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Approximate Approximations

with Data on a Perturbed Uniform Grid

F. Lanzara, V. Maz’ya and G. Schmidt

Abstract. The aim of this paper is to extend the approximate quasi-interpolation
on a uniform grid by dilated shifts of a smooth and rapidly decaying function to the
case that the data are given on a perturbed uniform grid. It is shown that high order
approximation of smooth functions up to some prescribed accuracy is possible.
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1. Introduction

The approximation of multivariate functions from scattered data is an important
theme in numerical mathematics. One of the methods to attack this problem
is quasi-interpolation. One takes values u(xj) of a function u on a set of nodes
{xj}j∈J and constructs an approximant of u by linear combinations

∑

j∈J

u(xj)ηj(x) ,

where ηj(x) is a set of basis functions. Using quasi-interpolation there is
no need to solve large algebraic systems. The approximation properties of
quasi-interpolants in the case that xj are the nodes of a uniform grid are well-
understood. For example, the quasi-interpolant

∑

j∈Zn

u(hj)ϕ

(
x − hj

h

)
(1.1)
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can be studied via the theory of principal shift-invariant spaces, which has
been developed in several articles by de Boor, DeVore and Ron (see e.g. [2,3]).
Here ϕ is supposed to be a compactly supported or rapidly decaying function.
Based on the Strang-Fix condition for ϕ, which is equivalent to polynomial
reproduction, convergence and approximation orders for several classes of basis
functions were obtained (see also Schaback and Wu [17], Jetter and Zhou [6]).
Scattered data quasi-interpolation by functions, which reproduce polynomials,
has been studied by Buhmann, Dyn and Levin in [1] and Dyn and Ron in [4]
(see also [19] for further references).

In order to extend the quasi-interpolation (1.1) to general classes of ap-
proximating functions, another concept of approximation procedures, called
Approximate Approximations, was proposed in [8] and [9]. These procedures
have the common feature, that they are accurate without being convergent in
a rigorous sense. Consider, for example, the quasi-interpolant on the uniform
grid

Mh,D u(x) = D−n
2

∑

j∈Zn

u(hj) η

(
x − hj

h
√
D

)
, (1.2)

where η is sufficiently smooth and of rapid decay, h and D are two positive
parameters. It was shown that if Fη−1 has a zero of order N at the origin (Fη
denotes the Fourier transform of η), then Mh,Du approximates u pointwise

|Mh,Du(x)−u(x)| ≤ cN,η

(
h
√
D
)N‖∇Nu‖L∞(Rn)+ε

N−1∑

k=0

(
h
√
D
)k|∇ku(x)| (1.3)

with a constant cN,η not depending on u, h, and D, and ε can be made arbitrarily
small if D is sufficiently large (see [12, 13]). Here ∇ku denotes the vector of all
partial derivatives ∂αu of order |α| = k.

In general, there is no convergence of the approximate quasi-interpolant

Mh,Du(x) to u(x) as h → 0. However, one can fix D such that up to any
prescribed accuracy Mh,Du approximates u with order O(hN). The lack of
convergence as h → 0, which is not perceptible in numerical computations for
appropriately chosen D, is compensated by a greater flexibility in the choice
of approximating functions η. In applications, this flexibility enables one to
obtain simple and accurate formulae for values of various integral and pseudo-
differential operators of mathematical physics (see [11, 14, 16] and the review
paper [18]) and to develop explicit semi-analytic time-marching algorithms for
initial boundary value problems for linear and non-linear evolution equations
( [7, 10]).

Up to now the approximate quasi-interpolation approach was extended to
nonuniform grids in two directions. The case that the set of nodes is a smooth
image of a uniform grid was studied in [15]. It was shown that formulae sim-
ilar to (1.2) preserve the basic properties of approximate quasi-interpolation.
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A similar result for quasi-interpolation on piecewise uniform grids was obtained
in [5].

It is the purpose of the present paper to generalize the method of approx-
imate quasi-interpolation to functions given on a set of nodes {xj} close to a
uniform, not necessarily rectangular, grid Λh of size h. More precisely, we sup-
pose that for some positive constant κ the κh-neighborhood of any grid point
yj of Λh contains at least one node xj.

Then under some additional assumption on the nodes we construct a quasi-
interpolant with centers at the grid point of Λh

Mh,Du(x) = D−n
2

∑

yj∈Λh

Fj,h(u)η

(
x − yj

h
√
D

)
, (1.4)

and show that the estimate (1.3) remains true for Mh,Du under the same as-
sumptions on the function η. Here Fj,h are linear functionals of the data at a
finite number of nodes around xj.

By a suitable choice of η it is possible to obtain explicit semi-analytic
or other efficient approximation formulae for multi-dimensional integral and
pseudo-differential operators which are based on the quasi-interpolant (1.4). So
the cubature of those integrals, which is one of the applications of the approxi-
mate quasi-interpolation on uniform grids, can be carried over to the case when
the integral operators are applied to functions given on a perturbed uniform
grid.

We give a simple example of formula (1.4). Let {xj} be a sequence of points
on R close to the uniform grid {hj}j∈Z such that xj+1 − xj ≥ c h > 0. Consider
a rapidly decaying function η satisfying the conditions

∣∣∣1 −
∑

j∈Z

η(x − j)
∣∣∣ < ε ,

∣∣∣
∑

j∈Z

(x − j)η(x − j)
∣∣∣ < ε.

One can easily see that the quasi-interpolant

Mhu(x) =
∑

j∈Z

(
xj+1 − h j

xj+1 − xj

u(xj) +
hj − xj

xj+1 − xj

u(xj+1)

)
η
(x

h
− j
)

satisfies the estimate

|Mhu(x) − u(x)| ≤ C h2 ‖u′′‖L∞(R) + ε(|u(x)| + h|u′(x)|) ,

where the constant C depends on the function η.

The outline of the paper is as follows. In Section 2 we consider some ex-
amples of uniform non-cubic grids and establish error estimates for approxi-
mate quasi-interpolation on these grids. As an interesting example we consider
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quasi-interpolants on a regular hexagonal grid. In Section 3 we consider an
extension of the approximate quasi-interpolation to a perturbed uniform grid.
We construct the quasi-interpolant Mh,Du with gridded centers and coefficients
depending on scattered data and obtain approximation estimates. The results
of some numerical experiments are presented in Section 4, which confirm the
predicted approximation orders.

2. Quasi-interpolants on uniform non-cubic grids

In this section we study quasi-interpolants on uniform grids of the form {hAj},
j ∈ Z

n, where A is a nonsingular matrix. As special examples we consider
two-dimensional tridiagonal and hexagonal grids.

2.1. Approximation results. Suppose that for some K > N + n and the
smallest integer n0 > n

2
the function η(x), x ∈ R

n, satisfies the conditions

(1 + |x|)K |∂βη(x)| ≤ Cβ , x ∈ R
n , (2.1)

for all 0 ≤ |β| ≤ n0, and

∂α(Fη − 1)(0) = 0 , 0 ≤ |α| < N. (2.2)

It was shown in [15] that the quasi-interpolant Mh,Du defined by (1.2) on the cu-
bic grid {hj}, j ∈ Z

n, approximates a sufficiently smooth function u ∈ WN
∞(Rn)

with

|Mh,Du(x) − u(x)| ≤ cN,η

(
h
√
D
)N‖∇Nu‖L∞(Rn)

+
N−1∑

k=0

(√Dh

2π

)k ∑

|α|=k

|∂αu(x)|
α!

∑

ν∈Zn\0

∣∣∂αFη
(√

Dν
)∣∣,

(2.3)

where the constant cN,η is independent of u, h, and D. Moreover, under the
above assumptions on η

∑

ν∈Zn\0

∣∣∂αFη
(√

Dν
)∣∣→ 0 as D → ∞ ,

hence for any ε > 0 there exist D such that the estimate (1.3) is satisfied.
Another consequence of the inequality (2.3) is the local approximation result
that for any ε > 0 there exist sufficiently large D and κ > 0 such that

|Mh,Du(x) − u(x)|

≤ cN,η

(
h
√
D
)N

sup
B(x,κh)

|∇Nu| + ε

(
‖u‖L∞(Rn) +

N−1∑

k=1

(
h
√
D
)k|∇ku(x)|

)
,

(2.4)

where B(x, κh) is the ball of radius κh with center in x.
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The quasi–interpolation formula (1.2) and corresponding approximation re-
sults can be easily generalized to the case when the values of u are given on a
lattice

Λh := {hAj , j ∈ Z
n}

with a real nonsingular n×n-matrix A. We define the quasi–interpolant

MΛh
u(x) :=

det A

D n
2

∑

j∈Zn

u(hAj) η

(
x − hAj√

Dh

)
. (2.5)

Using the notation uA = u(A · ) , ηA = det Aη(A · ), t = A−1x the sum (2.5)
transforms to

MΛh
u(x) = D−n

2

∑

j∈Zn

uA(hj)ηA

(
t − hj√

Dh

)
= Mh,DuA(t) ,

i.e. coincides with quasi-interpolation formula (1.2) with the transformed gen-
erating function ηA applied to the function uA. Since

∫

Rn

xαηA(x) dx = det A

∫

Rn

xαη(Ax) dx =

∫

Rn

(A−1x)αη(x) dx ,

the generating function ηA satisfies the decay and the moment conditions (2.1)
and (2.2) together with η. Denoting by (A∇)j for the j-th component of the
vector A∇ and using the notation (A∇)α = (A∇)α1

1 . . . (A∇)αn
n we have that

∂αuA(t) = (At∇)αu(At) , ∂αFηA(λ)) = ((At)−1∇)αFη((At)−1λ) ,

where At denotes the transpose to the matrix A. Then estimate (2.3) takes the
form

|MΛh
u(x) − u(x)| ≤ cA,η

(
h
√
D
)N‖∇Nu‖L∞(Rn)

+
N−1∑

k=0

(
h
√
D

2π

)k ∑

|α|=k

|(At∇)αu(x)|
α!

×
∑

ν∈Zn\0

∣∣((At)−1∇
)αFη

(√
D(At)−1ν

)∣∣ ,

(2.6)

where the constant cA,η is independent of u, h and D. We see that it is always
possible to choose D such that the quasi-interpolant MΛh

u satisfies an estimate
of the form (1.3) or (2.4) for any ε > 0.

Note that Poisson’s summation formula on the affine lattice Λ = {Aj}j∈Zn

has the form

det A

D n
2

∑

j∈Zn

η

(
x − Aj√

D

)
=
∑

ν∈Zn

Fη
(√

D(At)−1ν
)
e 2πi(x,(At)−1ν) . (2.7)
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2.2. Examples. In the following we consider some 2d-examples:

1. First we consider quasi-interpolants on a regular triangular grid.

Figure 1: Tridiagonal grid

It is easy to check, that the matrix

A =

(
1 1

2

0
√

3
2

)

maps the integer vectors j ∈ Z
2 onto the vertices y

△
j = Aj of a partition of

the plane into equilateral triangles of side length 1 indicated in Figure 1. From
(2.5) we see that a quasi-interpolant on the nodes {hy

△
j = hAj}j∈Z2 of a regular

tridiagonal partition of R
2 can be given as

M△

hu(x) :=

√
3

2D
∑

j∈Z2

u(hy
△
j ) η

(
x − hy

△
j√

Dh

)
.

In particular, the function system
√

3
2Dη
(x−y

△
j√

D
)

forms a approximate partition of
unity and∣∣∣∣∣1 −

√
3

2D
∑

j∈Z2

η

(
x − y

△
j√

D

)∣∣∣∣∣ ≤
∑

ν∈Z2\0

∣∣∣∣
∫

R2

η(y) e−2πi
√
D(A−1y,ν)dy

∣∣∣∣ .

From the relation

A−1 =

(
1 − 1√

3

0 2√
3

)

we obtain from (2.7) Poisson’s summation formula for Gaussians η(x) = 1
π

e−|x|2

on the triangular grid
√

3

2πD
∑

j∈Z2

e−
|x−y

△
j

|2

D

=
1

π

∑

ν∈Z2

e
2πi
(
x1ν1+x2

2ν2−ν1√
3

) ∫

R2

e−|y|2 e
−2πi

√
D
(
y1ν1+y2

2ν2−ν1√
3

)

dy

=
∑

ν∈Z2

e−4π2D ν2
1
−ν1ν2+ν2

2
3 e

2πi
(
x1ν1+x2

2ν2−ν1√
3

)

.

(2.8)
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Hence the factor of the main term of the saturation error in (2.6), which corre-
sponds to α = (0, 0), is bounded by

∣∣∣∣ 1 −
√

3

2πD
∑

j∈Z2

e−
|x−y

△
j

|2

D

∣∣∣∣ ≤
∑

(ν1,ν2) 6=(0,0)

e−4π2D ν2
1
−ν1ν2+ν2

2
3

= 6 e−
4π2D

3 + O(e−4π2D) .

Note that this difference is less than single and double precision of floating
point arithmetics of modern computers if the parameter D ≥ 1.5 and D ≥ 3.0,
respectively.

2. Next we consider a hexagonal grid. To construct a quasi-interpolant

Figure 2: Hexagonal grid

with functions centered at the nodes of the regular grid depicted in Figure 2 we
note that this grid can be obtained if from the nodes of the regular triangular
lattice of side length 1 the nodes of another triangular grid with side length

√
3

are removed. This is indicate in Figure 3, where the eliminated triangular grid
is depicted with dashed lines. The removed nodes can be written in the form

Figure 3: Nodes of a hexagonal grid

Bj, j ∈ Z
2, with the matrix

B =

(
3
2

0
√

3
2

√
3

)
.

Hence, the set of nodes X⋄ of the regular hexagonal grid are given by X⋄ =
{Aj}j∈Z2\{Bj}j∈Z2 , and the sum of the shifted basis functions η(·/

√
D) centered
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at the nodes of X⋄ can be written as

∑

y⋄∈X⋄

η

(
x − y⋄
√
D

)
=
∑

j∈Z2

η

(
x − Aj√

D

)
−
∑

j∈Z2

η

(
x − Bj√

D

)
.

Under the condition Fη(0) = 1 we have from (2.7)

∑

j∈Z2

η

(
x − Aj√

D

)
=

D
det A

(
1 +

∑

ν∈Z2\0
Fη
(√

D(At)−1ν
)
e 2πi(x,(At)−1ν)

)
,

thus we obtain

∑

y⋄∈X⋄

η

(
x − y⋄
√
D

)
=

2D√
3

+
2D√

3

∑

ν∈Z2\0
Fη
(√

D(At)−1ν
)
e 2πi(x,(At)−1ν)

− 2D
3
√

3
− 2D

3
√

3

∑

ν∈Z2\0
Fη
(√

D(Bt)−1ν
)
e 2πi(x,(Bt)−1ν).

Hence an approximate partition of unity centered at the hexagonal grid is given
by

3
√

3

4D
∑

y⋄∈X⋄

η

(
x − y⋄
√
D

)
= 1 +

3

2

∑

ν∈Z2\0
Fη
(√

D(At)−1ν
)
e 2πi(x,(At)−1ν)

− 1

2

∑

ν∈Z2\0
Fη
(√

D(Bt)−1ν
)
e 2πi(x,(Bt)−1ν).

Now we define the quasi-interpolant on the h-scaled hexagonal grid hX⋄ =
{hAj}j∈Z2 \ {hBj}j∈Z2 as

M⋄
hu(x) :=

3
√

3

4D
∑

y⋄∈X⋄

u(hy⋄) η

(
x − hy⋄
√
Dh

)
.

Since it can be written in the form

M⋄
hu(x) =

3
√

3

4D

(∑

j∈Z2

u(hAj)η

(
x − hAj√

Dh

)
−
∑

j∈Z2

u(hBj)η

(
x − hBj√

Dh

))
,

we see that under the conditions (2.1) and (2.2) the quasi-interpolant M⋄
hu

provides the estimates (1.3) and (2.4) for sufficiently large D. Because of

B−1 =

(
2
3

0

−1
3

√
3

3

)
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we obtain, by using (2.8), Poisson’s summation formula for Gaussians on the
hexagonal grid

3
√

3

4πD
∑

y⋄∈X⋄

e− |x−y⋄|2
D =

3
√

3

4πD

( ∑

j∈Z2

e− |x−Aj|2
D −

∑

j∈Z2

e− |x−Bj|2
D

)

=
3

2

∑

ν∈Z2

e−4π2D ν2
1
−ν1ν2+ν2

2
3 e

2πi
(
x1ν1+x2

2ν2−ν1√
3

)

− 1

2

∑

ν∈Z2

e−4π2D ν2
1
−ν1ν2+ν2

2
9 e

2πi
(
x1

2ν1−ν2
3

+x2
ν2√

3

)

.

Hence, for the generating function η(x) = π−1e−|x|2 the factor of the main
saturation error is bounded by
∣∣∣∣1 − 3

√
3

4πD
∑

y⋄∈X⋄

e− |x−y⋄|2
D

∣∣∣∣ ≤
1

2

∑

(ν1,ν2) 6=(0,0)

(
3e−4π2D ν2

1
−ν1ν2+ν2

2
3 + e−4π2D ν2

1
−ν1ν2+ν2

2
9

)

= 3 e−
4π2D

9 + O
(
e−

4π2D
3

)
.

3. Quasi-interpolants for data on perturbed grids

Here we give a simple extension of the quasi-interpolation operator on a uniform
grid, considered in the previous section, to quasi-interpolants, which use the
values u(xj) on a set of scattered nodes X = {xj}j∈J ⊂ R

n close to a uniform
grid. Precisely we suppose

Condition 3.1. There exists a uniform grid Λ such that the quasi-interpolants

Mh,D u(x) = D−n
2

∑

yj∈Λ

u(hyj) η

(
x − hyj

h
√
D

)
(3.1)

approximate sufficiently smooth functions u with the error (1.3) for any ε > 0.
Let Xh be a sequence of grids with the property that for κ1 > 0 not depending
on h and any yj ∈ Λ the ball B(hyj, hκ1) contains nodes of Xh.

3.1. Construction.

Definition 3.1. Let xj ∈ Xh. A collection of mN = (N−1+n)!
n!(N−1)!

−1 nodes xk ∈ Xh

will be called star of xj and denoted by st (xj) if the Vandermonde matrix

Vj,h =
{(xk − xj

h

)α}
, |α| = 1, . . . , N − 1,

is not singular.

Condition 3.2. Denote by x̃j ∈ Xh the node closest to hyj ∈ hΛ. There
exists κ2 > 0 such that for any yj ∈ Λ the star st (x̃j) ⊂ B(x̃j, hκ2) with
| det Vj,h| ≥ c > 0 uniformly in h.
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To describe the construction of the quasi-interpolants which use the data
at Xh we denote the elements of the inverse matrix of Vj,h by {b(j)

α,k}, |α| =
1, . . . , N − 1, xk ∈ st (x̃j), and define the functional

Fj,h(u) = u(x̃j)

(
1 −

N−1∑

|α|=1

(
yj −

x̃j

h

)α ∑

xk∈st (x̃j)

b
(j)
α,k

)

+
∑

xk∈st (x̃j)

u(xk)
N−1∑

|α|=1

b
(j)
α,k

(
yj −

x̃j

h

)α

.

The quasi-interpolants is then defined as the sum

Mh,Du(x) = D−n
2

∑

yj∈Λ

Fj,h(u)η

(
x − hyj

h
√
D

)
, (3.2)

i.e., the generating functions are centered at the nodes of the uniform grid
hΛ. This can be advantageous to design fast methods for the approximation of
convolution integrals

Ku(x) =

∫

Rn

g(x − y)u(y) dy .

Here a cubature formula can be defined as

KMh,Du(x) = D−n
2

∑

yj∈Λ

Fj,h(u)

∫

Rn

g(x − y)η

(
y − hyj

h
√
D

)
dy

= hn
∑

yj∈Λ

Fj,h(u)

∫

Rn

g

(
h
√
D
(

x − hyj

h
√
D

− y

))
η(y)dy .

Then the computation of KMh,Du(hyk) for yk ∈ Λ leads to the discrete convo-
lution

KMh,Du(hyk) = hn
∑

yj∈Λ

Fj,h(u) a
(h)
k−j

with the coefficients a
(h)
k−j =

∫
Rn g

(
h(yk − yj −

√
D y)

)
η(y)dy.

3.2. Estimates.

Theorem 3.2. Under the Conditions 3.1 and 3.2, for any ε > 0 there exists D
such that the quasi-interpolant (3.2) approximates any u ∈ WN

∞(Rn) with

|Mh,Du(x) − u(x)| ≤ cN,η,D hN‖∇Nu‖L∞(Rn) + ε

N−1∑

k=0

(
h
√
D
)k|∇ku(x)| , (3.3)

where cN,η,D does not depend on u and h.
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Proof. For given u ∈ WN
∞(Rn) and the grid Xh we consider the quasi-interpolant

(3.1) on the uniform grid hΛ

Mh,D u(x) = D−n
2

∑

yj∈Λ

u(hyj) η

(
x − hyj

h
√
D

)
.

According to Condition 3.1 we can find D such that Mu satisfies the inequality

|Mh,Du(x) − u(x)|≤ cN,η

(
h
√
D
)N‖∇Nu‖L∞(Rn)+ ε

N−1∑

k=0

|∇ku(x)|
(
h
√
D
)k

. (3.4)

So it remains to estimate |Mh,Du(x)−Mh,Du(x)|. Recall the Taylor expansion
of u around t ∈ R

n

u(x) =
N−1∑

|α|=0

∂αu(t)

α!
(x − t)α + RN(x, t) (3.5)

with the remainder satisfying

|RN(x, t)| ≤ cN |x − t|N sup
B(t,|x−t|)

|∇Nu| . (3.6)

For yj ∈ Λ we choose x̃j ∈ Xh and use (3.5) with t = x̃j. We split

Mh,Du(x) = M (1)u(x) + D−n
2

∑

yj∈Λ

RN(hyj, x̃j) η

(
x − hyj

h
√
D

)

with

M (1)u(x) = D−n
2

∑

yj∈Λ

N−1∑

|α|=0

∂αu(x̃j)

α!
(hyj − x̃j)

α η

(
x − hyj

h
√
D

)
. (3.7)

Because of |hyj − x̃j| ≤ κ1h for any yj we derive from (3.6)

|M (1)u(x) −Mh,Du(x)|≤ cN(κ1h)ND−n
2

∑

yj∈Λ

∣∣∣∣η
(
x − hyj

h
√
D

)∣∣∣∣ sup
B(x,hκ1)

|∇Nu|. (3.8)

The next step is to approximate ∂αu(x̃j), 1 ≤ |α| < N , by a linear combination

of u(xk), xk ∈ st (x̃j). Let {a(j)
α }1≤|α|≤N−1 be the unique solution of the linear

system with mN unknowns

N−1∑

|α|=1

a
(j)
α

α!
(xk − x̃j)

α = u(xk) − u(x̃j) , xk ∈ st (x̃j) . (3.9)
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It follows from (3.5) and (3.9) that

N−1∑

|α|=1

h|α|

α!

(
a(j)

α − ∂αu(x̃j)
)(xk − x̃j

h

)α

= RN(xk, x̃j) .

By Condition 3.2 the norms of V −1
j,h are bounded uniformly for all j and h, this

leads together with (3.6) to the inequalities

|a(j)
α − ∂αu(x̃j)|

α!
≤ C2 hN−|α| sup

B(x̃j ,hκ2)

|∇Nu| , 0 ≤ |α| < N . (3.10)

Hence, if we replace the derivatives ∂αu(x̃j) in (3.7) by a
(j)
α , then we get the

sum

D−n
2

∑

yj∈Λ

(
u(x̃j) +

N−1∑

|α|=1

a
(j)
α

α!
(hyj − x̃j)

α

)
η

(
x − hyj

h
√
D

)
,

which in view of a
(j)
α = α!

h|α|
∑

xk∈st (x̃j)
b
(j)
α,k (u(xk) − u(x̃j)) coincides with the

quasi-interpolant Mh,Du, defined by (3.2). Moreover, by (3.7) and (3.10)

|Mh,Du(x) − M (1)u(x)|

≤ C2h
N

N−1∑

|α|=1

κ
|α|
1 D−n

2

∑

yj∈Λ

∣∣∣∣η
(

x − hyj

h
√
D

)∣∣∣∣ sup
B(x,hκ2)

|∇Nu| . (3.11)

Now the inequality

sup
x∈Rn

D−n
2

∑

yj∈Λ

∣∣∣∣η
(

x − yj√
D

)∣∣∣∣ ≤ C3

for all D ≥ D0 > 0 implies that (3.8) and (3.11) lead to

|Mh,Du(x) − Mh,Du(x)| ≤ C4h
N sup

B(x,hκ2)

|∇Nu| ,

which establishes together with (3.4) the estimate (3.3).

4. Numerical Experiments with Quasi-interpolants

The behavior of the quasi-interpolant Mh,Du was tested by one- and two-dimen-
sional experiments. In all cases the scattered grid is chosen such that any ball
B(hj, h

2
), j ∈ Z

n, n = 1 or n = 2, contains one randomly chosen node, which we
denote by xj. All the computations were carried out with MATHEMATICA R©.
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In the one-dimensional case Figures 4 and 5 show the graphs of Mh,Du−u for

different smooth functions u using the basis function η(x) = π− 1

2 e−x2

(Figure 4)

for which N = 2, and η(x) = π− 1

2 (3
2
−x2)e−x2

(Figure 5) for which N = 4, with
h = 1

32
(dashed line) and h = 1

64
(solid line).
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0.0008

0.001

0.0012

-1 -0.5 0.5 1

-0.00125

-0.001

-0.00075

-0.0005

-0.00025

0.00025

Figure 4: The graphs of Mh,Du − u with η(x) = π− 1

2 e−x2

, D = 2, st (xj) = {xj+1},
when u(x) = x2 (on the left) and u(x) = (1+x2)−1. Dashed and solid lines correspond

to h = 1
32 and h = 1

64 .

-1 -0.5 0.5 1

-2*10-6

-1*10-5

-1.2*10-5

-1 -0.5 0.5 1

-2*10-6

2*10-6

-6*10-6

-1*10-5

Figure 5: The graphs of Mh,Du − u with η(x) = π− 1

2 (3
2 − x2)e−x2

, D = 4, st (xj) =

{xj−2, xj−1, xj+1}, when u(x) = x4 (on the left) and u(x) = (1 + x2)−1. Dashed and

solid lines correspond to h = 1
32 and h = 1

64 .

As two-dimensional examples we depict in Figures 6 and 7 the quasi-interpo-
lation error Mh,Du − u for the function u(x) = (1 + |x|2)−1 and different h if
generating functions of second (with D = 2) and fourth (with D = 4) order
of approximation are used. The h2- and respectively h4-convergence of the
corresponding two-dimensional quasi-interpolants are confirmed by the L∞−
errors which are given in Table 1.
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Figure 6: The graph of Mh,Du − u with D = 2, η(x) = π−1e−|x|2 , N = 2, u(x) =

(1 + |x|2)−1, h = 2−6 (on the left) and h = 2−7 (on the right).

-0.04
-0.02

0
0.02

0.04
-0.04

-0.02

0

0.02

0.04

-1.9·10-6
-1.875·10-6
-1.85·10-6

-1.825·10-6

-0.04
-0.02

0
0.02

0.04

-0.04
-0.02

0
0.02

0.04
-0.04

-0.02

0

0.02

0.04
-1.2·10-7

-1.15·10-7

-0.04
-0.02

0
0.02

0.04

Figure 7: The graph of Mh,Du − u with D = 4, η(x) = π−1(2 − |x|2)e−|x|2 , N = 4,

u(x) = (1 + |x|2)−1, h = 2−6 (on the left) and h = 2−7 (on the right).

h D = 2 D = 4

2−4 8.75 · 10−3 1.57 · 10−2

2−5 2.21 · 10−3 4.00 · 10−3

2−6 5.51 · 10−4 1.01 · 10−3

2−7 1.42 · 10−4 2.52 · 10−4

2−8 3.56 · 10−5 6.50 · 10−5

h D = 4 D = 6

2−4 4.42 · 10−4 9.59 · 10−4

2−5 2.95 · 10−5 6.61 · 10−5

2−6 1.92 · 10−6 4.24 · 10−6

2−7 1.24 · 10−7 2.68 · 10−7

2−8 7.80 · 10−9 1.71 · 10−8

Table 1: L∞ approximation error for the function u(x)=(1+|x|2)−1 using Mh,Du
with η(x) = π−1e−|x|2 , N = 2 (on the left), and η(x) = π−1(2−|x|2)e−|x|2 , N = 4
(on the right).
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