows that
E1¢’ u?de < eET ¢ — c(e)E. (26)
|u/|>1

By (23), we have the two following inequalities

T T
/ B¢ | Wdrdt < / Ei¢/ ——u dvdt
s lw/|<1 S lu/|<1 N ()
<2/TE%’ L (g dudt
— (u u m—41 €T
- Js rn A%(2) g
T 1 )
< 2/ E¢ ' g(u)) D dx dt
s {|z|<L+t} /\2@)( ()

<oy v
=2 Ci(t) ) g
n(m—1)

< c’/gTEq¢’<%>2(1 ) (—B)me dt

T 1 \2 n(m-1) 2
Sc// B¢ =—) (1 4+t) w1 (—E')m+i dt

LB (G) 10T R
< / Ty (1S e (27)
s d*(t)

and
T

T 1 1 2
B¢ 2 dx dt < 2/ E1¢' —— (W' g(u)) D dx dt.
/S O s [ | s al)




192 A. Benaissa and S. Mokeddem

Let € > 0. Thanks to Young’s inequality and to our definitions of m and ¢, we
obtain

T T
]- ]_ m+1 m-+1
B¢ = Pdrdt <2 eRE [ YR (14 )" dt
/S <1 A% () m+1 S
4 1

— ——F(S

+ TTI,+ 1 g(m;l) ( )
When m < §, we replace m in (24) by 3, take ¢ = %;1 = 222 and obtain

from (27)

T o,
E1¢ ' dx dt
/S |u’ <1 A? (‘7:)

T
(m % m m+1 4 1
<ol et 1>/E1+QEm1 DF ) g (S)
S
<ol = piy (0)/ EW(@) R (14 o dt + —— L B(S). (28)
- m—|—18 S m+ 1 '

In all cases we choose ¢ such that (¢’ )m d T t)(1 + )™ = 1, thus

= fg(l +5)~ M 1)almJ“l( ) ds. By (12), the definition of E and the Cauchy-
Schwartz inequality we have

- [qus' wd da:]T: E1(S)¢'(S) / w(S)(S) dx — EY(T)¢/(T) / w(T)d(T) dx

RTL S n n

¢(5) ¢'<T>}

< CE™Y(S) {

d(s) — d(T)
< CE*TY(S)
and
gy gy [t d e (D) T oanle" @)
/S(qEE ¢+E¢)/n d dtg/s J|E'|E (t)dt+/s S
It holds
o(t) = —W(l 4 R (10 (4 DA () (8).

Thus |¢ ! < Cd™(t) — C'd™ 1 (t)d'(t). As d(t) is bounded, we obtain

g q+1|¢”(t)‘ - q+1 Im T q+1
/S A T CET(S) [d (t)}sgCE (S).
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Then we deduce from (28) that fST Efi¢ dt < 2CE(S), and from Lemma 2.4
max{m, 5 }—1

5 ) we obtain

(applied with ¢ =
C

Et)y < ——.
¢(t> max{m,%}fl

To prove global existence in H? we use the estimates for second derivatives
of u(t) and the energy estimate of F(t). From (10), we have

lu" ()] < E(0). (29)

By (2) and (3), we have

/ lg(u))|? da < 0/ /| dm+C”/ /| da
n [u'|<1 [u/[>1

n(m—1) 2—(n—2)(r—1) n(rz—l)

<CL+t)"% Ew+CE = B

From (29) and the first equation of the problem (P), we also prove easily that
|Azu(t)||2 < C'(t) < oo for all t > 0. Indeed, we have ||A,u(t)]]s < [|[u”(t)]]2 +
INu(®)ll2 + g (B)]]2- 0
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