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KernelDimension of Singular Integral Operators

with Piecewise Continuous Coefficients

on the Unit Circle

A. Rogozhin and B. Silbermann

Abstract. In this paper we propose a method to compute the kernel dimension of
a Fredholm singular integral operator aP + bQ with piecewise continuous coefficients
a, b. We show that the kernel dimension can be extracted from the singular value
behavior of a polynomial collocation method. The results are illustrated by numerical
experiments.
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1. Introduction

Let T denote the unit circle T := {t ∈ C : |t| = 1}, let L2 := L2(T) be the
Hilbert space of all square integrable functions on the unit circle T, and let L2

N

refer to the Hilbert space of all column-vectors of length N with components
from L2. A bounded function a : T → C is called piecewise continuous if it has
one-sided limits a(t ± 0) for all t ∈ T. We denote by PC the C∗-algebra of all
piecewise continuous functions and by PCN×N the C∗-algebra of all N × N–
matrices with entries from PC.

In this paper we deal with the singular integral operators

(Au) (t) := (cu)(t) +
d(t)

πi

∫

T

u(τ)

τ − t
dτ,

where the coefficients c, d are piecewise continuous matrix functions. It is well
known (see e.g. [7]) that for all functions c, d ∈ PCN×N the operator A belongs

A. Rogozhin: Department of Mathematics, Chemnitz University of Technology, 09107
Chemnitz, Germany; Alexander.Rogozhin@mathematik.tu-chemnitz.de
B. Silbermann: Department of Mathematics, Chemnitz University of Technology,
09107 Chemnitz, Germany; bernd.silbermann@mathematik.tu-chemnitz.de
This work was supported by the Deutsche Forschungsgemeinschaft, DFG project SI
474110-1.



340 A. Rogozhin and B. Silbermann

to L(L2
N) where L(L2

N) stand for the C∗-algebra of all bounded and linear op-
erators acting L2

N . Moreover, since S∗ = S and S2 equals the identity operator
I ∈ L(L2

N), where

(Su) (t) :=
1

πi

∫

T

u(τ)

τ − t
dτ,

the operators P := 1
2
(I + S) and Q := 1

2
(I − S) are orthogonal projectors, and

the operator A can be rewritten as A = aP + bQ, where a = c+ d, b = c− d.

For the special singular integral operator aP +Q one has the identity

aP +Q = (PaP +Q)(I +QaP ),

where I + QaP is an invertible operator whose inverse is I − QaP. Thus the
Fredholm properties of aP +Q and of PaP/imP coincide. The last operator is
the Toeplitz operator T (see Section 2). In particular we have dim ker T (a) =
dim ker(aP + Q). This equality is used in Section 5. Moreover, one gets the
following matrix representation of PaP +Q with respect to the standard basis
{tk}k∈Z in L2

N

PaP +Q =
















. . .

1
1

a0 a−1 a−2

a1 a0 a−1
. . .

a2 a1 a0
. . .

. . . . . . . . .
















,

where {ak}k∈Z is the sequence of the Fourier coefficients of a function a ∈
PCN×N .

Thus, the singular integral operator aP+Q is closely related to the Toeplitz
operator T (a) defined in Section 2. Moreover, taking into account that the
Fredholmness of the operator aP+bQ implies the invertibility of the coefficients
a and b, and writing aP + bQ as b(b−1aP +Q), we conclude that the Fredholm
properties of the singular integral operator aP + bQ are completely the same as
Fredholm properties of the Toeplitz operator T (b−1a). In particular, the kernel
dimensions of the operators aP + bQ and T (b−1a) coincide.

A method to compute the kernel dimension of a Fredholm Toeplitz operator
T (a) was proposed in [9, 10]. This method is based on the observation that the
behaviour of the singular values of modified finite sections of the Toeplitz opera-
tor is subject to the so-called k-splitting property (see Theorem 2.1). Moreover,
it was shown the k-splitting property can be clearly observed for smooth sym-
bols a (see Theorem 2.2). However, the main difficulty in working with Toeplitz
operators is the computation of the Fourier coefficients.
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In this paper we adapt this algorithm to singular integral operators with
piecewise continuous coefficients. We prove that the singular values of the
modified collocation method have the k-splitting property (see Theorem 3.5).
Moreover, we estimate the convergence speed of sk(An,r) to zero by the order
of the smoothness of the coefficients (see Corollary 4.3). Finally, in Section 5
we present several numerical examples.

It turns out that the estimates for the convergence speed of the k-th singular
values to zero for the collocation method are the same as for the finite section
method (compare estimates (4) and (5) with (2) and (3)). The numerical ex-
periments confirm these theoretical results (see Section 5). This observation
leads to the conclusion that to compute the kernel dimension of a Fredholm
Toeplitz operator and/or of a Fredholm singular integral operator one can use
the collocation method instead of the finite section method.

2. Toeplitz operators and their finite sections

In this section we briefly present results for Toeplitz operators which are taken
from [9] and [10]. Let ℓ2N be the Hilbert space of all sequences x : Z+ →
C

N ,Z+ = {i ∈ Z : i ≥ 0}, such that

‖x‖ℓ2
N

:=

( ∞∑

i=0

‖xi‖2
CN

) 1

2

<∞ ,

where ‖xi‖2
CN = ‖(x1

i , x
2
i , . . . , x

N
i )‖2

CN = |x1
i |2 + |x2

i |2 + . . .+ |xN
i |2.

The block Toeplitz operator T (a) : ℓ2N → ℓ2N is defined by the matrix
representation

T (a) =
(
ai−j

)∞

i,j=0
=







a0 a−1 a−2 · · ·
a1 a0 a−1 · · ·
a2 a1 a0 · · ·
. . . . . . . . . . . .






,

where {ak}k∈Z is the sequence of the Fourier coefficients of a function a ∈
PCN×N . It is well known (see e.g. [2]) that for all piecewise continuous functions
a the Toeplitz operator T (a) is a linear bounded operator on ℓ2N , i.e. T (a) ∈
L(ℓ2N), and ‖T (a)‖L(ℓ2

N
) = ‖a‖∞.

Further, given a function a ∈ L∞
N×N and a number r ∈ {0, 1, . . .} let us

denote by Tn,r(a), n ≥ r, the following rectangular truncated Toeplitz matrices

Tn,r(a) =








a0 a−1 · · · · · · a−n+r

a1 a0 · · · · · · a−n+r+1
...

...
...

an an−1 · · · · · · ar







.



342 A. Rogozhin and B. Silbermann

We recall that the singular values of a square matrix An ∈ C
nN×nN are

defined as square roots of the spectrum points of A∗
nAn. We denote the (ordered)

singular values of An by s1(An), s2(An), . . . snN(An), i.e., we have 0 ≤ s1(An) ≤
s2(An) ≤ . . . ≤ snN(An) = ‖An‖. Note also that the singular values can be also
defined as approximation numbers, that is

sk(An) = dist(An,Fn,k) := inf {‖An − F‖ : F ∈ Fn,k} , (1)

where Fn,k denotes the collection of all matrices from C
nN×nN having the image

of the dimension at most (nN − k).

To evaluate the singular values of Tn,r(a) we extend these matrices to square
nN × nN matrices by filling in zeros in the remaining places.

Theorem 2.1 (see [10, Theorem 3.1]). Let a ∈ PCN×N . If the Toeplitz oper-

ator T (a) is Fredholm, then the singular values of Tn,r(a) have the k-splitting

property, that is

lim
n→∞

sk (Tn,r(a)) = 0 and lim inf
n→∞

sk+1 (Tn,r(a)) > 0

with k = dim kerT (a) + dim kerT (trã)T (t−rE), where E = diag(1, 1, . . . , 1) is

the identity N ×N matrix, and the function ã is defined by ã(t) = a(1
t
).

Note also that if r is large enough then the kernel dimension of the operator
T (trã)T (t−rE) can be controlled, more precisely it is equal to Nr. Moreover one
can estimate the convergence speed of sk(Tn,r(a)) to zero.

Theorem 2.2 (see [10, Theorem 4.1 and Corollary 4.2]). Let a ∈ PCN×N . If

the Toeplitz operator T (a) is Fredholm, then

sk (Tn,r(a)) ≤ Cmax (‖Qn−rϕ1‖, . . . , ‖Qn−rϕl‖, ‖Qnψ1‖, . . . , ‖Qnψm‖)
with k = dim kerT (a) + dim kerT (trã)T (t−rE), where the constant C does not

depend on n, where {ϕi}l
i=1 and {ψi}m

i=1 are some orthonormal bases of kerT (a)
and kerT (trã)T (t−rE), respectively, and where Qn ∈ L(ℓ2N) are orthogonal pro-

jectors defined by

(x0, x1, . . . , xn−1, xn, xn+1, . . .) 7→ (0, 0, . . . , 0, xn, xn+1, . . .).

In particular, if the Fourier coefficients ak of the function a fulfil
∑

k∈Z
|k|α‖ak‖ <

∞ for some α > 0, then

sk (Tn,r(a)) = O
(
(n− r)−α

)
as n→ ∞. (2)

If, in addition, the function a is rational, then there is a ρ > 0 such that

sk (Tn,r(a)) = O
(
e−ρ(n−r)

)
as n→ ∞. (3)

Remark. The estimates (2), (3) were obtained for the first time by A. Böttcher
in [1] for the particular case N = 1, r = 0. It seems that Böttchers proof is
restricted to N = 1.
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3. A polynomial collocation method for singular integral
operators

First, for any n ∈ Z+ we introduce the Fourier projection Pn ∈ L(L2
N) by the

rule
a =

∑

k∈Z

akt
k 7→

n∑

k=−n

akt
k,

and the Lagrange interpolation operator Ln associated to the points tj =
exp 2πij

2n+1
, j = 0, 1, . . . , 2n (that is Ln assigns to a function a its Lagrange in-

terpolation polynomial Lna ∈ imPn, uniquely determined by the conditions
(Lna)(tj) = a(tj), j = 0, . . . , 2n).

Given r ∈ Z+, we define the operators

An,r := Ln(aP + bQ)Pn(Pn −WnPr−1Wn), n ∈ Z+,

where P−1 := 0, and Wn ∈ L(L2
N) is the flip operator acting by the rule Wna =

∑n

k=0 an−kt
k +

∑−1
k=−n a−n−k−1t

k. Note that if r = 0 then we get a polynomial
collocation method An,0 for the solution of singular integral operators with
piecewise continuous coefficients.

To analyze the behavior of the singular values of the operators An,r we
will use the results of our paper [8], where some abstract theory is presented.
To this end we denote by F the set of all sequences {An} of linear operators
An ∈ L(imPn) for which there exist operators W1{An},W2{An} ∈ L(L2

N) such
that

AnPn → W1{An} and WnAnWn → W2{An}
A∗

nPn → W1{An}∗ and WnAnWn → W2{An}∗

hold in the sense of strong convergence for n→ ∞. If we define

λ1{An} + λ2{Bn} := {λ1An + λ2Bn}, {An}{Bn} := {AnBn},
and

‖{An}‖F := sup
{

‖AnPn‖L(L2
N

) : n ∈ Z+

}

,

then it is not hard to see that F becomes a C∗− algebra with the unit element
{Pn}.

Obviously the set G of all sequences {Gn} with ‖GnPn‖ → 0 as n → ∞
forms a closed two-sided ideal of F . Moreover, one can prove that the sequences
{PnKPn} and {WnKWn} belong to the algebra F for any compact operator
K ∈ L(L2

N), i.e. for any K ∈ K(L2
N). We denote by J the set of all sequences

{Jn} ∈ F of the form Jn = PnKPn +WnLWn +Gn, where K,L ∈ K(L2
N) and

{Gn} ∈ G.
The algebra F plays an important role in the theory of polynomial approxi-

mation methods for singular integral operators in the space L2
N . A few historical

remarks can be found in the Notes and Comments to Chapter 7 in [7]. In partic-
ular the collocation method was analyzed by Junghanns and Silbermann in [6]
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using Banach algebra techniques. The related results are also reflected in Chap-
ter 7 of [7]. This source will be used for citations.

Lemma 3.1 (see [7, Proposition 7.6]). J is a closed two-sided ideal of F .
In our specific setting a result of [8] reads as follows.

Theorem 3.2 (see [8, Theorem 5.2] or [5, Chapter 6]). Let {An} ∈ F . If

the coset {An} + J is invertible in the quotient algebra F/J , then the oper-

ators W1{An},W2{An} are Fredholm, and the singular values of An have the

k-splitting property, that is

lim
n→∞

sk (An) = 0 and lim inf
n→∞

sk+1 (An) > 0

with k = dim kerW1{An} + dim kerW2{An}.
In [7] it was shown that the sequence {An,0} = {Ln(aP + bQ)Pn} of the

collocation method belongs to the C∗-algebra F for any a, b ∈ PCN×N . More-
over, there one got a criteria for the invertibility of the coset {An,0}+J in the
algebra F/J .
Theorem 3.3 (see [7, Theorem 7.22]). Let a, b ∈ PCN×N .

(a) The sequence {An,0} belongs to the C∗-algebra F . In particular,

W1{An,0} = aP + bQ and W2{An,0} = ãP + b̃Q,

where the functions ã, b̃ are defined by ã(t) = a(1
t
), b̃(t) = b(1

t
).

(b) The coset {An,0} + J is invertible in F/J if and only if the operator

W1{An,0} = aP + bQ is Fredholm.

Since for each r ∈ Z+ the sequence {WnPr−1Wn} belongs to the ideal J we
can extend this results to the operators An,r.

Corollary 3.4. Let a, b ∈ PCN×N and let r ∈ Z+.

(a) The sequence {An,r} belongs to the C∗-algebra F . In particular,

W1{An,r} = aP + bQ and W2{An,r} = (ãP + b̃Q)Qr−1,

where Qr−1 := I − Pr−1.

(b) The coset {An,r} + J is invertible in F/J if and only if the operator

W1{An,r} = aP + bQ is Fredholm.

Now combining Theorem 3.2 and Corollary 3.4 we arrive at the following
result.

Theorem 3.5. Let a, b ∈ PCN×N . If the singular integral operator aP + bQ
is Fredholm, then the singular values of An,r have the k-splitting property with

k = k(An,r) := dim ker(aP + bQ) + dim ker(ãP + b̃Q)Qr−1.
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Moreover, Lemma 3.2 from [8] implies that if r is large enough then the
kernel dimension of the operator (ãP + b̃Q)Qr−1 is equal to the rank of the
projector Pr−1, that is to N(2r − 1). Thus Theorem 3.5 offers a way to com-
pute the kernel dimension of a Fredholm singular integral operator (aP + bQ)
with piecewise continuous coefficients a, b. Notice that r is large enough if
K(An,r+1) = k(An,r) = 2N.

4. Convergence speed of sk (An,r) to zero

In this section we will exclusively deal with smooth coefficients a, b. Therefore
we denote by CN×N ⊂ PCN×N the algebra of all continuous matrix functions
on T, by Hs

N×N ⊂ CN×N (s > 0) the Hölder-Zygmund spaces (for the definition
see, e.g., [7, Definition 2.34]), and by RN×N ⊂ CN×N the algebra of all rational
matrix functions on T.

By the results of the previous section we have to determine the number of
the singular values of An,r tending to zero. This suggests us to investigate the
convergence speed of sk (An,r) to zero. To this end we use again general results
of our paper [8].

Lemma 4.1 (see [8, Section 6]). Let a, b ∈ PCN×N . If the singular integral

operator aP + bQ is Fredholm, then

sk(An,r)≤Cmax
(
‖An,rϕ1‖, . . . , ‖An,rϕl‖,‖WnAn,rWnψ1‖, . . . , ‖WnAn,rWnψm‖

)

with k = dim ker(aP + bQ) + dim ker(ãP + b̃Q)Qr−1, where the constant C
does not depend on n, and {ϕi}l

i=1 and {ψi}m
i=1 are some orthonormal bases of

ker(aP + bQ) and ker(ãP + b̃Q)Qr−1, respectively.

Thus, we have to estimate the norms ‖An,rϕ‖ and ‖WnAn,rWnψ‖, where
ϕ ∈ ker(aP + bQ), ψ ∈ ker(ãP + b̃Q)Qr−1, and ‖ϕ‖ = ‖ψ‖ = 1.

First for each continuous function f ∈ CN×N we put

En(f) := inf
p∈Rn

N×N

‖f − p‖∞, n ∈ Z+,

where Rn
N×N is the set of all trigonometric polynomials p on T of the form

p(t) =
∑n

k=−n pkt
k, pk ∈ C

N×N . It is well-known (see e.g. [11, Chapter 3.13])
that, for any f ∈ CN×N and n ∈ Z+, there is a polynomial pn(f) ∈ Rn

N×N such
that En(f) = ‖f − pn(f)‖∞.

Further we fix an α ∈ (0, 1), and denote by [αn] the integer part of αn, n ∈
Z+. Taking into account that (Pn − WnPr−1Wn)Pn−[αn) = Pn−[αn] whenever
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[αn] > r, we get

‖An,rϕ‖ = ‖Ln(aP + bQ)Pn(Pn −WnPr−1Wn)ϕ‖
≤ ‖Ln(aP + bQ)PnPn−[αn]ϕ‖

+ ‖Ln(aP + bQ)Pn(Pn −WnPr−1Wn)Qn−[αn]ϕ‖
≤
(
‖a‖∞ + ‖b‖∞

)
‖Qn−[αn]ϕ‖

+ ‖Ln(p[αn](a)P + p[αn](b)Q)PnPn−[αn]ϕ‖
+ ‖Ln

([
a− p[αn](a)

]
P +

[
b− p[αn](b)

]
Q
)
PnPn−[αn]ϕ‖

≤ ‖Ln(p[αn](a)P + p[αn](b)Q)Pn−[αn]ϕ‖
+
(
‖a‖∞ + ‖b‖∞

)
‖Qn−[αn]ϕ‖ + E[αn](a) + E[αn](b)

for any a, b ∈ CN×N and all n large enough. Here we used that (see [7, 7.3(c)])
‖LnaPPn‖, ‖LnaQPn‖ ≤ ‖a‖∞, for all a ∈ CN×N , and ‖Pn −WnPr−1Wn‖ ≤ 1,
for all n ∈ Z+. Now we note that the Lagrange interpolation operator Ln is
exact for any trigonometric polynomial of degree n. Hence for all sufficiently
large n

‖An,rϕ‖ ≤ ‖(p[αn](a)P + p[αn](b)Q)Pn−[αn]ϕ‖
+
(
‖a‖∞ + ‖b‖∞

)
‖Qn−[αn]ϕ‖ + E[αn](a) + E[αn](b)

≤ ‖(aP + bQ)P(n−[αn])ϕ‖
+ ‖([a− p[αn](a)]P + [b− p[αn](b)]Q)P(n−[αn])ϕ‖
+
(
‖a‖∞ + ‖b‖∞

)
‖Qn−[αn]ϕ‖ + E[αn](a) + E[αn](b)

≤ ‖(aP + bQ)ϕ‖ + ‖(aP + bQ)Q(n−[αn])ϕ‖
+
(
‖a‖∞ + ‖b‖∞

)
‖Qn−[αn]ϕ‖ + 2E[αn](a) + 2E[αn](b)

≤ 2
(
‖a‖∞ + ‖b‖∞

)
‖Qn−[αn]ϕ‖ + 2E[αn](a) + 2E[αn](b),

since ‖aI‖ ≤ ‖a‖∞, ‖P‖ = ‖Q‖ = 1, and ϕ ∈ ker(aP + bQ).

Using that W 2
n = Pn and that (see [7, proof of Theorem 7.17]) WnLn(aP +

bQ)Wn = Ln(ãP + b̃Q)Pn we get WnAn,rWn = Ln(ãP + b̃Q)Pn(Pn − Pr−1).
Hence, in the same fashion we find that for all sufficiently large n

‖WnAn,rWnψ‖ ≤ 2
(
‖a‖∞ + ‖b‖∞

)
‖Q(n−[αn])ψ‖ + 2E[αn](a) + 2E[αn](b).

Here we used that ‖a‖∞ = ‖ã‖∞ and En(a) = En(ã) for all a ∈ CN×N and all
n ∈ Z+.

Thus, we have proved the following theorem.

Theorem 4.2 (cf. Theorem 2.2). Let a, b ∈ CN×N and let α ∈ (0, 1). If the

singular integral operator aP + bQ is Fredholm, then

sk (An,r) ≤ Cmax
(
E[αn](a), E[αn](b),‖Qn−[αn]ϕ1‖, . . . , ‖Qn−[αn]ϕl‖,

‖Qn−[αn]ψ1‖, . . . , ‖Qn−[αn]ψm‖
)
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with k = dim ker(aP + bQ) + dim ker(ãP + b̃Q)Qr−1, where the constant C
does not depend on n, and {ϕi}l

i=1 and {ψi}m
i=1 are some orthonormal bases of

ker(aP + bQ) and ker(ãP + b̃Q)Qr−1, respectively.

This inequality can be used to estimate the convergence speed by the
smoothness of the functions a and b. Here are two sample results.

Corollary 4.3. Let a, b ∈ CN×N and let the singular integral operator aP + bQ
be Fredholm. If the functions a, b belong to Hs

N×N for some s > 0, then

sk (An,r) = O
(
n−s
)

as n→ ∞. (4)

If, in addition, the functions a, b belong to RN×N , then there is a ρ > 0 such

that

sk (An,r) = O
(
e−ρn

)
as n→ ∞. (5)

Proof. First we consider the case when the functions a and b belong to the
Hölder-Zygmund space Hs

N×N for some s > 0. It it well-known (see e.g. [4,
Proposition VII.2.1, Theorem VII.3.1, Theorem II.6.1]) that if the operator aP+
bQ is Fredholm, then the functions a, b are invertible and the function c := b−1a
admits a factorization c(t) = c−(t)d(t)c+(t), t ∈ T, where d is a diagonal matrix
function of the form d(t) = diag tκ1 , . . . , tκN with certain integers χ1, . . . , χN

and c±1
− ∈ Hs −

N×N , c
±1
+ ∈ Hs +

N×N . Here we denote by Hs −
N×N(Hs +

N×N) the subspace
of Hs

N×N consisting of all functions f the Fourier coefficients fn of which vanish
for n > 0(n < 0).

One can easily check that this representation of the function c allows us to
write the operator aP + bQ in the form aP + bQ = bc−(dP +Q)(c+P + c−1

− Q),
where the operators bc−I and c+P+c−1

− Q are invertible in L(L2
N) (their inverses

are c−1
− b−1I and c−1

+ P + c−Q, respectively).

Further it is well-known that if a, b ∈ Hs
N×N , then the singular integral

operator aP + bQ is bounded on Hs
N . Here Hs

N = Hs
N×1 refers to the Hölder-

Zygmund space of all column-vectors of length N with components from Hs
1×1.

In particular, the operators bc−I and c+P+c−1
− Q and their inverses are bounded

on Hs
N , too. This implies that the kernel of the operator aP + bQ ∈ L(L2

N)
coincides with kernel of the operator aP + bQ ∈ L(Hs

N). In other words the
kernel of the singular integral operator aP + bQ ∈ L(L2

N) is included in the
Hölder-Zygmund space Hs

N whenever the functions a and b belong to Hs
N×N .

Thus, in view of Theorem 4.2 it remains to estimate the order of the approx-
imation for functions from the Hölder-Zygmund spaces. It is well-known that a
function f belongs to Hs

N×N if and only if (see, e.g., [7, §2.34]) En(f) = O(n−s)
as n→ ∞. Moreover, from the Parseval’s equality we conclude that if f ∈ Hs

N ,
then (recall that En(f) = ‖f − pn(f)‖∞)

‖Qnf‖ ≤ ‖f − pn(f)‖ ≤ const ‖f − pn(f)‖∞ = O(n−s) as n→ ∞.
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Hence in the case when a, b ∈ Hs
N×N we arrive at the estimate (4).

To treat the case of rational functions a and b we introduce the spaces

L2
N(ρ) :=

{

f ∈ L2
N :

∞∑

k=−∞

e2ρ|k|‖fk‖2 <∞
}

,

where {fk} is the sequence of the Fourier coefficients of f.

Since the Fourier coefficients of rational functions decay exponentially, we
deduce that if a, b ∈ RN×N , then the singular integral operator aP + bQ is
bounded on L2

N(ρ) whenever ρ > 0 is small enough. Moreover, in this case
the function c admits such a factorization that the factors c−, c+ are rational
functions (see e.g. [4, Theorem I.2.1]).

The estimate (5) can be proved in just the same way as the estimate (4).

5. Numerical examples

First we consider the matrix representation of the operators

An,r := Ln(aP + bQ)Pn(Pn −WnPr−1Wn).

Let F2n+1 be the following (2n+ 1)N × (2n+ 1)N matrices (IN is the identity
N ×N matrix) and let F−1

2n+1 be their inverses:

F2n+1 =

(
1√

2n+ 1
e

i2πjk

2n+1 IN

)2n

j,k=0

, F−1
2n+1 =

(
1√

2n+ 1
e−

i2πjk

2n+1 IN

)2n

j,k=0

.

With respect to the standard basis of imPn we get

An,r = F−1
2n+1 (a(tj)δj,k)

2n

j,k=0 F2n+1Pn,r + F−1
2n+1 (b(tj)δj,k)

2n

j,k=0 F2n+1Qn,r,

where δj,k is the Kronecker symbol, and

Pn,r = diag(0IN , . . . , 0IN
︸ ︷︷ ︸

r

, IN , . . . , IN
︸ ︷︷ ︸

n+1−r

, 0IN , . . . , 0IN
︸ ︷︷ ︸

n

)

Qn,r = diag(0IN , . . . , 0IN
︸ ︷︷ ︸

n+1

, IN , . . . , IN
︸ ︷︷ ︸

n−max(0,r−1)

, 0IN , . . . , 0IN
︸ ︷︷ ︸

max(0,r−1)

).

Further, taking into account that the singular values can be defined as approxi-
mation numbers (see (1)), we find that sk(An,r) = sk(Bn,r), for all k, n, r, where
the matrices Bn,r are defined by

Bn,r = F2n+1An,rF
−1
2n+1

= (a(tj)δj,k)
2n

j,k=0 F2n+1Pn,rF
−1
2n+1 + (b(tj)δj,k)

2n

j,k=0 F2n+1Qn,rF
−1
2n+1.
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Here we used that ‖F2n+1‖ = ‖F−1
2n+1‖ = 1. The advantage of matrices Bn,r over

An,r is the ability to compute the matrices F2n+1Pn,rF
−1
2n+1, F2n+1Qn,rF

−1
2n+1 in

advance, that is independent of the functions a, b. After that one has only to mul-
tiply this matrices by the block diagonal matrices (a(tj)δj,k)

2n

j,k=0 , (b(tj)δj,k)
2n

j,k=0 .

Now we present three examples, where we compare the applicability of the
finite section method and of the collocation method to compute the kernel
dimension of the Toeplitz operator T (a) and/or the singular integral operator
aP +Q.
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Figure 1: Finite section method for T (a1) and collocation method for a1P +Q

Example 1. First we consider the scalar function

a1(t) = −2.5t+ 2.25 + 7t−1 − 3t−2 = (t−1 − 2.5)t−1(t− 2)(t+ 1.5).

Using the Wiener-Hopf factorization theory and elementary properties of Toep-
litz operators we obtain that dim kerT (a1) = dim ker(a1P + Q) = 1 and
dim kerT (ã1) = dim ker(ã1P + Q) = 0. In the Figure 1 we plotted the first
ten singular values for Tn,0(a1) and An,0. For both methods (finite section and
collocation) the first singular value converges very quickly to zero, and the sec-
ond singular value stays away from zero, that is (see Theorems 2.1 and 3.5)
k = dim kerT (a1) + dim kerT (ã1) = dim ker(a1P +Q) + dim ker(ã1P +Q) = 1.

Example 2. Next we consider the 2 × 2 matrix function

a2(t) =

(
10−9t
10t−9

t3

10t−9
+ t2 sin t−1

0 1 − 4t

)

=

( 1
10−9t−1 t sin t−1

0 t−1 − 4

)(
t−1 0

0 t

)(
10 − 9t t3

0 1

)

.
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Again using the Wiener-Hopf factorization theory we find that dim kerT (a2) =
dim ker(a2P +Q) = 1.
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Figure 2: Finite section method for T (a2)
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Figure 3: Collocation method for a2P +Q

In the Figures 2 and 3 we plotted the first fifteen singular values for Tn,r(a2)
and An,r, respectively, with r = 1 and r = 2. The pictures show that we have

for finite section method −
{

3-splitting property, r = 1

5-splitting property, r = 2

for collocation method −
{

3-splitting property, r = 1

7-splitting property, r = 2.
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Thus, taking into account the remarks after Theorems 2.1 and 3.5, we obtain
that

dim kerT (a2) =

{

3 − 2 ∗ 1, r = 1

5 − 2 ∗ 2, r = 2
= 1

dim ker(a2P +Q) =

{

3 − 2 ∗ (2 − 1), r = 1

7 − 2 ∗ (4 − 1), r = 2
= 1.

Example 3. Now we consider the following piecewise continuous function

a3(e
iθ) = ψ0.55(e

iθ) =
π

sin 0.55π
ei0.55πe−i0.55θ, 0 ≤ θ < 2π.

It is clear that the function a3 has only one point of discontinuity at eiθ = 1.
Moreover it is known (see e.g. [3, §1.24]) that the operators T (a3) and a3P +Q
are Fredholm and dim kerT (a3) = dim ker(a3P + Q) = 1, dim kerT (ã3) =
dim ker(ã3P + Q) = 0. In the Figure 4 we plotted the first ten singular values
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Figure 4: Finite section method for T (a3) and collocation method for a3P +Q

for Tn,0(a3) and An,0. Looking at the pictures one can not see whether the
singular values have the k-splitting property, although Theorems 2.1 and 3.5
imply that for both methods (finite section and collocation) we have the 1-
splitting property.

Thus we can conclude that the finite section method and the collocation
method are equivalently applicable to compute the kernel dimension of the
Toeplitz operator T (a) and/or the singular integral operator aP + Q. More
precisely, if the k-splitting property is clearly observed for the finite section
method, then it is clearly observed for the collocation method too. And if one
can not see the k-splitting property for the collocation method, then the finite
section method is also useless.
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