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1. Introduction

In this paper we consider the following elliptic control problem with pointwise
state constraints and distributed control
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min J(y, u) :=
1

2
‖y − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω)

subject to (Ay)(x) = u(x) in Ω

y(x) = 0 on ∂Ω

0 ≤ u(x) ≤ b a.e. in Ω

yc(x) ≤ y(x) a.e. in Ω′,

where Ω ⊂ R
N , N ≥ 2, is a bounded domain with C0,1 boundary ∂Ω. We

assume Ω′ ⊂ Ω with dist(Ω′, ∂Ω) > 0. This is motivated by the investigation
of a homogeneous Dirchlet problem. Since the boundary data are fixed a bad
choice of yc would be immediately lead to an empty feasible set. Conversely, a
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function yc which is bounded below by a positive number in a neighbourhood
of the boundary ∂Ω would be equivalent to the problem under consideration,
since the state y is continuous.

The parameters ν and b are fixed positive real numbers and yd is a fixed
function from L2(Ω). The state constraint yc is a function belonging to L∞(Ω′)
and A is a uniformly elliptic differential operator. More precisely, it has the
form

Ay(x) = −
n

∑

i,j=1

Di

(

aij(x)Djy(x)
)

+ c(x)y(x),

where Di denotes the partial derivative with respect to xi. Here c is a given func-
tion in L∞(Ω) with c(x) ≥ 0 a.e., and aij belonging to C0,1(Ω̄), and satisfying
the conditions aij = aji for all i, j = 1, . . . , n with the ellipticity condition

n
∑

i,j=1

aij(x)ξiξj ≥ θ‖ξ‖2 ∀(x, ξ) ∈ Ω × R
n,

where θ is some positive constant.

The main difficulty in this problem is the pointwise state constraint y(x) ≥
yc(x). Theory and numerical treatment of such constraints are still a challenge.
In this paper we use a Lavrentiev type regularization of the state constraints,
introduced in Meyer, Rösch and Tröltzsch [6]. Let us remark that the Lavrentiev
regularization is well studied for inverse problems, see Lavrentiev [4], Liu and
Nashed [5], Janno [3], Tautenhahn [9], Nair and Tautenhahn [7].

For optimal control problems, the Lavrentiev type regularization is mo-
tivated by the following facts. Typically, mixed pointwise control-state con-
straints have better theoretical properties than state constrained problems.
There are several situations known where the existence of measurable and
bounded Lagrange multipliers can be shown, see Tröltzsch [10] and Rösch and
Tröltzsch [8]. In contrast to this, Lagrange multipliers associated to pointwise
state constraints can be expected only in measure spaces. Numerical tests show
that the condition numbers of linear systems associated to the regularized prob-
lems are essentially smaller than such one for the unregularized problem. The
high condition numbers for unregularized problems occur if the state constraint
is active on an open subset. On such sets, the optimal control ū is obtained by
Ayc = ū, i.e., the data have to be differentiated twice. The Lavrentiev regular-
ization of such an operator equation is studied in the theory of inverse problems
and corresponding papers were already cited. We will see in this paper that
the occurence of the pointwise bounds for the control u stabilizes the problem.
Therefore, a control of the regularization parameter with respect to the noice
level is not essential. However, first numerical studies show that a reasonable
balance between noice level, regularization parameter, and the discretization
parameter improves the behavior of the involved numerical methods essentially.



Error Estimates 197

A family of optimal control problems with regularized state constraints is
given by

(Pε)
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min J(y, u) :=
1

2
‖y − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω)

subject to (Ay)(x) = u(x) in Ω

y(x) = 0 on ∂Ω

0 ≤ u(x) ≤ b a.e. in Ω

yc(x) − εu(x) ≤ y(x) a.e. in Ω′.

This family is characterized by a regularization parameter ε > 0. Note that
Problem (P) is obtained for ε = 0. In this paper we will derive estimates for the
regularization error and prove stability properties. The used proving technique
was introduced in a paper by Alt [1].

The paper is organized as follows. In Section 2 we state properties of the
involved partial differential equations and the optimality conditions. Section 3
contains error estimates for the solutions of the regularized problems (Pε) with
respect to the solution of problem (P). In Section 4, we will study the case of
noisy data yc and yd. Section 5 is devoted to feasible regularized solutions. The
paper ends with numerical tests in Section 6.

2. Optimality conditions

We start with well known results for the weak formulation of the elliptic bound-
ary value problem. A function y ∈ V := H1

0 (Ω) is called a weak solution if

a(y, v) = (u, v) ∀v ∈ V (1)

is satisfied. Here a : V × V → R denotes the bilinear form defined by

a(y, u) =

∫

Ω

aij(x)Diy(x)Djv(x) dx +

∫

Ω

c(x)y(x)v(x) dx.

Lemma 2.1. Equation (1) has a unique solution y ∈ V := H1
0 (Ω) for every

u ∈ L2(Ω). Moreover, the mapping u 7→ y is continuous from L2(Ω) to V .

This statement follows immediately from the Lax-Milgram Theorem. It
allows us to define a continuous control-to-state mapping S : L2(Ω) → V by
y = Su as a weak solution of (1).

Next, we introduce admissible control sets Uad for the Problem (P):

Uad := {u ∈ L2(Ω)
∣

∣ 0 ≤ u(x) ≤ b a.e. in Ω, (Su)(x) ≥ yc(x) a.e. in Ω′},
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and the admissible set U ε
ad for the modified problem (Pε):

U ε
ad := {u ∈ L2(Ω)

∣

∣ 0 ≤ u(x) ≤ b a.e. in Ω, εu + (Su)(x) ≥ yc(x) a.e. in Ω′}.

In general, these sets may be empty. To avoid this, we have to require the
existence of at least one feasible point. However, for our analysis we need a
slightly stronger assumption, the existence of a Slater point.

Assumption (A). There exists a control û(x) with 0 ≤ û(x) ≤ b and ŷ(x) ≥
yc(x)+ τ a.e. in Ω′, τ > 0. Here ŷ denotes the solution of (1) for the right-hand
side û.

Lemma 2.2. Assume that (A) holds. The optimal control problems (P) and
(Pε) admit uniquely determined solutions.

Proof. The objectives of both problems are strictly convex. Moreover, the ad-
missible sets are closed, convex, and bounded in L2(Ω). Consequently, the
admissible sets are weakly compact in L2(Ω). The objective is weakly lower
semicontinuous. Therefore, the existence of optimal solutions is guaranteed if
the admissible sets are non-empty. This is indeed the case. Because of

ŷ(x) + εû(x) ≥ ŷ(x) ≥ yc(x) + τ ≥ yc(x),

the pair (ŷ, û) is admissible for both problems. The uniqueness of the solution
is guaranteed by the strict convexity of the objectives.

To derive optimality conditions, we introduce an adjoint equation. All in-
equality constraints are contained in the set of admissible controls. Thanks
to the non-standard definitions of the admissible sets, the adjoint equation of
both problems is the same and contains no Lagrange multipliers. The adjoint
equation is given in a weak formulation by

a(v, p) = (y − yd, v) ∀v ∈ V (2)

or in a classical notation

(A∗p)(x) = y(x) − yd(x) in Ω

p(x) = 0 on ∂Ω.

Here A∗ denotes the adjoint operator; since aij = aji we have A∗ = A.

Lemma 2.3. The adjoint equation (2) admits a unique weak solution p ∈ V .

In the following we will call the triple (ȳ, ū, p̄) optimal solution of (P). This
means ū is the optimal control and the corresponding state ȳ and the corre-
sponding adjoint state p̄ are defined as solutions of (1) and (2). The optimal
solution (ȳε, ūε, p̄ε) of (Pε) is declared in exactly the same way.
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Lemma 2.4. A necessary and sufficient condition for the optimality of (ȳ, ū, p̄)
is given by

(p̄ + νū, u − ū)L2(Ω) ≥ 0 for all u ∈ Uad. (3)

Analogously the optimality condition of (yε, uε, pε) is given by

(p̄ε + νūε, u − ūε)L2(Ω) ≥ 0 for all u ∈ U ε
ad. (4)

Since this result is quite standard, we drop the proof.

Notation. If there is no risk of confusion, we denote in the following by (. , . ) =
(. , . )L2(Ω) the inner product of L2(Ω).

3. Regularization error

In this section we study the error of solutions of the regularized problems (Pε)
with respect to the solution of the original problem (P).

Lemma 3.1. Assume that (A) is satisfied. Then for every ε > 0, there exists
a constant δε ∈ (0, 1) such that uδ := (1 − δ)ūε + δû is feasible for (P) for
δ ∈ [δε, 1].

Proof. Since ūε and û are feasible for (Pε), the convex linear combination uδ

fulfills the control constraints 0 ≤ uδ ≤ b. Consequently, we have only to check
the state constraint. Here we know

εūε + ȳε ≥ yc ⇒ ȳε ≥ yc − εūε.

According to (A), we have in addition ŷ ≥ yc + τ. Due to the linearity of (1),
we find yδ = (1 − δ)ȳε + δŷ, where yδ denotes the solution of (1) with u := uδ.
This leads to

yδ = (1 − δ)ȳε + δŷ

≥ (1 − δ)(yc − εūε) + δyc + δτ

≥ yc − εūε(1 − δ) + δτ

≥ yc − ε(1 − δ)b + δτ

using |uε| ≤ b in the last line. Consequently, uδ is feasible for (P) if δτ−ε(1−δ)b
is positive. This takes place for δ ≥ εb

τ+εb
.Therefore, δε can be defined as δε :=

εb
τ+εb

.

Lemma 3.2. For every ε > 0 the solution ū is feasible for (Pε).
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Proof. We have only to check the mixed control-state constraint. Since ū is
feasible for (P),

εū + ȳ ≥ ȳ ≥ yc ⇒ εū + ȳ ≥ yc a.e. in Ω

is satisfied for every ε > 0. Consequently, ū is feasible for (Pε) for arbitrary
ε > 0.

Next, we state the main result of this section.

Theorem 3.3. Assume that (A) is satisfied. Then, there exists a positive con-
stant C independent of ε with

ν‖ū − ūε‖2
L2(Ω) + ‖ȳ − ȳε‖2

L2(Ω) ≤ εC.

Proof. We start with the optimality condition (4). Due to Lemma 3.2, we can
test this inequality with ū:

(p̄ε + νūε, ū − ūε) ≥ 0. (5)

The construction of a test function for (3) is more difficult. Actually, we can not
test (3) with ūε since ūε may be infeasible for (P). However, from Lemma 3.1
we know the feasibility of uδ for certain δ. Inserting u = uδ in (3), we find

(p̄ + νū, uδ − ū) ≥ 0 (6)

for δ ∈ [δε, 1]. Adding (5) and (6), we find

(p̄ε + νūε, ū − ūε) + (p̄ + νū, uδ − ū) ≥ 0.

Next, we write this inequality in the form

(p̄ε + νūε, ū − ūε) + (p̄ + νū, uδ − ūε) + (p̄ + νū, ūε − ū) ≥ 0

or
(p̄ − p̄ε, ūε − ū) + (p̄ + νū, uδ − ūε) + ν(ū − ūε, ūε − ū) ≥ 0. (7)

Consider the first term in (7). Since (1) holds true, we obtain (p̄− p̄ε, ūε − ū) =
a(p̄− p̄ε, ȳε− ȳ). On the other hand, (2) implies a(p̄− p̄ε, ȳε− ȳ) = (ȳ− ȳε, ȳε− ȳ).
Hence, we find (p̄− p̄ε, ūε− ū) = (ȳ− ȳε, ȳε− ȳ) = −‖ȳ− ȳε‖2

L2(Ω). Consequently,

we can write (7) in the form

ν‖ū − ūε‖2
L2(Ω) + ‖ȳ − ȳε‖2

L2(Ω) ≤ (νū + p̄, uδ − ūε).

By the Cauchy-Schwarz inequality we arrive at

ν‖ū − ūε‖2
L2(Ω) + ‖ȳ − ȳε‖2

L2(Ω) ≤ ‖νū + p̄‖L2(Ω)‖uδ − ūε‖L2(Ω). (8)
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Moreover, we have

‖uδ − ūε‖L2(Ω) = ‖(1 − δ)ūε + δû − ūε‖L2(Ω) = ‖δ(û − ūε)‖L2(Ω) ≤ δb|Ω| 12 .

For δ = δε = εb
τ+εb

we obtain

‖uδ − ūε‖L2(Ω) ≤ |Ω| 12 εb2

τ + εb
≤ |Ω| 12 εb2

τ
. (9)

Combining this inequality with (8), we get

ν‖ū − ūε‖2
L2(Ω) + ‖ȳ − ȳε‖2

L2(Ω) ≤ εC

with C = b2

τ
|Ω| 12 · ‖νū + p̄‖L2(Ω).

Remark 3.4. It is possible to find an a priori bound ‖νū + p̄‖L2(Ω) ≤ C ′. We
will work out this point in the next section.

4. Stability of the solution with respect to perturbed data

In this section we slightly change our original problem: We investigate perturbed
data yσ

d and yσ
c instead of the original data yd and yc. We are interested in error

estimates separating the regularization error and the influence of the noice levels
σc and σd:

(Pσ
ε )
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

min J(y, u) :=
1

2
‖y − yσ

d‖2
L2(Ω) +

ν

2
‖u‖2

L2(Ω)

subject to (Ay)(x) = u(x) in Ω

y(x) = 0 on ∂Ω

0 ≤ u(x) ≤ b a.e. in Ω

yσ
c (x) − εu(x) ≤ y(x) a.e. in Ω′

‖yd − yσ
d‖L2(Ω) ≤ σd

‖yc − yσ
c ‖L∞(Ω′) ≤ σc.

Now, Assumption (A) would be not strong enough to ensure the existence of
a feasible control for (Pσ

ε ). This difficulty occurs even for ε = 0 because of
perturbations in the data. An additional property of the Slater type point
will overcome this problem. The new requirement is that the distance to the
constraint τ̃ is larger than the noice level σc in the constraint.

Assumption (B). There exists a control ũ(x) with 0 ≤ ũ(x) ≤ b, ỹ(x) ≥
yσ

c (x) + τ̃ a.e. in Ω′, and τ := τ̃ − σc > 0. Here ỹ denotes the solution of (1) for
the right-hand side ũ.
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Lemma 4.1. Let σc, σd, and ε are fixed nonnegative numbers. Assume that
(B) is valid. Then the problem (Pσ

ε ) admits a uniquely determined solution.

Proof. As mentioned above, the main difficulty is to show the existence of a
feasible point. However, Assumption (B) ensures that ũ(x) is feasible for (Pσ

ε ):

ỹ(x) ≥ yσ
c (x) + τ̃ ≥ yσ

c (x) ≥ yσ
c (x) − εũ(x).

Moreover, ũ(x) is also feasible for (P) because of

ỹ(x) ≥ yσ
c (x) + τ̃ ≥ yσ

c (x) + σc ≥ yc(x).

The remaining part of the proof can be done along the lines of the proof of
Lemma 2.2.

Next, we introduce the set of admissible controls U
ε,σ
ad via

U
ε,σ
ad :=

{

u ∈ L2(Ω)
∣

∣ 0 ≤ u(x) ≤ b a.e. in Ω, εu + (Su)(x) ≥ yc(x) a.e. in Ω′
}

.

Similar to Section 3, we will use the notation (ȳσ
ε , ūσ

ε , p̄σ
ε ) for the optimal

solution of (Pσ
ε ).

Lemma 4.2. For the optimality of (ȳσ
ε , ūσ

ε , p̄σ
ε ), a necessary and sufficient

condition is given by

(p̄σ
ε + νūσ

ε , u − ūσ
ε ) ≥ 0 for all u ∈ U

ε,σ
ad . (10)

This result can be obtained by standard arguments. Therefore, we drop the
proof.

Lemma 4.3. Assume that (B) holds. Then for every ε > 0, there exists a
constant δσ ∈ (0, 1) such that uσ

δ := (1 − δ)ū + δũ is feasible for (Pσ
ε ) for

δ ∈ [δσ, 1].

Proof. We check only the mixed control-state constraint. Let yσ
δ be the solution

of (1) for right-hand side uσ
δ . We start with

yσ
δ = (1 − δ)ȳ + δỹ

≥ (1 − δ)yc + δ(yσ
c + τ̃)

≥ (1 − δ)(yσ
c − σc) + δyσ

c + δτ̃

≥ yσ
c + δτ̃ − (1 − δ)σc .

Consequently, uσ
δ is feasible for (Pσ

ε ) for δ ∈ [δσ, 1] with δσ := σc

σc+τ̃
.

Lemma 4.4. Assume that (B) holds. Then for every ε > 0, there exists a
positive constant ρσ

ε such that uσ
ρ := (1− ρ)ūσ

ε + ρũ is feasible for (P) for every
ρ in [ρσ

ε , 1].
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Proof. Again, we check only the mixed control-state constraint. Let yσ
ρ be the

solution of (1) for right-hand side uσ
ρ . Using (B), we find

yσ
ρ = (1 − ρ)ȳσ

ε + ρỹ

≥ (1 − ρ)(yσ
c − εūσ

ε ) + ρ(yσ
c + τ̃)

≥ yσ
c − (1 − ρ)εūσ

ε + ρτ̃

≥ yc − σc − (1 − ρ)εb + ρτ̃

≥ yc − (1 − ρ)(εb + σc) + ρτ.

Consequently, uσ
ρ is feasible for (P) for ρ ∈ [ρσ

ε , 1] with ρσ
ε := εb+σc

εb+σc+τ
.

Theorem 4.5. Assume that Assumption (B) is satisfied. Then, there exist
positive constants C1 and C2 independent of σd and ε with

ν‖ū − ūσ
ε‖2

L2(Ω) +
1

2
‖ȳ − ȳσ

ε ‖2
L2(Ω) ≤ C1ε + C2σc +

1

2
σ2

d.

Proof. We start with the optimality condition (10). Due to Lemma 4.3, we can
test this inequality with uσ

δ for δ ∈ [δσ, 1],

(p̄σ
ε + νūσ

ε , u
σ
δ − ūσ

ε ) ≥ 0. (11)

According to Lemma 4.4, we can test the optimality condition (3) with uσ
ρ for

ρ ∈ [ρσ
ε , 1],

(p̄ + νū, uσ
ρ − ū) ≥ 0. (12)

Adding (11) and (12), we find

(p̄σ
ε + νūσ

ε , u
σ
δ − ūσ

ε ) + (p̄ + νū, uσ
ρ − ū) ≥ 0.

Next we rewrite this inequality as

(p̄σ
ε + νūσ

ε , u
σ
δ − ū)+ (p̄σ

ε + νūσ
ε , ū− ūσ

ε )+ (p̄+ νū, uσ
ρ − ūσ

ε )+ (p̄+ νū, ūσ
ε − ū) ≥ 0.

Combining the second and the last term, the inequality can be written in the
form

(p̄σ
ε +νūσ

ε , u
σ
δ −ū)+(p̄+νū, uσ

ρ−ūσ
ε )+ν(ū−ūσ

ε , ū
σ
ε −ū)+(p̄−p̄σ

ε , ū
σ
ε −ū) ≥ 0. (13)

We start with the estimation of last term in (13). Since (1) holds true, we
have

(p̄ − p̄σ
ε , ū

σ
ε − ū) = a(ȳσ

ε − ȳ, p̄ − p̄σ
ε ) . (14)

On the other hand, the adjoint equation (2) implies

a(ȳσ
ε − ȳ, p̄ − p̄σ

ε ) = (ȳ − ȳσ
ε , ȳσ

ε − ȳ) + (yσ
d − yd, ȳ

σ
ε − ȳ). (15)
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From (14) and (15), we conclude

(p̄ − p̄σ
ε , u

σ
ε − ū) = −‖ȳσ

ε − ȳ‖2
L2(Ω) + (yd − yσ

d , ȳ − ȳσ
ε ). (16)

Consequently, we can write (13) in the form

ν‖ū−ūσ
ε‖2

L2(Ω) + ‖ȳ − ȳσ
ε ‖2

L2(Ω)

≤ (νū + p̄, uσ
ρ − ūσ

ε ) + (p̄σ
ε + νūσ

ε , u
σ
δ − ū) + (yd − yσ

d , ȳ − ȳσ
ε ).

(17)

Next, we estimate the three inner products using the special choice ρ = ρσ
ε .

We start with

(νū + p̄, uσ
ρ − ūσ

ε ) ≤ ‖νū + p̄‖L2(Ω)‖uσ
ρ − ūσ

ε‖L2(Ω)

= ρ‖νū + p̄‖L2(Ω)‖ũ − ūσ
ε‖L2(Ω)

≤ εb + σc

εb + σc + τ
b|Ω| 12‖νū + p̄‖L2(Ω)

≤ εb + σc

τ
b|Ω| 12‖νū + p̄‖L2(Ω).

(18)

Estimating the second term, we find

(p̄σ
ε + νūσ

ε , u
σ
δ − ū) ≤ ‖p̄σ

ε + νūσ
ε‖L2(Ω)‖uσ

δ − ū‖L2(Ω)

≤ δ‖p̄σ
ε + νūσ

ε‖L2(Ω)‖ũ − ū‖L2(Ω)

≤ σc

σc + τ̃
b|Ω| 12‖p̄σ

ε + νūσ
ε‖L2(Ω)

≤ σc

τ̃
b|Ω| 12‖p̄σ

ε + νūσ
ε‖L2(Ω)

(19)

for the setting δ = δσ. The remaining third term will be estimated by Young’s
inequality

(yd − yσ
d , ȳ − ȳσ

ε ) ≤ 1

2
σ2

d +
1

2
‖ȳ − ȳσ

ε ‖2
L2(Ω) . (20)

Inserting (18),(19), and (20) in (17), we end up with

ν‖ū − ūσ
ε‖2

L2(Ω) +
1

2
‖ȳσ

ε − ȳ‖2
L2(Ω) ≤ C1ε + C2σc +

1

2
σ2

d

with C1 = b2

τ
|Ω| 12 · ‖νū+p̄‖L2(Ω), C2 = b

τ
|Ω| 12 · ‖νū+p̄‖L2(Ω)+

b
τ̃
|Ω| 12 · ‖p̄σ

ε +νūσ
ε‖L2(Ω).

This completes the proof.

Remark 4.6. Note that the constants C1 and C2 depend on σc via τ . However,
if we fix a certain σ̃c := σc and a corresponding τ , then the statement of Theorem
4.5 becomes independent of σc for σc ∈ [0, σ̃c].
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Corollary 4.7. Assume that (B) is satisfied. Then there exists a uniform bound
K such that

‖νū + p̄‖ ≤ K

‖νuσ
ε + pσ

ε‖ ≤ K.

Proof. Since ũ is feasible for (P) and (Pσ
ε ), we know

J(ȳ, ū) ≤ J(ỹ, ũ) =: J

J(yσ
ε , uσ

ε ) ≤ J(ỹ, ũ) = J.

The first inequality means 1
2
‖ȳ − yd‖2

L2(Ω) + ν
2
‖ū‖2

L2(Ω) ≤ J and implies

‖ȳ − yd‖L2(Ω) ≤
√

2J (21)

‖ū‖L2(Ω) ≤
√

2J

ν
. (22)

Using (21), we obtain ‖p̄‖L2(Ω) ≤ C̄‖ȳ − yd‖L2(Ω) ≤ C̄
√

2J. Finally we arrive at

‖νū + p̄‖ ≤ ν‖ū‖ + ‖p̄‖ ≤
√

2νJ + C̄
√

2J.

Proceeding as above for ‖νuσ
ε + pσ

ε‖L2(Ω) we receive the inequality

‖νuσ
ε + pσ

ε‖L2(Ω) ≤
√

2νJ + C̄
√

2J.

Hense, we can choose K :=
√

2νJ + C̄
√

2J .

5. Feasible regularized solutions

Until now, the solutions of the introduced regularized problems are in general
not feasible for (P). In this section, we will discuss two ways to construct feasible
solutions. The first way is motivated by the proving technique of the last
sections. Here, we constructed feasible solutions for (P) based on the solutions
of the regularized problems. We start with the solution of the problem (Pε).

Lemma 5.1. The following estimate for the regularization is valid:

ν‖ū − uδ‖2
L2(Ω) + ‖ȳ − yδ‖2

L2(Ω) ≤ cε

provided that the parameter δ is chosen as δ = δε = εb2

τ+εb
. Here, uδ is the function

introduced in Lemma 3.1.
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Proof. The desired property is obtained by Theorem 3.3 and the triangle in-
equality. Moreover, we conclude from (9)

‖uδ − ūε‖L2(Ω) ≤ |Ω| 12 εb2

τ + εb
≤ cε.

A similar estimate is valid for the state.

Next, we present a similar result for (Pσ
ε )

Lemma 5.2. The following estimate for the regularization is valid:

ν‖ū − uσ
ρ‖2

L2(Ω) + ‖ȳ − yσ
ρ‖2

L2(Ω) ≤ c1ε + c2σc +
1

2
σ2

d

provided that the parameters ρ is chosen as ρ = ρσ
ε = εb+σc

εb+σc+τ
. Here, uδ is the

function introduced in Lemma 3.1.

This lemma can be shown with similar arguments like for Lemma 5.1. Let
us remark that an alternative error estimation technique is available for the
regularized Problem (Pε):

Corollary 5.3. Since (yδ, uδ) is feasible for (P) and (ȳ, ū) is feasible for (Pε)
for every ε > 0 the following inequality is satisfied:

J(ȳε, ūε) ≤ J(ȳ, ū) ≤ J(yδ, uδ).

This relation can also be used to obtain the results of Theorem 3.3 and
Lemma 5.1.

Let us discuss a second approach to construct feasible regularized solutions
for (P). We replace (Pε) by (P′

ε):

(P′
ε)



































min J(y, u) :=
1

2
‖y − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω)

subject to (Ay)(x) = u(x) in Ω

y(x) = 0 on ∂Ω

0 ≤ u(x) ≤ b a.e. in Ω

yc(x) + εu(x) ≤ y(x) a.e. in Ω′ ,

where only the sign in the mixed constrained has changed.

Now the situation with respect to the feasibility changes: Feasible controls
for (P′

ε) are automatically feasible for (P). A drawback of this approach is that
the existence of a feasible point for (P′

ε) can only be guaranteed for sufficiently
small ε. More precisely, if Assumption (A) is satisfied, then the existence of a
feasible control can be shown for ε ≤ τ

‖û‖L∞(Ω)
.



Error Estimates 207

Theorem 5.4. Assume that (A) is satisfied. Then the estimate

ν‖ū − ūε‖2
L2(Ω) + ‖ȳ − ȳε‖2

L2(Ω) ≤ εC

is valid with a positive constant C independent of ε for ε ≤ τ
‖û‖L∞(Ω)

.

The result can be obtained along the lines of Theorem 3.3. We have to
change the problem once more if we want to deal with noisy data:

(Pσ′

ε )























































min J(y, u) :=
1

2
‖y − yσ

d‖2
L2(Ω) +

ν

2
‖u‖2

L2(Ω)

subject to (Ay)(x) = u(x) in Ω

y(x) = 0 on ∂Ω

0 ≤ u(x) ≤ b a.e. in Ω

yσ
c (x) + εu(x) + σc ≤ y(x) a.e. in Ω′

‖yd − yσ
d‖L2(Ω) ≤ σd

‖yc − yσ
c ‖L∞(Ω′) ≤ σc.

The additional addend σc ensures the feasibility of the solution of (Pσ′

ε ) for (P).
The existence of feasible solution for (Pσ′

ε ) can be ensured if Assumption (B)
is satisfied and if ε is sufficiently small, i.e., ε ≤ τ

‖ũ‖L∞(Ω)
with the quantity τ

defined in Assumption (B).

Theorem 5.5. Assume that (B) is satisfied. Then the estimate

ν‖ū − ūσ′

ε ‖2
L2(Ω) + ‖ȳ − ȳσ

ε
′‖2

L2(Ω) ≤ c1ε + c2σc +
1

2
σ2

d

is valid for ε ≤ τ
‖ũ‖L∞(Ω)

.

This result can be obtained along the lines of the proof of Theorem 4.5.

6. Numerical tests

We slightly modify the problem for the numerical tests:

J(y, u) =
1

2
‖y − yd‖2

L2(Ω) +
ν

2
‖u − ud‖2

L2(Ω)

and
(−∆y)(x) = u(x) + f(x) in Ω,

y(x) = 0 on ∂Ω,

that means we introduce functions f and ud. This allows us to construct an
example where the exact solution is known for the unregularized problem.
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For this purpose we need a different formulation of the optimality system.
This formulation was introduced by Casas [2] and contains a Borel measure µ

as additional source term of an adjoint partial differential equation:

−∆p̂ = ȳ − ȳd − µ in Ω

p̂ = 0 on ∂Ω .

The optimality condition reads now

ū(x) = Π[a,b]

(

−1

ν
p̂(x) + ud

)

,

where the pointwise projection Π[a,b] is defined by

Π[a,b]f(x) := max
(

a, min(b, f(x))
)

.

Moreover the following condition for the multiplier have to be fullfilled

∫

Ω′

(y − yc) dµ = 0, µ ≥ 0.

The following example is constructed in such a way that these necessary and
sufficient optimality conditions are satisfied. Next, we present a complete list of
functions appearing in our example. It is easy to show that these data satisfy
the optimality system.

The optimal state is given by

ȳ(x) = sin πx1 sin πx2.

The example depends on a parameter c ∈ (0, 1). In our tests we always set
c = 0.6. The function yc is given by

yc(x) =

{

ȳ(x) if ȳ(x) ≥ c

2ȳ(x) − c if ȳ(x) < c.

The desired state yd is a discontinuous function

yd(x) =

{

ȳ(x) − 1 if ȳ(x) ≥ c

(4νπ4 + 1)ȳ(x) if ȳ(x) < c.

The adjoint state p̂ is a function with a kink:

p̂(x) =

{ −2π2νc if ȳ(x) ≥ c

−2π2νȳ(x) if ȳ(x) < c.
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Consequently, the Lagrange multiplier contains a line measure concentrated on
the curve ȳ(x) = c. The function part of the Lagrange multiplier is given by

µ(x) =

{

1 if ȳ(x) ≥ c

0 if ȳ(x) < c.

For convenience, we define a function v by

v(x) = 2π2 sin πx1 sin πx2 − κ

with a positive κ (in the computations we used κ = 5). Next we set

f(x) =











v + κ if v(x) ≤ 0

κ if v(x) ∈ (0, b)

v + κ − b if v(x) ≥ b

and

ū(x) =











0 if v(x) ≤ 0

v if v(x) ∈ (0, b)

b if v(x) ≥ b.

Moreover, we have the function

ud(x) =

{ −2π2c + v(x) if ȳ(x) ≥ c

−κ if ȳ(x) < c.

The constant b = 100 is chosen in a way that the upper bound is not active.
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Figure 1: Optimal numerical solution for ε = 0.005
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We used a uniform finite element mesh with triangles. Moreover, we dis-
cretized the control, state and adjoint state by piecewise linear functions. The
mesh size was h = 0.04. Furthermore, we used ν = 0.1. The regularization pa-
rameter ε varies in an interval where the regularization error is larger than the
discretization error. Figure 1 shows the computed optimal control and the op-
timal state for ε = 0.005. The computed error behavior is presented in Figure 2
and Table 1.
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0.5

1

1.5

2

2.5

ε

||u
hε  −

u op
t|| L2 (Ω

)

0 0.005 0.01 0.015 0.02
0

0.01
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0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

ε

||y
hε  −

y op
t|| L2 (Ω

)

Figure 2: Error behaviour with respect to ε

ε ‖ū − uε
h‖

‖ū − uε
h‖√

ε
‖ȳ − yε

h‖
‖ȳ − yε

h‖√
ε

21 · 10−2 2.2180e + 0 15.684 9.7706e − 2 0.69089

20 · 10−2 1.5018e + 0 15.018 5.8289e − 2 0.58289

2−1 · 10−2 9.9099e − 1 14.015 3.1875e − 2 0.45079

2−2 · 10−2 6.5758e − 1 13.152 1.6745e − 2 0.33490

2−3 · 10−2 4.5411e − 1 12.844 9.1220e − 3 0.25801

2−4 · 10−2 3.5025e − 1 14.010 5.9091e − 3 0.23636

2−5 · 10−2 3.1421e − 1 17.774 4.8770e − 3 0.27588

Table 1: ε-dependency (‖ · ‖ means ‖ · ‖L2(Ω))
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Next, we perturb the function yc. We add some random pertubations to yc

such that ‖yσ
c − yc‖L∞(Ω) ≤ σc is valid. We set the regularization parameter

ε = 2−8 · 10−2 in order to decrease the regularization error generated by ε.
Figure 3 and Table 2 illustrate the expected behavior of the numerical solutions
with respect to σc.
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Figure 3: Error behavior with respect to σc

σc ‖ū − u
ε,σc

h ‖ ‖ū − u
ε,σc

h ‖√
σc

‖ȳ − y
ε,σc

h ‖ ‖ȳ − y
ε,σc

h ‖√
σc

23 · 10−2 1.0011e + 0 3.5394 3.6082e − 2 0.1276

22 · 10−2 7.8281e − 1 3.9140 1.7899e − 2 0.0895

21 · 10−2 6.0590e − 1 4.2844 9.5663e − 3 0.0676

20 · 10−2 5.1377e − 1 5.1377 6.0098e − 3 0.0601

2−1 · 10−2 4.1156e − 1 5.8204 4.8575e − 3 0.0687

2−2 · 10−2 3.5701e − 1 7.1401 4.6160e − 3 0.0923

Table 2: σc-dependency (‖ · ‖ means ‖ · ‖L2(Ω))

Let us summarize our numerical experiences. The computational results
show the theoretical expected behavior. This concerns the dependence on ε as
well as the dependence on σc. The tests deliver numerical results in a range
where the discretization error is small with respect to the investigated influences.
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