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Kernel Dimension of Singular Integral Operators
with Piecewise Continuous Coefficients
on the Unit Circle

A. Rogozhin and B. Silbermann

Abstract. In this paper we propose a method to compute the kernel dimension of
a Fredholm singular integral operator a P + () with piecewise continuous coefficients
a,b. We show that the kernel dimension can be extracted from the singular value
behavior of a polynomial collocation method. The results are illustrated by numerical
experiments.
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1. Introduction

Let T denote the unit circle T := {t € C : |t| = 1}, let L? := L*(T) be the
Hilbert space of all square integrable functions on the unit circle T, and let L3
refer to the Hilbert space of all column-vectors of length N with components
from L2. A bounded function a : T — C is called piecewise continuous if it has
one-sided limits a(t + 0) for all t € T. We denote by PC the C*-algebra of all
piecewise continuous functions and by PCy«y the C*-algebra of all N x N-
matrices with entries from PC.

In this paper we deal with the singular integral operators

(Au) (t) == (cu)(t) + @ /T Mdﬂ

™ T—1

where the coefficients ¢, d are piecewise continuous matrix functions. It is well
known (see e.g. [7]) that for all functions ¢,d € PCyyy the operator A belongs
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to L£(L%) where L(L%) stand for the C*-algebra of all bounded and linear op-
erators acting L%. Moreover, since S* = S and S? equals the identity operator

I € L(L%), where
(Su) (t) = — /1r wr) g

) T—1

the operators P := (I + S) and Q := (I — S) are orthogonal projectors, and
the operator A can be rewritten as A = aP + bQ), where a = ¢+ d,b = c — d.

For the special singular integral operator aP + () one has the identity
aP + Q = (PaP + Q)(I + QaP),

where I + QQaP is an invertible operator whose inverse is I — QQaP. Thus the
Fredholm properties of aP 4+ @ and of PaP/;, P coincide. The last operator is
the Toeplitz operator T (see Section 2). In particular we have dim ker 7T'(a) =
dimker(aP + @). This equality is used in Section 5. Moreover, one gets the
following matrix representation of PaP + () with respect to the standard basis

PaP +Q = % G-1 G-2 :
aq Qo a_q .

a2 a1 Qg

where {a}rez is the sequence of the Fourier coefficients of a function a €
PCnxn.

Thus, the singular integral operator a P+ (@ is closely related to the Toeplitz
operator T'(a) defined in Section 2. Moreover, taking into account that the
Fredholmness of the operator a P+ b() implies the invertibility of the coefficients
a and b, and writing aP + bQ as b(b~'aP + Q), we conclude that the Fredholm
properties of the singular integral operator aP + b() are completely the same as
Fredholm properties of the Toeplitz operator T'(b~'a). In particular, the kernel
dimensions of the operators aP + bQ and T'(b~'a) coincide.

A method to compute the kernel dimension of a Fredholm Toeplitz operator
T'(a) was proposed in [9, 10]. This method is based on the observation that the
behaviour of the singular values of modified finite sections of the Toeplitz opera-
tor is subject to the so-called k-splitting property (see Theorem 2.1). Moreover,
it was shown the k-splitting property can be clearly observed for smooth sym-
bols a (see Theorem 2.2). However, the main difficulty in working with Toeplitz
operators is the computation of the Fourier coefficients.
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In this paper we adapt this algorithm to singular integral operators with
piecewise continuous coefficients. We prove that the singular values of the
modified collocation method have the k-splitting property (see Theorem 3.5).
Moreover, we estimate the convergence speed of si(A,,) to zero by the order
of the smoothness of the coefficients (see Corollary 4.3). Finally, in Section 5
we present several numerical examples.

It turns out that the estimates for the convergence speed of the k-th singular
values to zero for the collocation method are the same as for the finite section
method (compare estimates (4) and (5) with (2) and (3)). The numerical ex-
periments confirm these theoretical results (see Section 5). This observation
leads to the conclusion that to compute the kernel dimension of a Fredholm
Toeplitz operator and/or of a Fredholm singular integral operator one can use
the collocation method instead of the finite section method.

2. Toeplitz operators and their finite sections

In this section we briefly present results for Toeplitz operators which are taken
from [9] and [10]. Let (3, be the Hilbert space of all sequences = : Z, —
CN,Z, ={i € Z :i > 0}, such that

o0 1
2
lollg = (3 lauliv) < o0,
=0

where [|zil[&n = [[(z7, 27, .. a) 2y = |21 + |22 + ..+ 2%
The block Toeplitz operator T(a) : (i3 — (3 is defined by the matrix
representation

apg a_—1 Qa_9
aq (on) a_q

o0
T(a) = (ai*j)i,jzo = as ap - |’

where {ag}rez is the sequence of the Fourier coefficients of a function a €
PCyyn. It is well known (see e.g. [2]) that for all piecewise continuous functions
a the Toeplitz operator T'(a) is a linear bounded operator on ¢%, i.e. T(a) €
L(6), and || T(a)llziz,) = llalle-

Further, given a function a € L%,y and a number r € {0,1,...} let us
denote by T,,.(a),n > r, the following rectangular truncated Toeplitz matrices
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We recall that the singular values of a square matrix A, € C*V>*™"V are
defined as square roots of the spectrum points of Af A,,. We denote the (ordered)
singular values of A, by s1(A,), s2(An), ... sun(Ay), ie., we have 0 < s1(4,,) <
S9(A,) < ... < sun(Ayn) = ||AL]|. Note also that the singular values can be also
defined as approximation numbers, that is

sk(Ay) = dist(A,, Fog) :=inf {||A, — F| : F € Faxr}, (1)
where F, ; denotes the collection of all matrices from C™V*"¥ having the image
of the dimension at most (nN — k).

To evaluate the singular values of T}, .(a) we extend these matrices to square

nN x nN matrices by filling in zeros in the remaining places.

Theorem 2.1 (see [10, Theorem 3.1)). Let a € PCnxn. If the Toeplitz oper-
ator T'(a) is Fredholm, then the singular values of T, ,(a) have the k-splitting
property, that s

lim s (T,-(a)) =0  and  liminf s,y (T,,,(a)) >0

with k = dimker T'(a) + dimker T'(t"a)T(t " FE), where E = diag(1,1,...,1) is
the identity N x N matriz, and the function a is defined by a(t) = a(3).

Note also that if r is large enough then the kernel dimension of the operator
T(t"a)T(t"FE) can be controlled, more precisely it is equal to Nr. Moreover one
can estimate the convergence speed of si(7,,,(a)) to zero.

Theorem 2.2 (see [10, Theorem 4.1 and Corollary 4.2]). Let a € PCnyn. If
the Toeplitz operator T'(a) is Fredholm, then
sk (Tnr(a)) < Cmax ([|@nr@rll; - [Qurprll, [Quirl], - - |@ntom]l)
with k = dimker T'(a) + dimker T'(t"a)T(t""E), where the constant C does not
depend on n, where {o;}._, and {1;}™, are some orthonormal bases of ker T'(a)
and ker T(t"a)T(t™"F), respectively, and where Q,, € L({%) are orthogonal pro-
jectors defined by
(T, @1y -+ oy Ty 1, Ty Tip1y - - -) — (0,0, ..., 0, 0, Tpg 1,y - - -)-

In particular, if the Fourier coefficients ay, of the function a fulfil Y, ., [k|*||ax|| <
oo for some a > 0, then

sk (Thr(a)) =0 ((n—r)"%) asn— . (2)

If, in addition, the function a is rational, then there is a p > 0 such that

sk (Th,(a)) = 0O (e’p(”’r)) as m — oo. (3)

Remark. The estimates (2), (3) were obtained for the first time by A. Béttcher
in [1] for the particular case N = 1,7 = 0. It seems that Bottchers proof is
restricted to NV = 1.
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3. A polynomial collocation method for singular integral
operators

First, for any n € Z, we introduce the Fourier projection P, € L(L3%) by the

rule n
a = Zaktk — Z aktk,
keZ k=—n
and the Lagrange interpolation operator L, associated to the points ¢; =
exp 227?317 j =0,1,...,2n (that is L, assigns to a function a its Lagrange in-

terpolation polynomial L,a € im P,, uniquely determined by the conditions
(Lna)(tj) = al(t;),j =0,...,2n).
Given r € Z,, we define the operators
Ay = Ly(aP 4+ 0Q) P, (P, — W, P4 W,), ne Ly,

where P_; := 0, and W,, € L(L%) is the flip operator acting by the rule W,,a =
Y reo i t® + Z,::l_n a_pn_rp_1t*. Note that if » = 0 then we get a polynomial
collocation method A, for the solution of singular integral operators with
piecewise continuous coefficients.

To analyze the behavior of the singular values of the operators A, , we
will use the results of our paper [8], where some abstract theory is presented.
To this end we denote by F the set of all sequences {A,} of linear operators
A, € L(im B,) for which there exist operators W1{A,}, W2{A,} € L(L%) such
that

AP, — Wi{A,} and  W,A, W, — Wy{A,}
AP, — Wi{A,}* and WA, W, — Wy{A,}"
hold in the sense of strong convergence for n — oo. If we define
M{AL} + X{B,} = { A, + \2B,} {A, H{B,} ={A,B,.},

and
1Az = sup { | APl gy € 2,

then it is not hard to see that F becomes a C*— algebra with the unit element
{Fn}-

Obviously the set G of all sequences {G,,} with |G,P,|| — 0 as n — oo
forms a closed two-sided ideal of F. Moreover, one can prove that the sequences
{P,KP,} and {W,KW,} belong to the algebra F for any compact operator
K € L(L%), i.e. for any K € K(L%). We denote by J the set of all sequences
{J.} € F of the form J, = P,KP, + W, LW, + G,,, where K, L € K(L%) and
{G,.} €G.

The algebra F plays an important role in the theory of polynomial approxi-
mation methods for singular integral operators in the space L%. A few historical
remarks can be found in the Notes and Comments to Chapter 7 in [7]. In partic-
ular the collocation method was analyzed by Junghanns and Silbermann in [6]
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using Banach algebra techniques. The related results are also reflected in Chap-
ter 7 of [7]. This source will be used for citations.

Lemma 3.1 (see [7, Proposition 7.6]). J is a closed two-sided ideal of F.
In our specific setting a result of [8] reads as follows.

Theorem 3.2 (see [8, Theorem 5.2] or [5, Chapter 6]). Let {A,} € F. If
the coset {A,} + J is invertible in the quotient algebra F/J, then the oper-
ators Wi{A,}, Wa{A,} are Fredholm, and the singular values of A, have the
k-splitting property, that is

lim s; (A,) =0 and liminfs; (A,) >0

n—oo n—oo

with k = dimker W1{A, } + dim ker W5{A,}.

In [7] it was shown that the sequence {4, o} = {L,(aP + bQ)P,} of the
collocation method belongs to the C*-algebra F for any a,b € PCyyy. More-
over, there one got a criteria for the invertibility of the coset {4, 0} + J in the
algebra F/J.

Theorem 3.3 (see [7, Theorem 7.22]). Let a,b € PCyyn.
(a) The sequence {An o} belongs to the C*-algebra F. In particular,

Wi{Ano} =aP +bQ and Wyr{A,o} =aP +bQ,

where the functions @,b are defined by a(t) = a(7), b(t) = b(3).

(b) The coset {A,o} + T is invertible in F/J if and only if the operator
Wi{Ano} = aP + bQ is Fredholm.

Since for each r € Z, the sequence {W,,P,_1W,} belongs to the ideal J we
can extend this results to the operators A, ,.
Corollary 3.4. Let a,b € PCyyy and let r € Z.
(a) The sequence {A,,} belongs to the C*-algebra F. In particular,

Wi{A,,} =aP +bQ and Wy{A,,} = (aP +bQ)Q, 1,

where QQ._1 =1 — P._1.
(b) The coset {A,,} + T is invertible in F/J if and only if the operator
Wi{A,,} = aP +bQ is Fredholm.

Now combining Theorem 3.2 and Corollary 3.4 we arrive at the following
result.

Theorem 3.5. Let a,b € PCyyxn. If the singular integral operator aP + bQ)

is Fredholm, then the singular values of Ay, have the k-splitting property with
k= k(A,,) = dimker(aP + bQ) + dim ker(aP + bQ)Q,_1.
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Moreover, Lemma 3.2 from [8] implies that if r is large enough then the
kernel dimension of the operator (aP + BQ)Qr,l is equal to the rank of the
projector P,._1, that is to N(2r — 1). Thus Theorem 3.5 offers a way to com-
pute the kernel dimension of a Fredholm singular integral operator (aP + bQ)
with piecewise continuous coefficients a,b. Notice that r is large enough if

K(Anyi1) = k(An,) = 2N.

4. Convergence speed of s; (4,,,) to zero

In this section we will exclusively deal with smooth coefficients a,b. Therefore
we denote by Cyxny C PCnxn the algebra of all continuous matrix functions
on T, by Hyny C Cnxn (s> 0) the Holder-Zygmund spaces (for the definition
see, e.g., [7, Definition 2.34]), and by Ryxny C Cnxn the algebra of all rational
matrix functions on T.

By the results of the previous section we have to determine the number of
the singular values of A,,, tending to zero. This suggests us to investigate the
convergence speed of si (A, ) to zero. To this end we use again general results
of our paper [8].

Lemma 4.1 (see [8, Section 6]). Let a,b € PCnyn. If the singular integral
operator aP + bQ) is Fredholm, then

Sk(An,r> SCmaX(HAn,r%DlH; ey ||An,7"90l||7||WnAn,rWn¢l||a ey ||WnAn,7’Wn¢m||)

with k = dimker(aP + bQ) + dimker(aP + bQ)Q,_1, where the constant C
does not depend on n, and {@;}._, and {¢;}12, are some orthonormal bases of
ker(aP + bQ) and ker(aP + bQ)Q,_1, respectively.

Thus, we have to estimate the norms [|A, .|| and [|W,A,,W,||, where
¢ € ker(aP + bQ), v € ker(aP + bQ)Q,—1, and ||¢| = ||¢| = 1.

First for each continuous function f € Cyxy we put

En(f) = inf ||f _p||007 ne Z+7

pGRgfo

where R7R, v is the set of all trigonometric polynomials p on T of the form
p(t) = >, pt®, pr € CV*N_ Tt is well-known (see e.g. [11, Chapter 3.13])
that, for any f € Cyxy and n € Z,, there is a polynomial p,(f) € R}, v such
that E,(f) = If = pu(F)leo:

Further we fix an « € (0,1), and denote by [an] the integer part of an,n €
Z.. Taking into account that (P, — W, P._1W,)Py_jan) = Pa—jan) Whenever



346 A. Rogozhin and B. Silbermann

[an] > 1, we get

[Anrpll = | Ln(aP + bQ) P( Py — Wi P a Wy )|
< [ La(aP + bQ) P P fany |
+ | Ln(aP + bQ) P (P — WnPT—IWn)Qn—[Om]‘PH
< (llalloo + 1blloo) | Qu—fan 2|
+ | L0 (Pran) (@) P + Pran) (0)Q) Pr Pr—fan) # |
+ 1 La ([0 = plam ()] P + [b = pan ()] Q) PoPofam 2l
< 1L (Plan) (@) P + plan) (0) Q) Pa—foni 2
+ (llalloo + [1Blloo) 1Qn—famell + Efan (@) + Ejan (b)
for any a,b € Cnxy and all n large enough. Here we used that (see [7, 7.3(c)])
| LnaPP,||, || LnaQP,| < ||als, for all a € Cyxn, and ||P, — W, P,_1W,|| < 1,
for all n € Z,. Now we note that the Lagrange interpolation operator L, is

exact for any trigonometric polynomial of degree n. Hence for all sufficiently
large n

[Anr@ll < [|(Pani (@) P + plan) (0) Q) Pr—fan) £l
+ (lalloo + 1600) 1 @n—famll + Efan) (@) + Ejan (b)
< [[(aP +0Q) Pu—fanpy 2|
+ [[(le = Plan)(@)]P + [b = plan) (0)]Q) Pin—fan) @ ||
+ (llafle + 1blloo) 1Qn—fomell + Elan) (@) + Ejan (b)
< [[(aP +0Q)¢| + [l(aP + bQ)Qm—fan) ¢
+ (lallss + [18l150) |@n—fam@l + 2Efan) (@) + 2E{an (b)
< 2([|alloo + [[blloo) 1@n—tam @l + 2Eian)(@) + 2Ejan) (b),
since ||a!]| < ||al|so, || P]| = ||Q|| = 1, and ¢ € ker(aP + bQ).
Using that W} = P, and that (see (7, proof of Theorem 7.17]) W, L, (aP +
bQ)W,, = L,(aP + bQ)P, we get W, A, ,W,, = L,(aP + bQ)P, (P, — P,_1).
Hence, in the same fashion we find that for all sufficiently large n

HWnAn,TWnl/}“ < Z(HCLHOO + ||b||00) |’Q(n—[an])¢|| + 2E[an](a) + 2E[an}(b)'

Here we used that ||al|s = ||@]l and E,(a) = E,(a) for all a € Cyyy and all
ne ;.
Thus, we have proved the following theorem.

Theorem 4.2 (cf. Theorem 2.2). Let a,b € Cnxn and let a € (0,1). If the
singular integral operator aP + bQ) is Fredholm, then
Sk (An,r) S CmaX(E[an](a>7 E[an}(b)auan[an](PlHa ceey Han[an](PlH?
HQn—[an]¢l”7 SR ”Qn—[cm]wmu)
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with k = dimker(aP + bQ) + dimker(aP + BQ)Q,,_b where the constant C
does not depend on n, and {p;}\_, and {¢;}7, are some orthonormal bases of
ker(aP + bQ) and ker(aP + bQ)Q,_1, respectively.

This inequality can be used to estimate the convergence speed by the
smoothness of the functions a and b. Here are two sample results.

Corollary 4.3. Let a,b € Cnyn and let the singular integral operator aP + b(Q)
be Fredholm. If the functions a,b belong to H3, x for some s > 0, then

sk (Any) =0 (™) asn — oo. (4)

If, in addition, the functions a,b belong to Ryxn, then there is a p > 0 such
that

sk (Any) =0 (e7) asn — . (5)

Proof. First we consider the case when the functions a and b belong to the
Holder-Zygmund space HY .y for some s > 0. It it well-known (see e.g. [4,
Proposition VII.2.1, Theorem VII.3.1, Theorem I1.6.1]) that if the operator a P+
b(Q) is Fredholm, then the functions a, b are invertible and the function ¢ := b~'a
admits a factorization c(t) = c_(t)d(t)cy(t), t € T, where d is a diagonal matrix
function of the form d(¢) = diagt®, ..., t"¥ with certain integers xi,...,xn
and cE' € Hy Ly, o' € Hiyl . Here we denote by Hiy . n(Hity) the subspace
of H3 .y consisting of all functions f the Fourier coefficients f,, of which vanish
for n > 0(n < 0).

One can easily check that this representation of the function ¢ allows us to
write the operator aP + bQ in the form aP + bQ = be_(dP + Q)(cy P+ ¢-'Q),
where the operators be_ I and ¢, P+c-'Q are invertible in £(L3) (their inverses
are ¢_'b71I and ¢;'P + c¢_Q), respectively).

Further it is well-known that if a,b € HY .y, then the singular integral
operator aP + b() is bounded on Hj,. Here H3, = H3 ., refers to the Holder-
Zygmund space of all column-vectors of length N with components from Hj, .
In particular, the operators be_I and ¢, P+c~'(@) and their inverses are bounded
on H3;, too. This implies that the kernel of the operator aP + bQ € L(L3)
coincides with kernel of the operator aP + bQ € L(H3 ). In other words the
kernel of the singular integral operator aP + bQ € L(L%) is included in the
Holder-Zygmund space ‘H3 whenever the functions a and b belong to Hy . y-

Thus, in view of Theorem 4.2 it remains to estimate the order of the approx-
imation for functions from the Holder-Zygmund spaces. It is well-known that a
function f belongs to H3 ., y if and only if (see, e.g., [7, §2.34]) E,.(f) = O(n™?)
as n — oo. Moreover, from the Parseval’s equality we conclude that if f € HY,
then (recall that E,(f) = [|f — pn(f)|lo0)

NQnfIl < I —pu(f)]] < const || f —pu(f)llec = O(n™%) asn — co.



348 A. Rogozhin and B. Silbermann

Hence in the case when a,b € H},, v we arrive at the estimate (4).

To treat the case of rational functions a and b we introduce the spaces

B = {fety: Y AR <ol
k=—0c0
where { f} is the sequence of the Fourier coefficients of f.

Since the Fourier coefficients of rational functions decay exponentially, we
deduce that if a,b € Ry«n, then the singular integral operator aP + b(Q is
bounded on L% (p) whenever p > 0 is small enough. Moreover, in this case
the function ¢ admits such a factorization that the factors c_,c, are rational
functions (see e.g. [4, Theorem 1.2.1]).

The estimate (5) can be proved in just the same way as the estimate (4). O

5. Numerical examples
First we consider the matrix representation of the operators
A, = Ly(aP +bQ)P,(P, — W, P,_1W,).

Let Fy,.1 be the following (2n + 1)N x (2n + 1) N matrices (I is the identity
N x N matrix) and let F2711+1 be their inverses:

e 2n+1

n ( 1 i2mjk 7 ) n 1 < 1 _i2mjk > n
n f— — e 2n+1 , n — _— .
T\ Vot 1 M) T Va1 Y iho
With respect to the standard basis of im P, we get

An,?” = F2711+1 (a(tj)(sj,k)izzo F2n+an,1“ + F2_nl-i-1 (b(tj)(sj,k)ir]i:o F2n+1Qn,ra
where 9,5, is the Kronecker symbol, and

Pn,r = diag(g]N,...,OIN,\IN,...,[]\L,QIN,...,O[N>

v

;r n—&-‘l’—r ‘nr
er = dlag(Q]N, ce ,0]1\57 JN,. . .,]]\L,O]N,. .. ’OI]\L>
nIl nfma;(,o,rfl) max(\Or,Tfl)

Further, taking into account that the singular values can be defined as approxi-
mation numbers (see (1)), we find that sg(A,,) = sg(Bn.), for all k, n,r, where
the matrices B, , are defined by

B, = F2n+1A?’L,TF2_TL::~1
= (a(tj)éjvk)ﬁ:o Fopy1 Py Byl + (b(tj)‘sﬂ?’f)j?c:O Fon1 Qi Pt
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Here we used that || Fo,i1| = ||F5,l ]| = 1. The advantage of matrices B, over
A, is the ability to compute the matrices F2n+1Pn,rF2;Ll+17 FQnHQmF{nlJrl in
advance, that is independent of the functions a, b. After that one has only to mul-

tiply this matrices by the block diagonal matrices (a(tj)éjﬁk)?;i:o : (b(tj)éjﬁk)?;izo :

Now we present three examples, where we compare the applicability of the
finite section method and of the collocation method to compute the kernel
dimension of the Toeplitz operator T'(a) and/or the singular integral operator
aP + Q.

Figure 1: Finite section method for T'(a;) and collocation method for a, P + Q

Example 1. First we consider the scalar function
ap(t) = =25t +2.25 + 7t =3t 2 = (t71 — 2.5t (t — 2)(t + 1.5).

Using the Wiener-Hopf factorization theory and elementary properties of Toep-
litz operators we obtain that dimkerT(a;) = dimker(a;P + Q) = 1 and
dimker 7'(a;) = dimker(a; P + @) = 0. In the Figure 1 we plotted the first
ten singular values for T, o(aq) and A, . For both methods (finite section and
collocation) the first singular value converges very quickly to zero, and the sec-
ond singular value stays away from zero, that is (see Theorems 2.1 and 3.5)
k = dimker T'(a;) + dimker T'(a;) = dim ker(a; P + Q) +dimker(a; P+ Q) = 1.

Example 2. Next we consider the 2 x 2 matrix function

10—9t t3 9 . -1
as(t) = [ 1069 Toi—s T 17 sint
i 0 1— 4t

_ (omerr tsintTh 170 0\ (10 -9t £
0 t'—4/\0 ¢ 0 1)
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Again using the Wiener-Hopf factorization theory we find that dimker 7'(as) =
dimker(asP + Q) = 1.

\\ 5,5, \\ S,- 8,
. . , , , , , 0 . . . , , , ,

Figure 2: Finite section method for T'(as)

Figure 3: Collocation method for as P + @

In the Figures 2 and 3 we plotted the first fifteen singular values for 7),, (az)
and A, ,, respectively, with » =1 and r = 2. The pictures show that we have

3-splitting property, r=1
for finite section method — P o & Propery
5-splitting property, r=

3— ltt t , r = 1
for collocation method — 5P 1 ?ng property
7-splitting property, r=2.
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Thus, taking into account the remarks after Theorems 2.1 and 3.5, we obtain
that

—2x1 =1
dimker T'(ay) = S=2xl, =1
D—2x%2, r=2
3—2x(2-1 =
dim ker(as P + Q) :{ g b = 1.

T—2x(4—1), r=2

Example 3. Now we consider the following piecewise continuous function

as(e) = 1o55(e?) = — 5557T £10-557 —i0.556 0<6<o2r

It is clear that the function as has only one point of discontinuity at e = 1.
Moreover it is known (see e.g. [3, §1.24]) that the operators T'(a3) and asP + Q
are Fredholm and dimkerT'(a3) = dimker(asP + @) = 1, dimkerT'(a3) =
dimker(asP + @) = 0. In the Figure 4 we plotted the first ten singular values
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Figure 4: Finite section method for T'(a3) and collocation method for asP + Q

for T, 0(as) and A, . Looking at the pictures one can not see whether the
singular values have the k-splitting property, although Theorems 2.1 and 3.5
imply that for both methods (finite section and collocation) we have the 1-
splitting property.

Thus we can conclude that the finite section method and the collocation
method are equivalently applicable to compute the kernel dimension of the
Toeplitz operator T'(a) and/or the singular integral operator aP + (). More
precisely, if the k-splitting property is clearly observed for the finite section
method, then it is clearly observed for the collocation method too. And if one
can not see the k-splitting property for the collocation method, then the finite
section method is also useless.
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