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Implicit Difference Methods for

Quasilinear Differential Functional Equations

on the Haar Pyramid
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Abstract.We present a new class of numerical methods for quasilinear first order par-
tial functional differential equations. The numerical methods are difference schemes
which are implicit with respect to the time variable. The existence of approximate
solutions is proved by using a theorem on difference inequalities. The proof of the sta-
bility is based on a comparison technique with nonlinear estimates of the Perron type
for given operators. Numerical experiments are presented. Results obtained in this
paper can be applied to differential integral problems and to equations with deviated
variables.
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1. Introduction

For any metric spaces X and Y we denote by C(X,Y ) the class of all continuous
functions fromX to Y . We will use vectorial inequalities with the understanding
that the same inequalities hold between their corresponding components.

Let E be the Haar pyramid

E = {(t, x) = (t, x1, . . . , xn) ∈ R
1+n : t ∈ [0, a], x ∈ [−b+Mt, b−Mt]},

where a > 0, b = (b1, . . . , bn), M = (M1, . . . ,Mn) ∈ R
n
+, R+ = [0,+∞), and

b > Ma. Write

E0 = [−d0, 0]× [−d, d], Et = (E0 ∪ E) ∩ ([−d0, t]× R
n), 0 < t ¬ a,
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where d0 ∈ R+. Put Ω = E × C(E0 ∪ E,R) and suppose that f : Ω→ R
n, f =

(f1, . . . , fn), g : Ω → R, ϕ : E0 → R are given functions. We consider the
differential functional equation

∂tz(t, x) =
n∑

i=1

fi(t, x, z)∂xiz(t, x) + g(t, x, z), (1)

with the initial condition

z(t, x) = ϕ(t, x) for (t, x) ∈ E0. (2)

A function v : E0 ∪ E → R is a classical solution of above problem if

(i) v ∈ C(E0 ∪ E,R) and v is of class C
1 on E;

(ii) v satisfies (1) on E and initial condition (2) holds.

The function f : Ω → R
n is said to satisfy the Volterra condition if for each

(t, x) ∈ E and for z, z̄ ∈ C(E0 ∪E,R) such that z(τ, y) = z̄(τ, y) for (τ, y) ∈ Et
we have f(t, x, z) = f(t, x, z̄). Note that the Volterra condition for f means that
the value of f at the point (t, x, z) of the space Ω depends on (t, x) and on the
restriction of z to the set Et. In the same way we define the Volterra condition
for the function g. In the present paper we assume that f and g satisfy the
Volterra condition and we consider classical solutions of (1), (2).

The Haar pyramid is a natural set for the existence and uniqueness of initial
problems for differential and functional differential equations (see [8,12,15,16]).
We are interested in the construction of a method for the approximation of
solutions to problem (1), (2) with solutions of difference functional equations
and in an estimation of the difference between these solutions.

In recent years, a number of papers concerning difference methods for func-
tional differential equations have been published. It is easy to construct an
explicit difference method for a nonlinear differential equation which satisfies
the consistency conditions on all sufficiently regular solutions of a considered
problem. The main task in these investigations is to find a finite difference equa-
tion which is stable. The method of difference inequalities or simple theorems on
recurrent inequalities are used in the investigation of the stability of difference
functional problems.

Convergence results are also based on a general theorem on an error estimate
of approximate solutions to functional difference equations of the Volterra type
with initial or initial boundary conditions and with an unknown function of
several variables.

The problems mentioned above have an extensive bibliography. It is not our
aim to show a full review of papers concerning numerical methods for partial
functional differential equations. We shall mention only those which contain
such review; they are [2,3,6,7,13,14] and the monograph [8]. The papers [9–11]
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initiated the investigations of implicit difference methods for first order partial
differential equations.

The numerical method of lines for nonlinear functional differential equa-
tions was considered in [1]. By using a discretization in spatial variables, the
nonlinear equations are replaced by sequences of initial problems for ordinary
functional differential equations. The question of under what conditions the
solutions of ordinary equations tend to solutions of original problems is inves-
tigated. The proofs of the convergence of the numerical methods of lines are
based on differential inequalities technique.

In the paper we present another approach to the difference methods for
problem (1), (2). We prove that there is a class of implicit difference methods for
(1), (2) which are convergent. The stability of difference schemes is investigated
by using a comparison method with nonlinear estimates of the Perron type for
given functions.

The paper is organized as follows. In Section 2 we propose an implicit dif-
ference method of the Euler type for problem (1), (2). This leads to an implicit
difference functional problem. The existence and uniqueness of solutions of such
problems are considered in Section 3. The method of difference inequalities is
used. The next section deals with a theorem on the error estimate for approxi-
mate solutions of implicit difference functional equations. A convergence result
and an error estimate are presented in Section 4. In the next section we discuss
the problem of the existence of solutions of implicit difference schemes on rect-
angular domain. More precisely, we show that there is a class of initial problems
(1), (2) for which approximate solutions can be calculated easily. Numerical ex-
amples are given in the last part of the paper.

Note that differential equations with deviated variables and differential in-
tegral equations can be obtained from (1) by specializing the operators f and g.
Existence result for problem (1), (2) are given in [8, Chapter 2].

2. Discretization of quasilinear equations

We will denote by F (X,Y ) the class of all functions defined on X and taking
values in Y where X and Y are arbitrary sets. For x, y ∈ R

n, x = (x1, . . . , xn),
y = (y1, . . . , yn) we write ‖x‖ =

∑n
i=1 |xi| and x ⋄ y = (x1y1, . . . , xnyn). For a

function z ∈ C(E0 ∪ E,R) and for a point t ∈ [0, a] we put

‖z‖t = max {|z(τ, x)| : (τ, x) ∈ Et}.

We define a mesh on the set E0 ∪ E in the following way. Let (h0, h
′),

h′ = (h1, . . . , hn), stand for steps of the mesh. Let us denote by H the set of all
h = (h0, h

′) such that there are K0 ∈ N and K = (K1, . . . , Kn) ∈ N
n with the
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properties K0h0 = d0 and K ⋄ h
′ = b. For h ∈ H and for (r,m) ∈ Z

1+n, where
m = (m1, . . . ,mn), we define nodal points as follows:

t(r) = rh0, x
(m) = m ⋄ h′, x(m) = (x

(m1)
1 , . . . , x

(mn)
n ).

Let N0 ∈ N be defined by the relations N0h0 ¬ a < (N0 + 1)h0. Write

R1+nh = {(t(r), x(m)) : (r,m) ∈ Z
1+n}

and
Eh = E ∩R

1+n
h , Eh.0 = E0 ∩R

1+n
h ,

Eh.r = (Eh.0 ∪ Eh) ∩ ([−d0, t
(r)]× R

n), 0 ¬ r ¬ N0.

Moreover we put

E ′h = {(t
(r), x(m)) ∈ Eh : (t

(r+1), x(m)) ∈ Eh},

Ih = {t
(r) : 0 ¬ r ¬ N0}, I

′

h = Ih \ {t
(N0)}.

For a function z : Eh.0 ∪ Eh → R we write z(r,m) = z(t(r), x(m)) and

‖z‖h.i = max {|z
(r,m)| : (t(r), x(m)) ∈ Eh.i},

where 0 ¬ i ¬ N0. Let ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ R
n, 1 ¬ i ¬ n, where 1 is

the i-th coordinate.

Classical difference methods for (1), (2) consist in replacing partial deriva-
tives ∂t and (∂x1 , . . . , ∂xn) = ∂x with difference operators δ0 and (δ1, . . . , δn) = δ,
respectively. Moreover, because equation (1) contains the functional variable we
need an interpolating operator Th : F (Eh.0∪Eh,R)→ C(E0∪E,R). This leads
to the difference equation

δ0z
(r,m) =

n∑

i=1

fi(t
(r), x(m), Th[z])δiz

(r,m) + g(t(r), x(m), Th[z]) (3)

with the initial condition

z(r,m) = ϕ
(r,m)
h on Eh.0 , (4)

where ϕh : Eh.0 → R is a given function. The following examples of equations (3)
are considered in the literature. Write

δ0z
(r,m) =

1

h0

[
z(r+1,m) − z(r,m)

]
(5)

and

δjz
(r,m) =

1

hj

[
z(r,m+ej) − z(r,m)

]
for 1 ¬ j ¬ κ

δjz
(r,m) =

1

hj

[
z(r,m) − z(r,m−ej)

]
for κ+ 1 ¬ j ¬ n
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where 0 ¬ κ ¬ n is fixed. The numerical method (3), (4) with the above given
δ0 and δ is known as the Euler method. The Lax difference scheme is the second
important example. It is obtained by putting

δ0z
(r,m) =

1

h0

[
z(r+1,m) −

1

2n

n∑

i=1

(
z(r,m+ei) + z(r,m−ei)

)]

δjz
(r,m) =

1

2hj

[
z(r,m+ej) − z(r,m−ej)

]
, 1 ¬ j ¬ n.

The stability of difference equations generated by first order partial func-
tional differential equations is strictly connected with the so-called Courant-
Friedrichs-Levy (CFL) conditions, see [4]. The (CFL) condition for equation (1)
and for the Euler difference method has the form

1− h0
n∑

j=1

1

hj
|fj(t, x, z)| ­ 0 on Ωh. (6)

The (CFL) condition for the Lax scheme has the form

1− n
h0

hj
|fj(t, x, z)| ­ 0, 1 ¬ j ¬ n, on Ωh. (7)

Regularity assumptions in stability theorems for f and g with respect to
the functional variable are the same for the both above difference methods. It
is assumed that f and g satisfy the Lipschitz condition with respect to the
functional variable. Nonlinear estimates of the Perron type for f and g with
respect to the functional variable can be also adopted.

Suppose that the functions f and g are bounded on Ω. The (CFL) con-
ditions (6) and (7) state that there are requirements for the steps h0 and
h′ = (h1, . . . , hn) in convergence theorems for (3), (4).

In the paper we present a new approach to the numerical solving of (1), (2).
We prove that under natural assumptions on given functions and on the mesh
there is a class of implicit difference schemes for (1), (2) which is convergent.
The aim of the paper is to show that there are difference methods for (1), (2)
for which the (CFL) conditions can be omitted.

We formulate the implicit difference method of the Euler type for (1), (2).
Put Ωh = E

′

h × F (Eh.0 ∪ Eh,R). Suppose that functions fh : Ωh → R
n, fh =

(fh.1, . . . , fh.n), gh : Ωh → R, ϕh : Eh.0 → R are given. We will approximate
classical solutions of problem (1), (2) by means of solutions of the implicit
difference problem

δ0z
(r,m) =

n∑

i=1

fh.i(t
(r), x(m), z)δiz

(r+1,m) + gh(t
(r), x(m), z) (8)

z(r,m) = ϕ
(r,m)
h on Eh.0. (9)
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It is important in our considerations that the operator δz = (δ1, . . . , δn) appears
in (8) at the point (t(r+1), x(m)). The function fh is said to satisfy the Volterra
condition if for each (t(r), x(m)) ∈ E ′h and for z, z̄ ∈ F (Eh.0 ∪ Eh,R) such that
z|Eh.r = z̄|Eh.r we have f(t

(r), x(m), z) = f(t(r), x(m), z̄). In the same way we
formulate the Volterra condition for gh.

The difference operators δ0, δ = (δ1, . . . , δn) are defined in the following
way:

δ0z
(r,m) =

1

h0

(
z(r+1,m) − z(r,m)

)
(10)

δiz
(r+1,m) =

1

hi

(
z(r+1,m+ei) − z(r+1,m)

)
if fh.i(t

(r), x(m), z(r,m)) ­ 0 (11)

δiz
(r+1,m) =

1

hi

(
z(r+1,m) − z(r+1,m−ei)

)
if fh.i(t

(r), x(m), z(r,m)) < 0. (12)

The corresponding explicit difference scheme has the form

δ0z
(r,m) =

n∑

i=1

fh.i(t
(r), x(m), z)δiz

(r,m) + gh(t
(r), x(m), z). (13)

If fh and gh satisfy the Volterra condition, then it is clear that there exists
exactly one solution of equation (13) with initial condition (9).

We prove that under natural assumptions on the functions fh and gh there
exists exactly one solution uh : Eh.0∪Eh → R of problem (8), (9) with difference
operators defined by (10)–(12). Let

∆(r) = {x(m) : x(m) ∈ [−b+Mt(r), b−Mt(r)]}, 0 ¬ r ¬ N0.

Write

E+h.i[ε] = {(t
(r), x(m)) ∈ E ′h : bi −Mit

(r) − ε ¬ x
(mi)
i ¬ bi −Mit

(r)}

E−h.i[ε] = {(t
(r), x(m)) ∈ E ′h : −bi +Mit

(r) ¬ x
(mi)
i ¬ −bi +Mit

(r) + ε},

where 1 ¬ i ¬ n and ε > 0 is such that ε < bi −Mia for 1 ¬ i ¬ n.

Assumption H[fh]. Suppose that the function fh : Ωh → R
n satisfies the

Volterra condition and

1) h′ ¬Mh0,

2) there exists ε > 0 such that

fh.i(t
(r), x(m), z) ¬ 0 for (t(r), x(m), z) ∈ E+h.i[ε]× F (Eh.0 ∪ Eh,R)

fh.i(t
(r), x(m), z) ­ 0 for (t(r), x(m), z) ∈ E−h.i[ε]× F (Eh.0 ∪ Eh,R).
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Remark 2.1. Comments on the condition 2) of Assumption H[fh] are given in
Section 4 for fh defined by

fh(t, x, z) = f(t, x, Th[z]), (t, x, z) ∈ Ωh ,

where Th : F (Eh.0 ∪ Eh,R)→ C(E0 ∪ E,R) is an interpolating operator.

We will need the following lemma on difference inequalities generated by prob-
lem (8), (9).

Lemma 2.2. Suppose that Assumption H[fh] is satisfied and h ∈ H, fh : Ωh →
R
n, zh : Eh.0 ∪ Eh → R.

(I) If zh satisfies the implicit difference inequality

z
(r+1,m)
h ¬ h0

n∑

i=1

fh.i(t
(r), x(m), zh)δiz

(r+1,m)
h on E ′h (14)

and z
(r,m)
h ¬ 0 on Eh.0, then z

(r+1,m) ¬ 0 on Eh.

(II) If zh satisfies the implicit difference inequality

z
(r+1,m)
h ­ h0

n∑

i=1

fh.i(t
(r), x(m), zh)δiz

(r+1,m)
h on E ′h (15)

and z
(r,m)
h ­ 0 on Eh.0, then z

(r+1,m) ­ 0 on Eh.

Proof. Consider the case (I). Suppose that 0 ¬ r ¬ K−1 is fixed and z
(j,m)
h ¬ 0

on Eh.r and there exists x
(m̃) ∈ ∆(r+1) such that

z
(r+1,m̃)
h = max {z

(r+1,m)
h : −b+Mt(r+1) ¬ x(m) ¬ b−Mt(r+1)}

and
z
(r+1,m̃)
h > 0. (16)

Write

J
(r,m)
+ [zh] = {i : 1 ¬ i ¬ n and fh.i(t

(r), x(m), zh) ­ 0} (17)

J
(r,m)
− [zh] = {1, . . . , n} \ J

(r,m)
+ [zh]. (18)

It follows from (14) that

z
(r+1,m̃)
h ¬ h0

∑

i∈J
(r,m̃)
+ [zh]

1

hi
fh.i(t

(r), x(m̃), zh)
[
z
(r+1,m̃+ei)
h − z

(r+1,m̃)
h

]

+ h0
∑

i∈J
(r,m̃)
−

[zh]

1

hi
fh.i(t

(r), x(m̃), zh)
[
z
(r+1,m̃)
h − z

(r+1,m̃−ei)
h

]
¬ 0.

We thus get z
(r+1,m̃)
h ¬ 0 which contradicts (16). Then assertion (14) follows by

induction with respect to r. In a similar way we prove that (15) holds in the
case (II). This completes the proof.
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Lemma 2.3. Suppose that Assumption H[fh] is satisfied and h ∈ H, fh : Ωh →
R
n, gh : Ωh → R. Then difference functional problem (8), (9) with δ0 and δ
defined by (10)–(12) has exactly one solution zh : Eh.0 ∪ Eh → R.

Proof. Suppose that 0 ¬ r ¬ N0 − 1 is fixed and zh is known on the set Eh.r.
Let (t(r), x(m)) ∈ E ′h and fh.i(t

(r), x(m), z(r,m)) ­ 0. Then

δiz
(r+1,m) =

1

hi

[
z(r+1,m+ei) − z(r+1,m)

]
.

It follows from Assumption H[fh] that x
(m) ∈ ∆(r+1) and the difference expres-

sion δiz
(r+1,m) is well defined. The same conclusion can be drawn in case when

fh.i(t
(r), x(m), z) < 0.

The homogeneous problem corresponding to (8), (9) has the form

z(r+1,m) = h0
n∑

i=1

fh.i(t
(r), x(m), z(r,m))δiz

(r+1,m) (19)

z(r+1,m) = 0 on Eh.0. (20)

It follows from Lemma 2.2 that the initial problem (19), (20) has exactly one

zero solution. Therefore the problem (8), (9) has exactly one solution z
(r+1,m)
h ,

x(m) ∈ ∆(r+1) with any choice of the function gh : Ωh → R. Consequently the
function zh is defined and it is unique on Eh.r+1. Since zh is given on Eh.0 the
proof is completed by induction.

3. Approximate solutions of functional difference
equations

We start with a theorem on the error estimate of approximate solutions for im-
plicit difference functional equations. Let us denote by Fh the Niemycki operator
corresponding to (8), i.e.,

Fh[z]
(r,m) =

n∑

i=1

fh.i(t
(r), x(m), z)δiz

(r+1,m) + gh(t
(r), x(m), z).

Then we consider the difference functional equation

δ0z
(r,m) = Fh[z]

(r,m) (21)

with initial boundary condition (9). Suppose that vh : Eh.0 ∪ Eh → R and
γ, α0 : H → R+ are such functions that

|δ0v
(r,m)
h − Fh[vh]

(r,m)| ¬ γ(h) on E ′h (22)

|ϕ
(r,m)
h − v

(r,m)
h | ¬ α0(h) on Eh.0 (23)

and
lim
h→0
γ(h) = 0, lim

h→0
α0(h) = 0. (24)
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The function vh satisfying the above relations can be considered as an approx-
imate solution of problem (9), (21).

Assumption H[σh]. The function σh : I
′

h × R+ → R+ satisfies the following
conditions:

1) σh(t, ·) is continuous and nondecreasing for each t ∈ I
′

h,

2) σh(t, 0) = 0 for t ∈ I
′

h, and for each c̄ ­ 1 the difference problem

η(r+1) = η(r) + h0c̄σh(t
(r), η(r)), 0 < r ¬ N0 − 1 (25)

η(0) = 0 (26)

is stable in the following sense: if γ, α0 : H → R+ are such functions that
limh→0 γ(h) = 0, limh→0 α0(h) = 0 and ηh : Ih → R+ is a solution of the
problem

η(r+1) = η(r) + h0c̄σh(t
(r), η(r)) + h0γ(h), 0 < r ¬ N0 − 1 (27)

η(0) = α0(h), (28)

then there exists a function β : H → R+ such that η
(r)
h ¬ β(h) for

0 ¬ r ¬ N0 and limh→0 β(h) = 0.

Assumption H[fh, gh]. Assumption H[fh] holds true and there is a function
σh : I

′

h × R+ → R+ satisfying Assumption H[σh] and such that

‖fh(t
(r), x(m), z)− fh(t

(r), x(m), z̄)‖ ¬ σh(t, ‖z − z̄‖h.r) (29)

|gh(t
(r), x(m), z)− gh(t

(r), x(m), z̄)| ¬ σh(t, ‖z − z̄‖h.r) (30)

on Eh.0 ∪ Eh.

Remark 3.1. It follows from (29), (30) that fh and gh satisfy the Volterra
condition.

Theorem 3.2. Suppose that Assumption H[fh, gh] and

1) h ∈ H, ϕh : Eh.0 → R is a given function and uh : Eh.0 ∪ Eh → R is the

solution of the problem (8), (9),

2) the functions vh : Eh.0 ∪ Eh → R, γ, α0 : H → R+ are such that the

conditions (22)–(24) are satisfied,

3) there is c0 ∈ R+ such that the estimates

|δiv
(r,m)
h | ¬ c0 on Eh, 1 ¬ i ¬ n, (31)

are satisfied. Then there exists a function α : H → R+ such that

|u
(r,m)
h − v

(r,m)
h | ¬ α(h) on Eh (32)

and limh→0 α(h) = 0.
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Proof. Let the function Γh : E
′

h → R be defined by the relation

δ0v
(r,m)
h = Fh[vh]

(r,m) + Γ
(r,m)
h . (33)

It follows from (22) that |Γ
(r,m)
h | ¬ γ(h) on E ′h. Let J

(r,m)
+ , J

(r,m)
− be the sets

defined by (17), (18) and

Λ
(r,m)
h = h0

∑

i∈J
(r,m)
+ [uh]

1

hi
fh.i(t

(r), x(m), uh)(uh − vh)
(r+1,m+ei)

− h0
∑

i∈J
(r,m)
−

[uh]

1

hi
fh.i(t

(r), x(m), uh)(uh − vh)
(r+1,m−ei).

Since uh satisfies the difference problem (8), (9) then we have

(uh − vh)
(r+1,m)

[
1 + h0

n∑

i=1

1

hi
|fh.i(t

(r), x(m), uh)|
]

= (uh − vh)
(r,m) + Λ

(r,m)
h

+ h0
n∑

i=1

1

hi

[
fh.i(t

(r), x(m), uh)− fh.i(t
(r), x(m), vh)

]
δiv
(r+1,m)
h

+ h0
[
gh(t

(r), x(m), uh)− gh(t
(r), x(m), vh)

]
− h0Γ

(r,m)
h .

(34)

Write ε
(r)
h = max {|(uh − vh)

(i,m)| : (t(i), x(m)) ∈ Eh.r} for 0 ¬ r ¬ N0. It follows
that

|Λ
(r,m)
h | ¬ h0ε

(r+1)
h

n∑

i=1

1

hi
|fh.i(t

(r), x(m), uh)|, (t
(r), x(m)) ∈ E ′h. (35)

We conclude from Assumption H[fh, gh] and from (31), (34), (35) that the
function εh satisfies the recurrent inequality

ε
(r+1)
h ¬ ε

(r)
h + h0(1 + c0)σh(t

(r), ε
(r)
h ) + h0γ(h), (36)

where 0 ¬ r ¬ N0 − 1 and ε
(0)
h ¬ α0(h). Consider the solution ηh : Ih → R+ of

the difference problem

η(r+1) = η(r) + h0(1 + c0)σh(t
(r), η(r)) + h0γ(h), 0 ¬ r ¬ N0 − 1

η(0) = α0(h).

It follows from the monotonicity of σh and (36) that ε
(r)
h ¬ η

(r)
h for 0 ¬ r ¬ N0.

Then we obtain the assertion of Theorem 3.2 from the stability of the problem
(25), (26).
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4. Difference schemes for quasilinear equations

We give examples of functions fh and gh corresponding to f and g and we
prove that the implicit difference methods are convergent. We adopt additional
assumptions for the mesh Eh.0 ∪ Eh. We assume that the steps of the mesh
satisfy the condition: h′ = Mh0. Then we can write the definitions of the sets
Eh.0 and Eh in the following way:

Eh.0 = {(t
(r), x(m)) : −K0 ¬ r ¬ 0, −K ¬ m ¬ K}

Eh = {(t
(r), x(m)) : 0 ¬ r ¬ N0, |mr| ¬ Kr − r for r = 1, . . . , n}.

Assumption H[Th]. There is an operator Th : F (Eh.0∪Eh,R)→ C(E0∪E,R)
such that

1) for w, w̃ ∈ F (Eh.0 ∪ Eh,R) we have

‖Th[w]− Th[w̃]‖t(r) ¬ ‖w − w̃‖h.r, 0 ¬ r ¬ N0, (37)

2) there is µ > 0 such that for each function v : Eh.0 ∪ Eh → R, which is of
class C2, there is c0 ∈ R+ with the property

‖v − Th[vh]‖t(r) ¬ c0h
µ
0 , 0 ¬ r ¬ N0, (38)

where vh is the restriction of v to the set Eh.0 ∪ Eh.

Remark 4.1. Condition (37) states that Th satisfies the Lipschitz condition
with the constant L = 1. It is clear that relation (37) implies the Volterra
condition for Th.
Assumption (38) means that the function v is approximated by Th[vh] and

the error of this approximation is estimated by c0h
µ
0 .

Remark 4.2. An example of the operator Th satisfying Assumption H[Th] is
given in [8], see also [6]. Let C̃ be such a constant that for a function v : E0∪E →
R we have

|∂ttv(t, x)| ¬ C̃, |∂txjv(t, x)| ¬ C̃, |∂xixjv(t, x)| ¬ C̃, i, j = 1 . . . , n,

on E0 ∪ E and C0 =
C̃
2
(1 + ‖M‖)2. The operator Th considered in [8] satisfies

condition (38) for µ = 2 and for the above C0.

Now we approximate solutions of the problem (1), (2) with solutions of the
difference functional equation

δ0z
(r,m) =

n∑

i=1

fi(t
(r), x(m), Th[z])δiz

(r+1,m) + g(t(r), x(m), Th[z]) (39)
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with initial condition (9), where δ0 is defined by (5) and

δjz
(r,m) =

1

hj

[
z(r,m+ej) − z(r,m)

]
if f(t(r), x(m), Th[z]) ­ 0 (40)

δjz
(r,m) =

1

hj

[
z(r,m) − z(r,m−ej)

]
if f(t(r), x(m), Th[z]) < 0 , (41)

where 1 ¬ j ¬ n. Write

E+i [ε] = {(t, x) ∈ E : bi −Mit− ε < xi ¬ bi −Mit}

E−i [ε] = {(t, x) ∈ E : −bi +Mit ¬ xi < −bi +Mit+ ε},

where 1 ¬ i ¬ n and ε > 0 satisfies the condition ε < bi −Mia for 1 ¬ i ¬ n.

Assumption H[f, g]. Suppose that

1) the functions f : Ω→ R
n and g : Ω→ R are continuous and they satisfy

the Volterra condition,

2) there is σ : [0, a]× R+ → R+ such that

(i) σ is continuous and it is nondecreasing with respect to both variables,

(ii) σ(t, 0) = 0 for t ∈ [0, a] and for each c ­ 1 the maximal solution of
the Cauchy problem

ω′(t) = cσ(t, ω(t)), ω(0) = 0,

is ω̃(t) = 0 for t ∈ [0, a],

3) the estimates

‖f(t, x, z)− f(t, x, z̄)‖ ¬ σ(t, ‖z − z̄‖t)

|g(t, x, z)− g(t, x, z̄)| ¬ σ(t, ‖z − z̄‖t)

are satisfied for (t, x, z), (t, x, z̄) ∈ Ω,

4) there is ε > 0 such that

fi(t, x, z) ¬ 0 for (t, x, z) ∈ E
+
i [ε]× C(E0 ∪ E,R)

fi(t, x, z) ­ 0 for (t, x, z) ∈ E
−

i [ε]× C(E0 ∪ E,R),

where 1 ¬ i ¬ n.

We give comments on the condition 4) of Assumption H[f, g].

Remark 4.3. Suppose that Assumption H[f, g] is satisfied and z ∈ C(E0 ∪
E,R). Let us consider the Cauchy problem

η′(τ) = −f(τ, η(τ), z), η(t) = x , (42)

where (t, x) ∈ E. The solution g[z](·, t, x) = (g1[z](·, t, x), . . . , gn[z](·, t, x)) of
(42) is the bicharacteristic of equation (1) corresponding to z. Condition 4) of
Assumption H[f, g] states that
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(i) for each (t, x) ∈ E+i [ε], 1 ¬ i ¬ n, there is ε0 > 0 such that the function
gi[z](·, t, x) : [t− ε0, t]→ R is increasing,

(ii) for each (t, x) ∈ E−i [ε], 1 ¬ i ¬ n, there is ε0 > 0 such that the function
gi[z](·, t, x) : [t− ε0, t]→ R is decreasing.

This property of bicharacteristics is important in the construction of implicit
difference schemes for (1), (2). The difference operator (δ1, . . . , δn) used in the
paper satisfies the conditions:

(i) if the function gi[z](·, t, x) is increasing on [t− ε0, t], then we put

δiz(t, x) =
1

τ

[
z(t, x)− z(t, x− τei)

]
,

where 1 ¬ i ¬ n and τ > 0,

(ii) if gi[z](·, t, x) is decreasing on [t− ε0, t], then we put

δiz(t, x) =
1

τ

[
z(t, x+ τei)− z(t, x)

]
,

where 1 ¬ i ¬ n and τ > 0.

Remark 4.4. Write

∂0E
+
i = {(t, x) ∈ E : xi = bi −Mit}

∂0E
−

i = {(t, x) ∈ E : xi = −bi +Mit},

where 1 ¬ i ¬ n. Suppose that there is ε̃ > 0 such that

fi(t, x, w) < −ε̃ for (t, x, w) ∈ ∂0E
+
i × C(E0 ∪ E,R)

fi(t, x, w) > ε̃ for (t, x, w) ∈ ∂0E
−

i × C(E0 ∪ E,R),

where 1 ¬ i ¬ n. Then condition 4) of Assumption H[f, g] is satisfied.

Remark 4.5. Suppose that the function f : Ω→ R satisfies the condition

x ⋄ f(t, x, w) ¬ θ(n) for (t, x, w) ∈ Ω, (43)

where θ(n) = (0, . . . , 0) ∈ R
n. Then condition 4) of Assumption H[f, g] is satis-

fied.

Now we formulate the main result of the paper.

Theorem 4.6. Suppose that Assumptions H[Th] and H[f, g] are satisfied and

1) h ∈ H, and there is a function α0 : H → R+ such that

|ϕ(r,m) − ϕ
(r,m)
h | ¬ α0(h) on Eh.0 and lim

h→0
α0(h) = 0, (44)
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2) h′ =Mh0 and the function uh : Eh.0∪Eh → R is a solution of the problem

(9), (39) with the operator δ defined by (40), (41),

3) the function v : E0 ∪E → R is a solution of (1), (2) and v is of class C2,
and vh is the restriction of function v to the set Eh.0 ∪ Eh.

Then there is ε > 0 and a function α : H → R+ such that for ‖h‖ < ε we have

|u
(r,m)
h − v

(r,m)
h | ¬ α(h) on Eh and lim

h→0
α(h) = 0. (45)

Proof. We prove that the functions fh(t, x, z) = f(t, x, Th[z]) and gh(t, x, z) =
g(t, x, Th[z]) satisfy all assumptions of the Theorem 3.1. First we show that the
problem (25), (26) is stable in the sense of Assumption H[σh]. Let the functions
α0, γ : H → R+ are such that limh→0 α0(h) = 0, limh→0 γ(h) = 0. Consider the
solution ηh : Ih.0 ∪ Ih → R+ of the following difference problem:

η(r+1) = η(r) + h0cσ(t
(r), η(r)) + h0γ(h), 0 ¬ r ¬ N0 − 1 (46)

η(0) = α0(h). (47)

Denote by ωh : [0, a]→ R+ the maximal solution of the problem

ω′(t) = cσ(t, ω(t)) + γ(h), ω(0) = α0(h).

There exists ε > 0 such that the solution ωh is defined on [0, a] for ‖h‖ < ε
and limh→0 ωh(t) = 0 uniformly on [0, a]. The function ωh is convex on [0, a],
therefore it satisfies the difference inequality

ω
(r+1,m)
h ­ ω

(r)
h + h0cσ(t

(r), ω
(r)
h ) + h0γ(h), 0 ¬ r ¬ N0 − 1.

Since ηh satisfies (46), (47), then we have η
(r)
h ¬ ω

(r)
h for 0 ¬ r ¬ N0. This

proves the stability of (25), (26). Moreover we have

‖fh(t, x, z)− fh(t, x, z̄)‖ = ‖f(t, x, Th[z])− f(t, x, Th[z̄])‖

¬ σ(t, ‖Th[z − z̄]‖t)

= σ(t, ‖z − z̄‖h.r)

and
|gh(t, x, z)− gh(t, x, z̄)| ¬ σ(t, ‖z − z̄‖h.r).

Let us denote by F̃h the Niemycki operator corresponding to (39), i.e.,

F̃h[z]
(r,m) =

n∑

i=1

fi(t
(r), x(m), Th[z])δiz

(r+1,m) + g(t(r), x(m), Th[z]).

Consider the function Γ̃h : E
′

h → R defined by the relation δ0v
(r,m)
h = F̃h[vh]

(r,m)+

Γ̃
(r,m)
h . We prove that there is γ̃ : H → R+ such that

|Γ̃
(r,m)
h | ¬ γ̃(h) on E ′h and lim

h→0
γ̃(h) = 0. (48)
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Write

Γ
(r,m)
h.0 = δ0v

(r,m)
h − ∂tv

(r,m) +
n∑

i=1

fi(t
(r), x(m), v)

[
∂xiv

(r,m) − δiv
(r,m)
h

]

Γ
(r,m)
h.1 =

n∑

i=1

[
fi(t
(r), x(m), v)− fi(t

(r), x(m), Th[vh])
]
δiv
(r+1,m)
h

+ g(t(r), x(m), v)− g(t(r), x(m), Th[vh]).

Then Γ̃
(r,m)
h = Γ

(r,m)
h.0 + Γ

(r,m)
h.1 on E

′

h. It follows easily that there is γ0 : H → R+

such that |Γ
(r,m)
h.0 | ¬ γ0(h) on E

′

h and limh→0 γ0(h) = 0. Suppose that c0 ∈ R+ is
defined by the relations |∂xiv(t, x)| ¬ c0, (t, x) ∈ E, 1 ¬ i ¬ n. It follows from
Assumptions H[f, g] and H[Th] that there is c̄ ∈ R+ such that

|Γ
(r,m)
h.1 | ¬ (1 + c0)σ(t

(r), ‖v − Th[vh]‖t(r)) ¬ (1 + c0)σ(a, c̄h
µ
0).

Then condition (48) is satisfied with γ̃(h) = γ0(h) + (1 + c0)σ(a, c̄h
µ
0). The

assertion of Theorem 4.6 then follows from Theorem 3.2.

Remark 4.7. Suppose that Assumption H[f, g] is satisfied with σ(t, ξ) = Lξ,
(t, ξ) ∈ [0, a]× R+, where L ∈ R+. Then we have assumed that f and g satisfy
the Lipschitz condition with respect to the functional variable. In this case we
have the estimates

|u
(r,m)
h − v

(r,m)
h | ¬




α0(h)e

cLa + γ(h) e
cLa
−1
cL

ifL > 0

α0(h) + γ(h)a ifL = 0.

The above estimates are obtained by solving problem (46), (47).

5. Solutions of implicit difference equations on
rectangular domains

Suppose that Assumption H[f, g] is satisfied with Ω = E×C(E0 ∪E,R) where
E = [0, a]×[−b, b]. Assume also that condition (43) is satisfied. Then the natural
domain of the existence of solutions to problem (1), (2) is the set E0 ∪ ([0, a]×
[−b, b]). We give a simple method for solving of the implicit difference problem
(9), (39) in this case.

Suppose that 0 ¬ r ¬ N0 is fixed and that solution uh of (9), (39) is defined

on the set Eh.r. We first compute z
(r+1,m)
h for θ(n) ¬ m ¬ K. According to

assumption (43) we have

fi(t
(r), x(m), Th[zh]) ¬ 0, 1 ¬ i ¬ n,
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where 0 ¬ r < N0 and θ(n) ¬ m ¬ K, and

fi(t
(r), x(m), Th[zh]) = 0, 1 ¬ i ¬ n,

for such m = (m1, . . . ,mn) that mi = 0. We conclude from (40), (41) that
equation (39) for θ(n) ¬ m ¬ K has the form

z
(r+1,m)
h

[
1− h0

n∑

i=1

1

hi
fi(t
(r), x(m), Th[zh])

]

= −h0
n∑

i=1

1

hi
fi(t
(r), x(m), Th[zh])z

(r+1,m−ei)
h + z

(r,m)
h + h0g(t

(r), x(m), Th[zh]).

(49)

We deduce from (49) that z
(r+1,m)
h may be computed for m = θ(n) and for

m = (m1, 0, . . . , 0) ∈ Z
n where 1 ¬ m1 ¬ K1. Our next goal is to determine

z
(r+1,m)
h for m = (m1,m2, 0, . . . , 0) ∈ Z

n where 0 ¬ m1 ¬ K1, 0 ¬ m2 ¬ K2. We

conclude from (49) that the numbers z
(r+1,m)
h for the above m exist and that

they are unique.

Suppose that the solution z
(r+1,m)
h is computed form=(m1, . . . ,mκ, 0, . . . , 0)

∈ Zn where 0 ¬ mi ¬ Ki and 1 ¬ κ ¬ n − 1 is fixed. Repeated application
of (49) enables us to calculate z

(r+1,m)
h for m = (m1, . . . ,mκ+1, 0, . . . , 0) ∈ Z

n

where 0 ¬ mi ¬ Ki and 1 ¬ i ¬ κ+1. It follows from the above considerations
that the solution z

(r+1,m)
h of (9), (39) may be calculated for θ(n) ¬ m ¬ K.

In a similar way the solution z
(r+1,m)
h may be computed on the set Eh.r+1 ∩

(X1 × X2 × . . . × Xn) where Xi = R+ or Xi = R−, R− = (−∞, 0]. Then our
problem is solved by induction with respect to r, 0 ¬ r ¬ N0.

Remark 5.1. It is easy to see that condition (43) may be replaced by the
following assumption: there exists x̃, −b < x̃ < b such that (x− x̃)⋄f(t, x, w) ¬
θ(n) for (t, x, w) ∈ Ω.

6. Numerical examples

We give now numerical examples concerning our theory for quasilinear differ-
ential equations. To find an approximate solutions we use implicit difference
method of the Euler type and explicit difference method with difference opera-
tors given by the Lax scheme.

Example 6.1. For n = 1 we put

E = {(t, x) : t ∈ [0, 0.5], x ∈ [−1, 1]}. (50)
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Consider the differential equation

∂tz(t, x) =− x
[
1 + cos (z(t, 0.5x)− etx)

]
∂xz(t, x)

+ sin (z(t,−0.5x)− e−tx) + 2x(1 + 2t)z(t, x)
(51)

with the initial condition

z(0, x) = 1, x ∈ [−1, 1]. (52)

Note that condition (43) is satisfied for equation (51). The exact solution of this
problem is known. It is v(t, x) = e2tx. Let h = (h0, h1), stand for steps of the
mesh on E.

Let us denote by uh : Eh → R the solution of the implicit difference problem
corresponding to (51), (52). Write

η
(r)
h =

1

2K + 1

K∑

m=−K

∣∣∣u(r,m)h − v(r,m)
∣∣∣, (53)

where K ∈ N is defined by the condition Kh1 = 1. The numbers η
(r)
h are the

arithmetical mean of the errors with fixed t(r). The values of the function ηh are
listed in Table 1.

h = (10−2, 10−3) h = (2 ·10−3, 2 ·10−4)

t = 0.1 0.001842 0.000371
t = 0.2 0.003532 0.000714
t = 0.3 0.005214 0.001055
t = 0.4 0.006989 0.001416
t = 0.5 0.008937 0.001813

Table 1: The error ηh.

The results shown in Table 1 are consistent with our mathematical analysis.
We consider also an approximate solution zh of (51), (52) which is obtained by
using the classical Lax scheme. The domain of zh is the set

Ẽh =
{
(t(r), x(m)) : 0 ¬ r ¬ N0, x

(m) ∈ [−1 + t(r), 1− t(r)]
}
, (54)

and N0h0 ¬ 0.5 < (N0 + 1)h0. Write

η̃h = max
{
|z
(r,m)
h − v(r,m)| : (t(r), x(m)) ∈ Ẽh

}
. (55)

In the considered cases the values of η̃h are bigger than 10
2.
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Example 6.2. Let E ⊂ R2 be defined by (50). Consider the differential integral
equation

∂tz(t, x) =− 2 sin x
[
1 + sin

(
3
∫ x

−x
z(t, s)ds− 2xz(t, x)

) ]
∂xz(t, x)

+
∫ t

0
z(τ, x) dτ + x2(1 + t) + 4x(et − 1) sin x

(56)

with the initial condition

z(0, x) = 0, x ∈ [−1, 1]. (57)

Note that equation (56) satisfies (43). The exact solution of this problem is
known. It is v(t, x) = (et − 1)x2. Put h = (h0, h1) stand for the steps of the
mesh on E.

Let us denote by uh : Eh → R the solution of the implicit difference problem
corresponding to (56), (57). Let ηh be defined by (53). The numbers η

(r)
h are the

arithmetical mean of the errors with fixed t(r). The values of the function ηh are
listed in Table 2.

h = (10−2, 10−3) h = (2 ·10−3, 2 ·10−4)

t = 0.1 0.001466 0.002330
t = 0.2 0.003891 0.002330
t = 0.3 0.007605 0.002330
t = 0.4 0.012503 0.010204
t = 0.5 0.018385 0.016133

Table 2: The error ηh.

The results given in Table 2 are consistent with our theoretical results. We
consider also an approximate solution zh of (56),(57) which is obtained by using
the classical Lax scheme. The domain of zh is the set Ẽh defined by (54). Let η̃h
be defined by (55). In the considered cases the values of η̃h are bigger than 10

2.

The above examples show that there are implicit difference schemes for
problem (1), (2) which are convergent and the corresponding classical difference
methods are not convergent. This is due to the fact that we need the (CFL)
conditions in the classical case and we do not need special assumptions on the
steps of the mesh in the case of implicit difference schemes.

Note that there is a natural class of differential equations (1) for which
the implicit difference problems can be easily solved. This class of equations is
described in Section 5.
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