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Abstract. In this paper we study the Bernstein-Schnabl operators associated with
a continuous selection of Borel measures on the unit interval. We investigate their
approximation properties by presenting several estimates of the rate of convergence
in terms of suitable moduli of smoothness. We also study some shape preserving
properties as well as the preservation of the convexity. Moreover we show that their
iterates converge to a Markov semigroup whose generator is a degenerate second
order elliptic differential operator on the unit interval. Qualitative properties of this
semigroup are also investigated together with its asymptotic behaviour.
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Introduction

Bernstein-Schnabl operators were first introduced by Schnabl (see [27, 28]) in
the context of sets of probability Radon measures on compact Hausdorff spaces.
Subsequently Grossman in [16] proposed a general method of constructing
Bernstein-Schnabl operators on an arbitrary convex compact subset of a lo-
cally convex space and he showed that they are an approximation process for
continuous functions. A particular class of these operators has been also studied
by the first author [2] (see also [3]) and, subsequently, by several other authors
(see [8, Chapter 6] and the relevant Notes and References). Their construction
essentially involves positive projections [8, Section 6.1] and they satisfy many
additional properties useful for the study of evolution problems [8, Section 6.2].
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In this paper we deepen the study of the Bernstein-Schnabl operators as-
sociated with a general continuous selection of probability Borel measures on
the interval [0, 1], which does not necessarily arise from a positive projection.
These operators seem to have some interest because they furnish new general
approximation processes for continuous functions and they also approximate the
solutions of the initial-boundary problems associated with a class of degenerate
diffusion equations.

In the first section we recall their definition and discuss some examples
of them. After that, we investigate their approximation properties and show
several estimates of the rate of convergence by means of suitable moduli of
smoothness. Shape preserving properties are discussed in Section 2. In par-
ticular, we investigate some conditions under which these operators preserve
the convexity. In the third section we show that suitable iterates of Bernstein-
Schnabl operators converge to a Markov semigroup on C([0, 1]) whose generator
is a degenerate differential operator of the form

Au(x) := α(x)u′′(x) (0 < x < 1) (*)

defined for every u ∈ C([0, 1]) ∩ C2(]0, 1[) satisfying limx→0+ α(x)u′′(x) = 0 =
limx→1− α(x)u′′(x) and other additional hypotheses. Here the function α is

continuous and positive on [0, 1] and 0 < α(x) ≤ x(1−x)
2

(0 < x < 1). By means
of Bernstein-Schnabl operators we establish some qualitative properties of this
semigroup and, in particular, its asymptotic behaviour. In the same section
we also study the generation properties of general differential operators of the
form (*) and determine suitable continuous selections of Borel measures such
that the iterates of the corresponding Bernstein-Schnabl operators converge to
the given Markov semigroup.

1. Bernstein-Schnabl operators

Throughout this paper we denote by C([0, 1]) the space of all real valued con-
tinuous functions on the interval [0, 1] endowed with the sup-norm ‖ · ‖∞.

Let B([0, 1]) be the σ-algebra of all Borel subsets of [0, 1] and denote by
M+([0, 1]) the cone of all (regular) Borel measures on [0, 1]. The support of any
µ ∈ M+([0, 1]) is denoted by Suppµ. For every x ∈ [0, 1] we denote by εx the
point-mass measure concentrated at x, i.e.,

εx(B) :=

{

1 if x ∈ B,

0 if x /∈ B,
for every B ∈ B([0, 1]).

The symbol 1 stands for the constant function 1 and, for every n ≥ 1,
en ∈ C([0, 1]) denotes the function en(t) := tn (0 ≤ t ≤ 1).
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A continuous selection of probability Borel measures on [0, 1] is a family
(µx)0≤x≤1 of probability Borel measures on [0, 1] such that for every f ∈C([0, 1])
the function

x 7−→
∫ 1

0

fdµx (1.1)

is continuous on [0, 1]. Such a function will be denoted by T (f), i.e.,

T (f)(x) :=

∫ 1

0

fdµx (0 ≤ x ≤ 1). (1.2)

The operator T : C ([0, 1]) −→ C ([0, 1]) is positive (hence continuous) and
T (1) = 1 (and hence ‖T‖ = 1).

In fact, by Riesz representation theorem, each positive linear operator
T : C([0, 1]) −→ C([0, 1]) such that T (1) = 1, generates a continuous selection
of probability Borel measures on [0, 1] satisfying (1.2). Thus, all the definitions
and results we shall develop in this paper, could be equally attributed to a
general positive linear operator as above. However we prefer to handle Borel
measures instead of linear operators for the sake of simplicity.

From now on we shall fix a continuous selection (µx)0≤x≤1 of probability
Borel measures on [0, 1] satisfying the following additional assumption:

∫ 1

0

e1dµx = x (0 ≤ x ≤ 1) (1.3)

(i.e., T (e1) = e1). By Jensen’s inequality [9, Theorem 3.9] it follows that
x2 ≤ T (e2)(x) ≤ x (0 ≤ x ≤ 1). Therefore

0 ≤ T (e2)(x) − x2 ≤ x− x2 = x(1 − x) (0 ≤ x ≤ 1). (1.4)

By means of such a selection it is possible to define a sequence of positive
linear operators.

Definition 1.1. For every n ≥ 1, the n-th Bernstein-Schnabl operator asso-
ciated with a given selection (µx)0≤x≤1 satisfying (1.3) is the positive linear
operator Bn : C([0, 1]) −→ C([0, 1]) defined for every f ∈ C([0, 1]) and x ∈ [0, 1]
as

Bn(f)(x) : =

∫

[0,1]n
f

(
x1 + · · · + xn

n

)

dµn
x(x1, . . . , xn)

=

∫ 1

0

· · ·
∫ 1

0

f

(
x1 + · · · + xn

n

)

dµx(x1) · · · dµx(xn),

(1.5)

where µn
x denotes the tensor product of µx with itself n-times.
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Each positive linear operator Bn maps the space C([0, 1]) into itself because
of (1.1), it is continuous with respect to the sup-norm and ‖Bn‖ = 1 since
Bn(1) = 1. Note that, if µx = xε1 + (1 − x)ε0 for all x ∈ [0, 1], they turn
into the well-known Bernstein operators (see, e.g., [8, pp. 218–220]) which are
defined by setting, for every n ≥ 1, f ∈ C([0, 1]) and x ∈ [0, 1],

Bn(f)(x) :=
n∑

k=0

(
n

k

)

xk(1 − x)n−kf

(
k

n

)

.

Here we discuss some other examples.

Examples 1.2.

1. For every x ∈ [0, 1] consider the measure µx := α(x)ε0 + β(x)ε1/2 + γ(x)ε1,
where α, β, γ ∈ C([0, 1]) are such that 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 0 ≤ γ ≤ 1,

α + β + γ = 1 and x = β(x)
2

+ γ(x) (0 ≤ x ≤ 1). The Bernstein-Schnabl
operators are given by

Bn(f)(x) =
n∑

h=0

n−h∑

k=0

(
n

h

)(
n− h

k

)

α(x)n−h−kβ(x)hγ(x)kf

(
h+ 2k

2n

)

for every f ∈ C([0, 1]), x ∈ [0, 1], n ≥ 1.

2. Let λ ∈ Cb(]0, 1[) be a function satisfying 0 ≤ λ ≤ 1 and, for every 0 ≤ x ≤ 1,
consider the probability Borel measure µx defined as

µx :=

{
λ(x)[xε1 + (1 − x)ε0] + (1 − λ(x))εx if 0 < x < 1,

εx if x = 0, 1.

The family (µx)0≤x≤1 is a continuous selection of probability Borel measures sat-
isfying (1.3) and the Bernstein-Schnabl operators associated with the continuous
selection (µx)0≤x≤1 are the Lototsky-Schnabl operators defined by

Ln,λ(f)(x) =







n∑

h=0

n−h∑

k=0

(
n

h

)(
n−h
k

)

xk(1−x)n−h−k

× λ(x)n−h(1 −λ(x))hf

(
k

n
+
h

n
x

) if 0 < x < 1,

f(x) if x = 0, 1,

for every f ∈ C([0, 1]), x ∈ [0, 1], n ≥ 1 (see [4, 8]).

The next identities turn out to be useful in studying the convergence of the
Bernstein-Schnabl operators. They can be proved by direct calculations which
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we omit by the sake of brevity (see also [8, Section 6.1]). For every n ≥ 1 the
following identities hold true:

Bn(1) = 1, (1.6)

Bn(e1) = e1, (1.7)

Bn(e2) =
1

n

[
(n− 1) e2 + T (e2)

]
, (1.8)

Bn(e3) =
1

n2

[
T (e3) + 3(n− 1) e1 T (e2) + (n− 1)(n− 2) e3

]
, (1.9)

Bn(e4) =
1

n3

[
T (e4) + 4(n− 1) e1 T (e3) + 3(n− 1)T (e2)

2

+ 6(n− 1)(n− 2) e2 T (e2) + (n− 1)(n− 2)(n− 3) e4
]
,

(1.10)

where T is given by (1.2).
Since the operators Bn are linear and positive, by the Korovkin theorem

(see, e.g., [8, Theorem 4.2.7]) and the above formulas it follows that (Bn)n≥1 is a
positive approximation process in the space C([0, 1]), i.e., for every f ∈ C([0, 1])

lim
n→∞

Bn(f) = f uniformly on [0, 1]. (1.11)

It is possible to estimate the rate of convergence described in (1.11). We
shall actually present both pointwise and uniform estimates of the rate of con-
vergence by means of the usual moduli of smoothness of first and second order
ω(f, δ) and ω2(f, δ) (δ > 0), respectively, defined as

ω(f, δ) := sup {|f(x) − f(y)| : |x− y| ≤ δ, x, y ∈ [0, 1]}

and

ω2(f, δ) := sup

{∣
∣
∣
∣
f(x) − 2f

(
x+ y

2

)

+ f(y)

∣
∣
∣
∣
: |x− y| ≤ 2δ, x, y ∈ [0, 1]

}

,

for every real valued bounded function f on [0, 1] and δ > 0 (see, e.g., [8, Section
5.1]), as well as by the second order Ditzian-Totik modulus ωϕ

2 (f, δ) (δ > 0)
defined by means of the weight function ϕ(x) :=

√

x(1 − x), x ∈ [0, 1], as

ωϕ
2 (f, δ) := sup

{∣
∣
∣
∣
f(x)−2f

(
x+ y

2

)

+f(y)

∣
∣
∣
∣
: |x−y| ≤ 2δϕ

(
x+y

2

)

, x, y∈ [0, 1]

}

for every real valued bounded function f and δ > 0 on [0, 1] (see [12,29]).

We first need some preliminary remarks. As usual, for every 0 ≤ x ≤ 1, we
shall denote by ψx the function ψx(t) := t − x (0 ≤ t ≤ 1). It will be useful to
evaluate, for every n ∈ N and x ∈ [0, 1], the moments of the first and second
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order of the operators Bn. Taking formulae (1.7) and (1.8) into account, for
every x ∈ [0, 1], we get

Bn(ψx)(x) = 0 (1.12)

Bn(ψ2
x)(x) =

1

n

(
T (e2)(x) − x2

)
. (1.13)

If we set

M := max
0≤x≤1

(
T (e2)(x) − x2

)
, (1.14)

we further obtain Bn(ψ2
x)(x) ≤ M

n
≤ 1

4n
(see (1.4)).

We are now in a position to show the following estimates, which would be
compared with other ones stated for arbitrary convex compact subsets, e.g.,
in [5] and [20,21].

Theorem 1.3. Fix n ≥ 1, f ∈ C([0, 1]) and x ∈ [0, 1]. Then:

(1) |Bn(f)(x) − f(x)| ≤ (1 + T (e2)(x) − x2)ω
(
f, 1√

n

)

and hence

‖Bn(f) − f‖∞ ≤ (1 +M)ω

(

f,
1√
n

)

, (1.15)

where M is given by (1.14);

(2) |Bn(f)(x) − f(x)| ≤
(

1 + T (e2)(x)−x2

2

)

ω2

(
f, 1√

n

)

and hence

‖Bn(f) − f‖∞ ≤
(

1 +
M

2

)

ω2

(

f,
1√
n

)

; (1.16)

(3) |Bn(f)(x) − f(x)| ≤ 3
2

(

1 + T (e2)(x)−x2

x(1−x)

)

ωϕ
2

(
f, 1√

n

)
(1.17)

and hence

‖Bn(f) − f‖∞ ≤ 3ωϕ
2

(

f,
1√
n

)

. (1.18)

Proof. By a general estimate proved in [8, Proposition 5.1.5], given δ > 0, by
(1.8) we have

|Bn(f)(x) − f(x)| ≤
[

1 +
1

δ2
(Bn(e2)(x) − e2(x))

]

ω(f, δ)

=

(

1 +
1

δ2

T (e2)(x) − x2

n

)

ω(f, δ).

Setting δ = 1√
n

we obtain the pointwise estimate of (1) and hence (1.15).
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By [22] (see also [15, Theorem 10]) we get

|Bn(f)(x) − f(x)| ≤ |Bn(1)(x) − 1| |f(x)| + 1

δ
|Bn(ψx)(x)|ω(f, δ)

+

(

Bn(1)(x) +
1

2δ2
Bn(ψ2

x)(x)

)

ω2(f, δ).
(1.19)

Since Bn(1) = 1 and Bn(ψx)(x) = 0, from (1.19) it follows that

|Bn(f)(x) − f(x)| ≤
(

1 +
1

2δ2

T (e2)(x) − x2

n

)

ω2(f, δ).

Setting δ = 1√
n

we obtain the first estimate of (2) and hence (1.16).

We now observe that the Bernstein-Schnabl operators reproduce linear func-
tions. By using a general estimate for positive linear operators reproducing
linear functions [14, Theorem 15] we have

|Bn(f)(x) − f(x)| ≤ 3

2

(

1 +
1

δ2

Bn(ψ2
x)(x)

x(1 − x)

)

ωϕ
2 (f, δ). (1.20)

Replacing (1.13) in (1.20) and setting δ = 1√
n
, we get (1.17). Finally (1.18)

follows from (1.17) and (1.4).

2. Some shape preserving properties of Bernstein-Schnabl
operators

In this section we prove that, under suitable hypotheses, Bernstein-Schnabl
operators preserve the class of increasing continuous functions as well as the
one of Hölder continuous functions. Finally we investigate the behaviour of the
operators Bn on convex functions.

Theorem 2.1. Consider the sequence of the operators Bn defined by (1.5) and

suppose that the operator T , given in (1.2), maps increasing functions into in-

creasing functions. Then, for every n ≥ 1, Bn(f) is increasing on [0, 1], provided

f is increasing on [0, 1].

Proof. If n = 1 the result is obvious because B1 = T . Suppose n ≥ 2 and
consider an increasing function f ∈ C([0, 1]) and x ∈ [0, 1]. We shall use some
auxiliary functions introduced in [26] (see also [8, Theorem 6.1.21]).

For every x1, . . . , xn−1∈ [0, 1] we consider the function fx
x1,...,xn−1

: [0, 1] −→ R

defined by

fx
x1,...,xn−1

(t) := f

(
x1 + · · · + xn−1 + t

n

)

(0 ≤ t ≤ 1). (2.1)
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Moreover, for every k = 2, . . . , n− 1 we consider the functions on [0, 1] defined
by the following recursive formula:

fx
x1,...,xn−k

(t) := T (fx
x1,...,xn−k,t

)(x) (0 ≤ t ≤ 1).

Finally we define

fx(t) := T (fx
t )(x) (0 ≤ t ≤ 1).

By finite induction it is easy to prove that fx
x1,··· ,xn−k

is increasing for every
k = 1, . . . , n− 1. Moreover, we observe that fx is increasing as well.

Now let y ∈ [0, 1], x < y and observe that for every k = 1, . . . , n− 1

T
(
f y

x1,...,xk

)
(x) ≤ T

(
f y

x1,...,xk

)
(y), (2.2)

T (f y)(x) ≤ T (f y)(y). (2.3)

Since fx
x1,...,xn−1

= f y
x1,...,xn−1

, we have

Bn(f)(x) =

∫

[0,1]n
f

(
x1 + · · · + xn

n

)

dµn
x(x1, . . . , xn)

=

∫

[0,1]n−1

∫ 1

0

fx
x1,...,xn−1

(xn) dµx(xn) dµn−1
x (x1, . . . , xn−1)

=

∫

[0,1]n−1

T
(
fx

x1,...,xn−1

)
(x) dµn−1

x (x1, . . . , xn−1)

=

∫

[0,1]n−1

T
(
f y

x1,...,xn−1

)
(x) dµn−1

x (x1, . . . , xn−1).

From (2.2) it follows that

Bn(f)(x) ≤
∫

[0,1]n−1

T
(
f y

x1,...,xn−1

)
(y) dµn−1

x (x1, . . . , xn−1)

=

∫

[0,1]n−2

[∫ 1

0

f y
x1,...,xn−2

(xn−1) dµx(xn−1)

]

dµn−2
x (x1, . . . , xn−2)

=

∫

[0,1]n−2

T
(
f y

x1,...,xn−2

)
(x) dµn−2

x (x1, . . . , xn−2)

≤
∫

[0,1]n−2

T
(
f y

x1,...,xn−2

)
(y) dµn−2

x (x1, . . . , xn−2)

=

∫

[0,1]n−2

f y
x1,...,xn−3

(xn−2) dµ
n−2
x (x1, . . . , xn−2)

≤ · · · ≤
∫ 1

0

T (f y
x1

)(x) dµx(x1),
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and, by (2.3),

Bn(f)(x) ≤
∫ 1

0

T (f y
x1

)(y)dµx(x1) =

∫ 1

0

f y(x1)dµx(x1) = T (f y)(x) ≤ T (f y)(y).

On the other hand Bn(f)(y) = T (f y)(y), because

Bn(f)(y) =

∫

[0,1]n
f

(
x1 + · · · + xn

n

)

dµn
y (x1, . . . , xn)

=

∫

[0,1]n−1

∫ 1

0

f y
x1,...,xn−1

(xn) dµy(xn) dµn−1
y (x1, . . . , xn−1)

=

∫

[0,1]n−1

T
(
f y

x1,...,xn−1

)
(y) dµn−1

y (x1, . . . , xn−1)

=

∫

[0,1]n−1

f y
x1,...,xn−2

(xn−1) dµy(xn−1) dµ
n−2
y (x1, . . . , xn−2)

=

∫

[0,1]n−2

T
(
f y

x1,...,xn−2

)
(y) dµn−2

y (x1, . . . , xn−2)

= · · · =

∫ 1

0

T
(
f y

x1

)
(y) dµy(x1) = T (f y)(y).

Accordingly, since x, y ∈ [0, 1] were arbitrarily chosen, the proof is complete.

Remark 2.2. In the particular case of Examples 1.2, 2, with λ constant, the
above result has been proved in [1, Theorem 1].

Now we proceed to show the property of preserving classes of Hölder conti-
nuous functions. For given M > 0 and 0 ≤ α ≤ 1 we shall denote by LipMα the
set of all f ∈ C([0, 1]) such that |f(x)−f(y)| ≤M |x−y|α for every x, y ∈ [0, 1].

We have the following result whose proof follows the same line of [26] (see
also [8, Theorem 6.1.21]) and so we omit it.

Theorem 2.3. Let (Bn)n≥1 be the sequence of the Bernstein-Schnabl operators

defined by (1.5) and suppose that there exists c ≥ 1 such that

T (f) ∈ Lipc1 for every f ∈ Lip11,

where T is given by (1.2). Then, Bn(f) ∈ LipcM1 for every f ∈ LipM1 and

n ≥ 1.

Since ‖Bn‖ = 1, according to the above theorem together with Corol-
lary 6.1.20 in [8], we immediately have the further corollary.
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Corollary 2.4. If T (Lip11) ⊂ Lipc1 for some c ≥ 1, then for every n ≥ 1,
f ∈ C([0, 1]), δ > 0, M > 0 and 0 < α ≤ 1

ω(Bn(f), δ) ≤ (1 + c)ω(f, δ) and Bn(LipMα) ⊂ LipcαMα.

In particular, if T (Lip11) ⊂ Lip11, then

ω(Bn(f), δ) ≤ 2ω(f, δ) and Bn(LipMα) ⊂ LipMα.

As regards the behaviour of Bernstein-Schnabl operators on convex func-
tions we already know from general results for convex compact sets that, if
f ∈ C([0, 1]) is convex, then

f ≤ Bn+1(f) ≤ Bn(f) ≤ T (f) (2.4)

(see [8, 24,25]).

Next we investigate some conditions under which the Bernstein-Schnabl
operators preserve the convexity. This is certainly true for the classical Bern-
stein operators and in the case of the Lototsky-Schnabl operators with λ con-
stant in [0, 1] (see [1, Theorem 1] and [8, Theorem 6.1.21]). For the general case
we shall require additional hypotheses on the continuous selection (µx)0≤x≤1.
More precisely we assume that:

(c1) The operator T , given in (1.2), maps continuous convex functions into
(continuous) convex functions;

(c2) For every convex function f ∈ C([0, 1]) and for every x, y ∈ [0, 1]

∫

[0,1]2
ϕfd(µx ⊗ µx + µy ⊗ µy) ≥ 2

∫

[0,1]2
ϕfd(µx ⊗ µy), (2.5)

where ϕf (s, t) := f
(

s+t
2

)
, (s, t) ∈ [0, 1]2 and the symbol ⊗ denotes the

tensor product of measures.

For a given n ≥ 1 and f ∈ C([0, 1]) set

Fn(f ;x1, . . . , xn) :=

∫ 1

0

· · ·
∫ 1

0

f

(
t1 + · · · + tn

n

)

dµx1(t1) . . . dµxn
(tn),

where xi ∈ [0, 1], for every i = 1, . . . , n.

We first observe that the function Fn(f ; . . . ) is invariant with respect to any
permutation of the indices 1, . . . , n. Fn(f ; . . . ) is convex with respect to each
variable xi, i = 1, . . . , n. Finally, for all xi ∈ [0, 1], i = 1, . . . , n, by using (2.5)
we can write

2Fn(f ;x1, . . . , xi, xi+1, . . . , xn)

≤ Fn(f ;x1, . . . , xi, xi, . . . , xn) + Fn(f ;x1, . . . , xi+1, xi+1, . . . , xn).
(2.6)
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Moreover, for every p, q ≥ 0, p+ q = n, and for every x, y ∈ [0, 1] set

Sn,p,q(f ;x, y) := Fn(f ;x, . . . , x
︸ ︷︷ ︸

p

, y, . . . , y
︸ ︷︷ ︸

q

) + Fn(f ;x, . . . , x
︸ ︷︷ ︸

q

, y, . . . , y
︸ ︷︷ ︸

p

). (2.7)

Note that
Sn,p,q(f ;x, y) = Sn,q,p(f ;x, y) (2.8)

and the following lemma holds.

Lemma 2.5. Under hypotheses (c1) and (c2), for every convex f ∈ C([0, 1]),
k ≥ 1 and x, y ∈ [0, 1] we have

Sk,k−1,1(f ;x, y) ≤ Sk,k,0(f ;x, y). (2.9)

Proof. For k = 1, (2.9) is satisfied by virtue of (2.8). Assume that k = 2m+ 1
with m ≥ 1. By (2.6) and (2.7) we obtain

2Sk,2m,1(f ;x, y) = 2Fk(f ;x, . . . , x, y) + 2Fk(f ;x, y, . . . , y)

≤ Fk(f ;x, . . . , x, x, x) + Fk(f ;x, . . . , x, y, y)

+ Fk(f ;x, x, y, . . . , y) + Fk(f ; y, y, y, . . . , y)

= Sk,2m+1,0(f ;x, y) + Sk,2m−1,2(f ;x, y).

Hence Sk,2m,1(f ;x, y) ≤ Sk,2m+1,0(f ;x, y) + Sk,2m−1,2(f ;x, y). With an analogue
reasoning it is possible to prove the following inequalities:

2Sk,2m−1,2(f ;x, y) ≤ Sk,2m,1(f ;x, y) + Sk,2m−2,3(f ;x, y)

2Sk,2m−2,3(f ;x, y) ≤ Sk,2m−1,2(f ;x, y) + Sk,2m−3,4(f ;x, y)

...

2Sk,m+1,m(f ;x, y) ≤ Sk,m+2,m−1(f ;x, y) + Sk,m,m+1(f ;x, y).

From (2.8) it follows that Sk,m+1,m(f ;x, y) = Sk,m,m+1(f ;x, y) and so

Sk,m+1,m(f ;x, y) ≤ Sk,m+2,m−1(f ;x, y).

Subsequently we haveSk,m+1,m(f ;x, y)≤Sk,m+2,m−1(f ;x, y)≤Sk,m+3,m−2(f ;x, y)
≤ · · · ≤ Sk,2m+1,0(f ;x, y) and the last inequality actually gives (2.9). Assume
now that k = 2m, m ≥ 1. With an analogue reasoning we get

2Sk,2m−1,1(f ;x, y) ≤ Sk,2m,0(f ;x, y) + Sk,2m−2,2(f ;x, y),

2Sk,2m−2,2(f ;x, y) ≤ Sk,2m−1,1(f ;x, y) + Sk,2m−3,3(f ;x, y),

...

2Sk,m,m(f ;x, y) ≤ Sk,m+1,m−1(f ;x, y) + Sk,m−1,m+1(f ;x, y).
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Since Sk,m+1,m−1(f ;x, y) = Sk,m−1,m+1(f ;x, y) we have

Sk,m,m(f ;x, y) ≤ Sk,m+1,m−1(f ;x, y)

and hence Sk,m,m(f ;x, y) ≤ Sk,m+1,m−1(f ;x, y) ≤ · · · ≤ Sk,2m,0(f ;x, y). And,
again, the last inequality gives (2.9).

At this point we can state the following result.

Theorem 2.6. Consider the Bernstein-Schnabl operators Bn associated with

a continuous selection of probability Borel measures (µx)0≤x≤1 defined by (1.5)
and assume that (c1) and (c2) hold true. Then, for every n ≥ 1 and for every

convex function f ∈ C([0, 1]), Bn(f) is convex on [0, 1].

Proof. If n = 1, B1(f) = T (f) is convex. Suppose n ≥ 2 and consider a convex
function f ∈ C([0, 1]). Since Bn(f) is continuous, it is sufficient to show that,
for every x, y ∈ [0, 1],

Bn(f)

(
x+ y

2

)

≤ 1

2
Bn(f)(x) +

1

2
Bn(f)(y). (2.10)

For every x1, . . . , xn−1 ∈ [0, 1] consider the auxiliary function defined by (2.1).
Condition (c1) implies that the function x ∈ [0, 1] 7−→ T

(
fx

x1,...,xn−1

)
(x) is

convex too, because fx
x1,...,xn−1

is convex. Moreover

T
(

f
x+y

2
x1,...,xn−1

) (
x+ y

2

)

≤ 1

2
T

(
fx

x1,...,xn−1

)
(x) +

1

2
T

(
f y

x1,...,xn−1

)
(y) (2.11)

for every x, y ∈ [0, 1], since fx
x1,...,xn−1

= f y
x1,...,xn−1

.

We now proceed by reasoning by induction on n. Suppose that (2.10) is
true for n− 1 and consider the function δn(f, xn) defined by

δn(f, xn)(t) := f

(
n− 1

n
t+

1

n
xn

)

(0 ≤ t ≤ 1).

Then

Bn(f)

(
x+ y

2

)

=

∫

[0,1]n
f

(
x1 + · · · + xn

n

)

dµn
x+y

2

(x1, . . . , xn)

=

∫

[0,1]n
δn(f, xn)

(
x1 + · · · + xn−1

n− 1

)

dµn
x+y

2

(x1, . . . , xn)

=

∫ 1

0

Bn−1 (δn(f, xn))

(
x+ y

2

)

dµx+y
2

(xn).
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Since (2.10) is true for n− 1, we get

Bn(f)

(
x+ y

2

)

≤ 1

2

∫ 1

0

Bn−1 (δn(f, xn)) (x) dµx+y
2

(xn)

+
1

2

∫ 1

0

Bn−1 (δn(f, xn)) (y) dµx+y
2

(xn)

and, by the definitions of Bn−1 and δn(f, xn), we obtain

Bn(f)

(
x+ y

2

)

≤ 1

2

∫

[0,1]n−1

∫ 1

0

f

(
x1+· · ·+xn

n

)

dµx+y
2

(xn)dµn−1
x (x1, . . . , xn−1)

+
1

2

∫

[0,1]n−1

∫ 1

0

f

(
x1 + · · · + xn

n

)

dµx+y
2

(xn)dµn−1
y (x1, . . . , xn−1)

=
1

2

∫

[0,1]n−1

T
(

f
x+y

2
x1,...,xn−1

) (
x+ y

2

)

dµn−1
x (x1, . . . , xn−1)

+
1

2

∫

[0,1]n−1

T
(

f
x+y

2
x1,...,xn−1

)(
x+ y

2

)

dµn−1
y (x1, . . . , xn−1).

Now, by (2.11) we have

Bn(f)

(
x+ y

2

)

≤ 1

4

∫

[0,1]n−1

T
(
fx

x1,...,xn−1

)
(x) dµn−1

x (x1, . . . , xn−1)

+
1

4

∫

[0,1]n−1

T
(
f y

x1,...,xn−1

)
(y) dµn−1

x (x1, . . . , xn−1)

+
1

4

∫

[0,1]n−1

T
(
fx

x1,...,xn−1

)
(x) dµn−1

y (x1, . . . , xn−1)

+
1

4

∫

[0,1]n−1

T
(
f y

x1,...,xn−1

)
(y) dµn−1

y (x1, . . . , xn−1)

=
1

4

∫

[0,1]n−1

∫ 1

0

fx
x1,...,xn−1

(xn) dµx(xn) dµn−1
x (x1, . . . , xn−1)

+
1

4

∫

[0,1]n−1

∫ 1

0

f y
x1,...,xn−1

(xn)dµy(xn) (y) dµn−1
x (x1, . . . , xn−1)

+
1

4

∫

[0,1]n−1

∫ 1

0

fx
x1,...,xn−1

(xn) dµx(xn) dµn−1
y (x1, . . . , xn−1)

+
1

4

∫

[0,1]n−1

∫ 1

0

f y
x1,...,xn−1

(xn) dµy(xn) dµn−1
y (x1, . . . , xn−1),
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that is

Bn(f)

(
x+ y

2

)

≤ 1

4
Bn(f)(x) +

1

4
Bn(f)(y)

+
1

4

∫ 1

0

∫

[0,1]n−1

f

(
x1 + · · · + xn

n

)

dµn−1
x (x1, . . . , xn−1) dµy(xn)

+
1

4

∫ 1

0

∫

[0,1]n−1

f

(
x1 + · · · + xn

n

)

dµn−1
y (x1, . . . , xn−1) dµx(xn).

Note that Bn(f)(x) = Fn(f ;x, . . . , x) and hence the last inequality turns into

Bn(f)

(
x+ y

2

)

≤ 1

4
Bn(f)(x) +

1

4
Fn(f ;x, . . . , x, y) +

1

4
Fn(f ; y, . . . , y, x) +

1

4
Bn(f)(y)

=
1

4
Bn(f)(x) +

1

2
Sn,n−1,1(f ;x, y) +

1

4
Bn(f)(y).

Finally, by (2.9) for k = n and by (2.7) and (2.8),

Bn(f)

(
x+ y

2

)

≤ 1

4
Bn(f)(x) +

1

2
Sn,n,0(f ;x, y) +

1

4
Bn(f)(y)

=
1

2
Bn(f)(x) +

1

2
Bn(f)(y),

since

2Sn,n,0(f ;x, y) = Fn(f ;x, . . . , x) + Fn(f ; y, . . . , y) = Bn(f)(x) +Bn(f)(y).

This completes the proof.

Examples 2.7. Examples of measures satisfying the hypotheses (c1) and (c2)
of the previous theorem are illustrated below:
1. µx := (1 − x)ε0 + xε1 (0 ≤ x ≤ 1).

2. For a given λ ∈ [0, 1], set µx := (1 − λ)εx + λ(1 − x)ε0 + λxε1 (0 ≤ x ≤ 1).

3. Consider a concave function β ∈ C([0, 1]) such that 0 ≤ β(x) ≤ min{x, 1−x}
and set µx := (1 − x− β(x))ε0 + 2β(x)ε1/2 + (x− β(x))ε1.

3. Bernstein-Schnabl operators and their associated
Markov semigroups

In this last section we show that suitable iterates of Bernstein-Schnabl operators
converge to a Markov semigroup on C([0, 1]) whose generator is a one-dimen-
sional second-order elliptic degenerate differential operator. We also study some
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qualitative properties of this semigroup and, in particular, its asymptotic be-
haviour. In the last part of the section we determine those differential operators
which generate those Markov semigroups which can be represented by iterates
of suitable Bernstein-Schnabl operators.

In the sequel we denote by C0(]0, 1[) the space of all continuous functions
on ]0, 1[ which vanish at 0 and 1. This space is a closed subspace of Cb(]0, 1[).

Let (µx)0≤x≤1 be a continuous selection of probability Borel measures on

[0, 1] such that
∫ 1

0
e1dµx = x for every x ∈ [0, 1].

In Section 1 we have already observed that 0 ≤ T (e2)(x) − x2 ≤ x − x2 =
x(1−x) (0 ≤ x ≤ 1), where the operator T is defined by (1.2). In particular we
get T (e2)(0) = 0 and so Suppµ0 = {0}; therefore µ0 =ε0. Moreover T (e2)(1)=1,

so
∫ 1

0
(e1 − e2)dµ1 = 0 and Suppµ1 ⊂ {0, 1}. Then there exist α, β ∈ [0, 1],

α + β = 1, such that µ1 = α ε0 + βε1, so 1 =
∫ 1

0
e1dµ1 = β. In conclusion we

obtain α = 0 and µ1 = ε1. Finally we observe that, if 0 ≤ x ≤ 1, then

T (e2)(x) = x2 if and only if µx = εx.

Indeed, if T (e2)(x) = x2, considering the function ψx(t) = (t − x) (0 ≤ t ≤ 1),

we have
∫ 1

0
ψ2

xdµx = 0, so Suppµx = {x} and µx = εx. The converse is trivial.
From now on we suppose that the family (µx)1≤x≤1 satisfies the following

further condition
µx 6= εx for every 0 < x < 1. (3.1)

Set

α(x) :=
1

2

(
T (e2)(x) − x2

)
=

1

2

(∫ 1

0

e2dµx − x2

)

(0 ≤ x ≤ 1). (3.2)

Then α ∈ C([0, 1]), α(0) = α(1) = 0 and

0 < α(x) ≤ x(1 − x)

2
for every 0 < x < 1.

3.1. An asymptotic formula. Now consider the sequence (Bn)n≥1 of the
Bernstein-Schnabl operators associated with the continuous selection (µx)0≤x≤1.
From definition (1.5) and from the above remarks it follows that, for every n ≥ 1,
f ∈ C([0, 1]),

Bn(f)(x) = f(x) for x = 0, 1. (3.3)

In particular from (3.3) it follows that the operators Bn map the space C0(]0, 1[)
into itself.

We now proceed to establish an asymptotic formula for the operators Bn.

Theorem 3.1. Consider the sequence (Bn)n≥1 defined by (1.5). Then, for every

u ∈ C2([0, 1]),

lim
n→∞

n(Bn(u) − u) = αu′′ uniformly on [0, 1], (3.4)

where α is defined by (3.2).
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Proof.First note that from (1.6),(1.12) and (1.13) it follows that limn→∞n(Bn(1)
−1) = limn→∞ nBn(ψx)(x) = 0 and limn→∞ nBn(ψ2

x)(x) = T (e2)(x) − x2 uni-
formly with respect to x ∈ [0, 1]. On the other hand, since ψ4

x = e4 − 4xe3 +
6x2e2 − 4x3e1 + x41 (0 ≤ x ≤ 1), by using (1.6)–(1.10), we obtain

Bn(ψ4
x)(x) =

1

n3

[

T (e4)(x) − 4xT (e3)(x) + 3(n− 1)T (e2)
2(x)

− 6(n− 2)x2 T (e2)(x) + 3(n− 2)x4
]

and hence limn→∞ nBn(ψ4
x)(x) = 0 uniformly with respect to x ∈ [0, 1]. Ac-

cordingly the result follows from [18] (see also [5, Theorem 1]).

3.2. Degenerate differential operators on [0, 1]. The asymptotic formula
(3.4) naturally leads to the differential operator Z(u) = αu′′ (u ∈ C2([0, 1])). In
this subsection we shall investigate whether such differential operators are the
pregenerators of Markov semigroups, i.e., they admit an extension which is the
generator of a positive C0-semigroup (T (t))t≥0 on C([0, 1]) such that T (t)1 = 1

for every t ≥ 0. For more details about the theory of C0-semigroups we refer
the reader to [13,23].

We also recall that, if (T (t))t≥0 is a C0-semigroup on C([0, 1]) with generator
(A,D(A)), then T (t)1 = 1 for every t ≥ 0 if and only if 1 ∈ D(A) and A1 = 0.

Consider an arbitrary function α ∈ C([0, 1]) such that α(0) = α(1) = 0 and

assume that 0 < α(x) ≤ x(1−x)
2

(0 < x < 1). If we set

λ(x) :=
2α(x)

x(1 − x)
(0 < x < 1), (3.5)

we have that λ ∈ C(]0, 1[), 0 < λ(x) ≤ 1 (0 < x < 1) and

α(x) =
x(1 − x)

2
λ(x) (0 < x < 1). (3.6)

Set

DV (A) :=
{

u ∈ C([0, 1]) ∩ C2(]0, 1[)
∣
∣
∣ lim

x→0+
α(x)u′′(x)= lim

x→1−
α(x)u′′(x)=0

}

(3.7)

and

DV (B) :=
{

u∈C([0, 1])∩ C2(]0, 1[)
∣
∣
∣ lim
x→0+

x(1−x)u′′(x)= lim
x→1−

x(1−x)u′′(x)=0
}

,

i.e., we assume Ventcel’s conditions at the boundary points 0 and 1. Clearly
DV (B) ⊂ DV (A). For every u ∈ DV (A) (resp. u ∈ DV (B)) and x ∈ [0, 1] define

Au(x) :=

{

α(x)u′′(x) if 0 < x < 1,

0 if x = 0, 1
(3.8)

Bu(x) :=

{
x(1−x)

2
u′′(x) if 0 < x < 1,

0 if x = 0, 1.
(3.9)
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It is well-known that (B,DV (B)) and (A,DV (A)) generate some Markov semi-
groups on C([0, 1]) and C2([0, 1]) is a core for (B,DV (B)) (see [8, Theorem 6.2.6;
Theorem 6.3.5]).

We recall that, given a linear operator A : D(A) −→ E defined on a linear
subspace D(A) of a Banach space E, a core for (A,D(A)) is a subspace D0

of D(A) which is dense in D(A) for the graph norm ‖u‖A := ‖u‖ + ‖Au‖
(u ∈ D(A)). Moreover, a Feller semigroup on C0(]0, 1[) is a C0-semigroup of
positive linear contractions on C0(]0, 1[). Now let

D(A0) := DV (A) ∩ C0(]0, 1[) and D(B0) := DV (B) ∩ C0(]0, 1[)

and

A0 := A|D(A0)
: D(A0) −→ C0(]0, 1[),

B0 := B|D(B0)
: D(B0) −→ C0(]0, 1[).

(3.10)

Note that, from (3.6), D(B0) ⊂ D(A0) and A0|D(B0)
= λB0.

We have the following result.

Proposition 3.2. The operators (B0, D(B0)) and (A0, D(A0)) generate some

Feller semigroups on C0(]0, 1[). Moreover, C2([0, 1]) ∩ C0(]0, 1[) is a core for

(B0, D(B0)).

Proof. The first part of the statement is a direct consequence of Proposition 2.2
in [7]. In order to prove the last part, fix u ∈ D(B0). Since D(B0) ⊂ DV (B)
and C2([0, 1]) is a core for (B,DV (B)), there exists (un)n≥1 in C2([0, 1]) such
that un → u and Bun → Bu uniformly on [0, 1] (the functions Bun and Bu
are extended to 0 at the boundary points 0 and 1). In particular un(0) → 0
and un(1) → 0. For every n ≥ 1 set vn(x) := un(x) − xun(1) − (1 − x)un(0).
Then vn ∈ C2([0, 1]) ∩ C0(]0, 1[), vn → u uniformly on [0, 1] and finally Bvn =
Bun −→ Bu uniformly on[0, 1].

In order to determine a core for the operator A we consider the following
subset of D(A0):

D∗(A0) :=
{

u ∈ D(A0)
∣
∣ There exists (un)n≥1 inD(B0) such that

un → u and A0un → A0u uniformly on [0, 1]
}

.
(3.11)

Clearly D(B0) ⊂ D∗(A0).

Theorem 3.3. The operator (A0, D∗(A0)) is the generator of a Feller semigroup

on C0(]0, 1[) and C2([0, 1]) ∩ C0(]0, 1[) is a core for (A0, D∗(A0)).
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Proof. From Proposition 3.2 it follows that (B0, D(B0)) is the generator of a
Feller semigroup on C0(]0, 1[). Thanks to [6, Corollary 2.7], (λB0, D(B0)) is
closable and its closure (C,D(C)) generates a Feller semigroup on C0(]0, 1[).
Since (A0, D(A0)) is closed, D(C) = D∗(A0) and A0|D∗(A0)

= C. Finally, if

u ∈ D∗(A0), fixed ε > 0, there exists v ∈ D(B0) such that ‖u − v‖ ≤ ε
2

and ‖A0u − A0v‖ ≤ ε
2
. On the other hand, by Proposition 3.2, there exists

w ∈ C2([0, 1]) ∩ C0(]0, 1[) such that ‖v − w‖ ≤ ε
2

and ‖B0v − B0w‖ ≤ ε
2
. Then

‖u−w‖ ≤ ‖u− v‖+ ‖v−w‖ ≤ ε and ‖A0u−A0w‖ ≤ ‖A0u−A0v‖+ ‖λB0v−
λB0w‖ ≤ ε.

We are now in a position to show the desired generation result on the space
C([0, 1]). To this end, set

D∗
V (A) :=

{

u ∈ DV (A)
∣
∣ There exists (un)n≥1 in DV (B) such that

un → u and Aun → Au uniformly on [0, 1]
}

.
(3.12)

Obviously DV (B) ⊂ D∗
V (A). Moreover note that

D∗
V (A) ∩ C0(]0, 1[) = D∗(A0). (3.13)

Indeed, clearly D∗(A0) ⊂ D∗
V (A) ∩ C0(]0, 1[). Conversely, fix u ∈ D∗

V (A) ∩
C0(]0, 1[). Then u ∈ DV (A) ∩ C0(]0, 1[) = D(A0) and there exists a sequence
(un)n≥1 in DV (B) such that un → u and Aun → Au uniformly on [0, 1]. In
particular un(0) → 0 and un(1) → 1. For every n ≥ 1 set

vn(x) := un(x) − xun(1) − (1 − x)un(0) (0 ≤ x ≤ 1).

Then vn ∈ D(B0), vn → u uniformly on [0, 1] and A0vn = Avn → Au = A0u
uniformly on [0, 1]. Therefore u ∈ D∗(A0).

Theorem 3.4. The operator (A,D∗
V (A)) is the generator of a Markov semi-

group (T (t))t≥0 on C([0, 1]) and C2([0, 1]) is a core for (A,D∗
V (A)).

Proof. The first part of the statement will be proved by a generation result of
Bony, Courrège, Priouret [10]. Indeed, D∗

V (A) is dense in C([0, 1]), since DV (B)
is dense in C([0, 1]). Moreover, the operator (A,D∗

V (A)) satisfies the positive
maximum principle (see [10]), since (A,DV (A)) satisfies it.

Finally we proceed to show that R(λI −A) = C([0, 1]) for λ > 0 fixed. Let
f ∈ C([0, 1]) and consider the function g(x) := f(x)−xf(1)−(1−x)f(0). Then
g ∈ C0(]0, 1[). From Theorem 3.3, (λI − A0)(D∗(A0)) = C0(]0, 1[) and so there
exists an element u ∈ D∗(A0) such that λu− A0u = g. Now set

v(x) := u(x) +
1

λ
[xf(1) + (1 − x)f(0)] (0 ≤ x ≤ 1)
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(the function u is continuously extended at 0 and 1). Since u ∈ D(A0) ⊂ DV (A),
v ∈ DV (A) and Av = A0u on [0, 1]. Moreover λv − Av = f .

In order to show the last part, let u ∈ D∗
V (A) and ε > 0 and consider the

function λ ∈ Cb(]0, 1[) defined by (3.5), so that α(x) = x(1−x)
2

λ(x) (0 ≤ x ≤ 1).
Take v ∈ DV (B) such that ‖u−v‖ ≤ ε

2
and ‖Au−Av‖ ≤ ε

2
, and let w ∈ C2([0, 1])

such that ‖v−w‖ ≤ ε
2

and ‖Bv−Bw‖ ≤ ε
2
. Then ‖u−w‖ ≤ ‖u−v‖+‖v−w‖ ≤

ε. Moreover if x = 0, 1, then |Au(x) − Aw(x)| = 0 ≤ ε and, if 0 < x < 1,

|Au(x) − Aw(x)| ≤ |Au(x) − Av(x)| + |Av(x) − Aw(x)|
≤ ε

2
+ |λ(x)Bv(x) − λ(x)Bw(x)|

≤ ε

2
+ |Bv(x) −Bw(x)| ≤ ε.

Accordingly ‖Au− Aw‖ ≤ ε.

3.3. Markov semigroups associated with Bernstein-Schnabl operators.

We turn back to the Bernstein-Schnabl operators associated with a continuous
selection of probability Borel measures (µx)0≤x≤1 on [0, 1] which satisfies (1.3)
and (3.1).

For every p ≥ 1 the power Bp
n of order p of the operator Bn is defined by

Bp
n :=

{

Bn p = 1

Bn ◦Bp−1
n p ≥ 2.

Theorem 3.5. Let α be the function defined by (3.2) and consider the operators

(A0, D∗(A0)) and (A,D∗
V (A)) defined by (3.10), (3.11) and (3.8), (3.12), respec-

tively. Then these operators generate a Feller semigroup (S(t))t≥0 and a Markov

semigroup (T (t))t≥0 on C0(]0, 1[) and C([0, 1]), respectively. Moreover, for every

t ≥ 0, S(t) = T (t)|C0(]0,1[)
and, for every sequence (k(n))n≥1 of positive integers

such that
k(n)

n
→ t and for every f ∈ C([0, 1]),

T (t)f = lim
n→∞

Bk(n)
n f uniformly on [0, 1]. (3.14)

Proof. The first part of the statement follows from Theorems 3.3 and 3.4. More-
over, by Theorem 3.1, for every u ∈ C2([0, 1]) ⊂ D∗

V (A)

lim
n→∞

n(Bn(u) − u) = Au uniformly on [0, 1]

and C2([0, 1]) is a core for (A,D∗
V (A)). Finally, for every n ≥ 1 and p ≥ 1,

‖Bp
n‖ = 1 since Bp

n(1) = 1. Therefore, from Trotter’s theorem (see [13, Corol-
lary 5.8]; see also [8, Theorem 1.6.7]) formula (3.14) easily follows.
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Finally, fix u0 ∈ D∗(A0) ⊂ D∗
V (A) and consider the function u(t) := T (t)u0

(t ≥ 0). Then u(t) ∈ D∗
V (A) for every t ≥ 0, u is strongly differentiable in

[0,+∞[ and du(t)
dt

= Au(t) for every t ≥ 0. From (3.14), (3.4) and (3.13), it
follows that T (t)u0 ∈ D∗

V (A)∩ C0(]0, 1[) = D∗(A0) and so, by the uniqueness of
the solution of the Cauchy problem associated with (A0, D∗(A0)), we get that
u(t) = S(t)u0 for every t ≥ 0. Therefore T (t) = S(t) on D∗(A0) and hence on
C0(]0, 1[), because D∗(A0) is dense in C0(]0, 1[).

From Theorem 3.5 and the main result of Section 2 the following Corol-
lary immediately follows. It collects some qualitative properties of the semi-
groups indicated in Theorem 3.5, and hence of the solutions of the Cauchy
problems associated with (A,D∗

V (A)) (or with (A0, D∗(A0))) which are given
by u(t) = T (t)u0, u0 ∈ D∗

V (A) (resp., u(t) = S(t)u0, u0 ∈ D∗(A0)).

Corollary 3.6. Under the same assumptions of Theorem 3.5, the following

statements hold true:

(1) If the operator T given by (1.2) maps continuous increasing functions

into (continuous) increasing functions, then each T (t) maps continuous

increasing functions into increasing functions.

(2) If T (Lip11) ⊂ Lip11, then for every M > 0, 0 < α ≤ 1 and t ≥ 0,

T (t)(LipMα) ⊂ LipMα.

(3) If f ∈ C([0, 1]) the following statements are equivalent:

(i) f is convex;

(ii) f ≤ T (t)f for every t ≥ 0.

(4) Under the assumptions (c1) and (c2) of Section 2, if f ∈ C([0, 1]) is convex,

then each T (t)f is convex (t ≥ 0) and (T (t)f)t≥0 is increasing.

Proof. Statements (1) and (2) follow from Theorem 2.1 and Corollary 2.4. The
implication (i) ⇒ (ii) follows from (2.4). Conversely, assume that f ≤ T (t)f
for every t≥ 0 and set u(r) := 1

r

∫ r

0
T (s)fds ∈ D∗

V (A) for every r > 0. Then
Au(r) = 1

r
[T (r)f − f ] ≥ 0, so that u(r) is convex for every r > 0. Accordingly

f = limr→0+ u(r) is convex too.

The first part of (4) is a consequence of Theorem 2.6. As regard to the
second part, we first consider u ∈ D∗

V (A), u convex. Then for every t ≥ 0,
T (t) ∈ D∗

V (A) and T (t)u is convex. Therefore AT (t)u ≥ 0 and hence d
dt
T (t)u =

AT (t)u ≥ 0 (t ≥ 0), so that (T (t)u)t≥0 is increasing. We now consider an
arbitrary convex function f ∈ C([0, 1]). Set u(r) := 1

r

∫ r

0
T (s)fds ∈ D∗

V (A) for
any r > 0. Then limr→0+ u(r) = f uniformly on [0, 1] and each u(r) is convex
as we have previously proved. So, for 0 ≤ s < t we get T (s)u(r) ≤ T (t)u(r)
and hence T (s)f ≤ T (t)f because of the continuity of the operators T (s) and
T (t) and this finishes the proof.
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In order to investigate the long-time behaviour of the semigroup (T (t))t≥0

we shall use the next result which generalizes Theorem 2 of [17].

Let (E, ‖·‖) be a Banach space of real-valued functions defined on a convex
subset X of a locally convex space. Assume that the space E, endowed with its
norm and the pointwise order, is a Banach lattice.

Proposition 3.7. Let (Li)
≤
i∈I be a net of positive linear operators from E into

itself and assume that for every convex function ϕ ∈ E, the net (Li(ϕ))≤i∈I

is decreasing (resp., increasing). Further assume that for some convex func-

tion u ∈ E, the net (Li(u))
≤
i∈I is convergent in E. Then, for every f ∈

A(u) := { g ∈ E | there exists λ ≥ 0 such that λu − g and λu + g are convex }
the net (Li(f))≤i∈I is convergent in E. Therefore, if A(u) is dense in E and

supi∈I, i0≤i ‖Li‖ < +∞ for some i0 ∈ I, then (Li(f))≤i∈I is convergent in E for

every f ∈ E.

Proof. Consider f ∈ E and assume that λu− f and λu+ f are convex for some
λ ≥ 0. Since E is a Banach space, in order to show that the net (Li(f))≤i∈I is
convergent it is enough to prove that it is a Cauchy net (see [19, Definition 2.1.41
and Corollary 2.1.51]). To this end, first observe that, for every i, j ∈ I, i ≤ j,
we have Lj(λu − f) ≤ Li(λu − f) and Lj(λu + f) ≤ Li(λu + f), so that
Li(f)−Lj(f) ≤ λ(Li(u)−Lj(u)) and Lj(f)−Li(f) ≤ λ(Li(u)−Lj(u)). Hence

|Li(f) − Lj(f)| ≤ λ|Li(u) − Lj(u)| (3.15)

and so

‖Li(f) − Lj(f)‖ ≤ λ‖Li(u) − Lj(u)‖. (3.16)

For arbitrary i, j ∈ I, chosen k ∈ I such that i ≤ k and j ≤ k, we have

‖Li(f) − Lj(f)‖ ≤ λ (‖Li(u) − Lk(u)‖ + ‖Lj(u) − Lk(u)‖) .

From the above inequality it follows that (Li(f))≤i∈I is a Cauchy net because so

is the net (Li(u))
≤
i∈I .

Remarks 3.8.

1. We point out that Proposition 3.7 remains valid by replacing everywhere the
class of convex functions on X with an arbitrary class of real-valued functions
on an arbitrary set X.

2. Under the hypotheses of the last part of Proposition 3.7, we can consider the
positive linear operator L0 : E −→ E defined by

L0(f) := lim≤
i∈I

Li(f) (f ∈ E).
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For fixed f ∈ A(u) and i ∈ I, the net (Lj(f))≤j∈I,i≤j is a subnet of (Lk(f))≤k∈I

and, therefore, it converges to L0(f). From (3.16) it follows that

‖Li(f) − L0(f)‖ ≤ λ‖Li(u) − L0(u)‖

for every i ∈ I and f ∈ A(u). If, in addition, the convergence in norm in E
implies the pointwise convergence, then from (3.15) we also get

|Li(f) − L0(f)| ≤ λ|Li(u) − L0(u)|. (3.17)

3. If X is a real interval and the convex function u belongs to C2(X), then
{ f ∈ E ∩ C2(X) | |f ′′| ≤ λu′′ for someλ ≥ 0 } ⊂ A(u). In particular, if α :=

minX u
′′(x) > 0, then {f ∈ E∩C2(X)| f ′′ bounded} ⊂ A(u), since |f ′′| ≤ ‖f ′′‖

α
u′′

for every f ∈ E ∩ C2(X), f ′′ bounded.

We can now state a result about the asymptotic behaviour of the semigroup
(T (t))t≥0.

Theorem 3.9. Under the same assumptions of Theorem 3.5, suppose that

T (Lip11) ⊂ Lip11 and both conditions (c1) and (c2) are satisfied. Then there

exists a positive linear operator T∞ : C([0, 1]) −→ C([0, 1]) such that

lim
t→+∞

T (t)f = T∞(f) uniformly on [0, 1] (3.18)

for every f ∈ C([0, 1]). Moreover T∞(1) = 1 and, for every f ∈ C2([0, 1]) and

t ≥ 0,

|T (t)f − T∞(f)| ≤ ‖f ′′‖∞
2

|T (t)e2 − T∞(e2)|. (3.19)

Finally, for every f ∈ C([0, 1]), x ∈ [0, 1] and t ≥ 0,

|T (t)f(x) − T∞(f)(x)| ≤Mω2(f,
√

λt(x)), (3.20)

where λt(x) = |T (t)e2(x) − T∞(e2)(x)| and M is an absolute constant.

Proof. We shall use Proposition 3.7 with E = C([0, 1]), endowed with the uni-
form norm, and u := e2. In this case C2([0, 1]) ⊂ A(u) and supt≥0 ‖T (t)‖ = 1.
Therefore, taking Corollary 3.6, (3), into account, it is sufficient to show that
(T (t)e2)t≥0 is uniformly convergent on [0, 1] as t → +∞. Actually this family
is increasing and bounded so that it is pointwise convergent. Since e2 ∈ Lip21,
by Corollary 3.6, (2), T (t)e2 ∈ Lip21 for every t ≥ 0. Therefore (T (t)e2)t≥0

is equicontinuous and hence uniformly convergent on [0, 1]. Finally, the esti-
mate (3.19) follows from (3.17). To obtain (3.20), let us consider the Peetre
K-functional

K2(f, δ) := inf{‖f − g‖∞ + δ‖g′′‖∞ : g ∈ C2([0, 1])}



On Bernstein-Schnabl Operators 375

(f ∈ C([0, 1]), δ > 0) which is equivalent to ω2(f, ·), i.e.,

C1ω2(f, δ) ≤ K2(f, δ
2) ≤ C2ω2(f, δ)

(f ∈ C([0, 1]), δ > 0) with C1, C2 absolute constants (see, e.g., [11, Theorem 2.4,
p. 177]). Given f ∈ C([0, 1]), t ≥ 0, x ∈ [0, 1] and ε > 0, there exists a
g ∈ C2([0, 1]) such that ‖f − g‖∞ + δ2

t (x)‖g′′‖∞ ≤ C2ω2(f, δt(x)) + ε, where
δt(x) :=

√

λt(x) ≥ 0. Therefore

|T (t)f(x) − T∞(f)(x)| ≤ |T (t)f(x) − T (t)g(x)|
+ |T (t)g(x) − T∞(g)(x)| + |T∞(g)(x) − T∞(f)(x)|

≤ ‖T (t)‖ ‖f − g‖∞ +
‖g′′‖∞

2
δ2
t (x) + ‖T∞‖ ‖f − g‖∞

≤ 2‖f − g‖∞ +
‖g′′‖∞

2
δ2
t (x)

≤ 2(C2ω2(f, δt(x)) + ε).

Letting ε→ 0+ we obtain (3.20) with M = 2C2.

In the last part of the paper we actually show that the Markov semigroup
generated by an arbitrary differential operator of the form (3.8) can be rep-
resented by iterates of Bernstein-Schnabl operators associated with a suitable
selection of probability Borel measures on [0, 1].

Consider indeed an arbitrary function α ∈ C([0, 1]) such that α(0)=α(1)=0

and 0 < α(x) ≤ x(1−x)
2

(0 < x < 1). Consider the operator (A,D∗
V (A)), defined

by (3.7) and (3.9). By Theorem 3.4 such an operator generates a Markov
semigroup (T (t))t≥0 on C([0, 1]).

One may ask whether there exists a continuous selection (µx)0≤x≤1 of prob-
ability Borel measures satisfying (1.3) and (3.1), such that the corresponding
Bernstein-Schnabl operators represent the semigroup by means of their iterates,
as in Theorem 3.5. To this respect we have the following result.

Theorem 3.10. Under the above hypotheses set λ(x) := 2α(x)
x(1−x)

(0 < x < 1)

and, for every x ∈ [0, 1], consider the measure

µx :=







λ(x)[xε1 + (1 − x)ε0] + (1 − λ(x))εx if 0 < x < 1

εx if x = 0, 1.
(3.21)

Let (Bn)n≥1 the sequence of the Bernstein-Schnabl operators associated with

the selection (µx)0≤x≤1 (see Examples 1.2, 2). Then for every t ≥ 0, for each

sequence (k(n))n≥1 of natural integers such that
k(n)

n
→ t (n → ∞) and for

every function f ∈ C([0, 1])

T (t)f = lim
n→∞

Bk(n)
n (f) uniformly on [0, 1].
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Proof. We preliminary observe that λ ∈ Cb(]0, 1[), 0 < λ(x) ≤ 1 and α(x) =
x(1−x)

2
λ(x) (0 ≤ x ≤ 1). The family (µx)0≤x≤1 is a continuous selection of

probability Borel measures satisfying (1.3) and (3.1). Moreover
∫ 1

0
e2dµx =

x2 + x(1 − x)λ(x) = x2 + 2α(x). According to Theorem 3.5 the semigroup
(T (t))t≥0 is represented as the limit of iterates of the operators Bn corresponding
to the selection (3.21) and the proof is complete.

We conclude this paper with some remarks.

Remarks 3.11.

1. Assume that the function α is differentiable at 0 and 1 and α′(0) 6= 0 6= α′(1),
that is, T (e2) is differentiable at 0 and 1 and T (e2)

′(0) 6= 0 and T (e2)
′(1) 6= 2.

Then, the function λ defined by (3.5) can be continuously extended at the
points 0 and 1 and such extension, denoted again by λ, is strictly positive
on [0, 1] and α(x) = x(1−x)

2
λ(x) (0 ≤ x ≤ 1). In this case DV (B) = DV (A),

and hence D∗
V (A) = DV (A), and Theorem 3.10 generalizes a previous result

obtained in [4] for the sequence of the Lototsky-Schnabl operators. Moreover,
in [8, Theorem 6.2.6] it is also shown that (not necessarily under assumptions
(c1) and (c2)) the semigroup (T (t))t≥0 strongly converges as t → +∞ to the
positive operator

T∞(f) = (1 − e1)f(0) + e1f(1) (f ∈ C([0, 1])). (3.22)

It would be interesting to prove or disprove that the limit operator T∞ defined
by (3.18) actually coincides with the operator (3.22).

2. Let (Bn)n≥1 be the sequence of the Bernstein-Schnabl operators associated
with a continuous selection of measures (µx)0≤x≤1. Let α(x) = 1

2

( ∫ 1

0
e2dµx −

x2
)

(0 ≤ x ≤ 1) and consider the function λ ∈ Cb(]0, 1[) defined by (3.5).
Moreover, consider the selection defined by (3.21) and the sequence (Ln,λ)n≥1 of
the relevant Bernstein-Schnabl operators associated with this selection, that is,
the Lototsky-Schnabl operators associated with λ. Then, for every u ∈ C2([0, 1])

lim
n→∞

n(Bn(u) − u) = αu′′ = lim
n→∞

n(Ln,λ(u) − u)

uniformly on [0, 1], therefore

lim
n→∞

n(Bn(u) − Ln,λ(u)) = 0 uniformly on [0, 1].

In particular

lim
n→∞

Bn(u) − Ln,λ(u) = 0 uniformly on [0, 1].

Since supn≥1 ‖Bn‖ ≤ 1 and supn≥1 ‖Ln,λ‖ ≤ 1 and C2([0, 1]) is dense in C([0, 1]),
for every f ∈ C([0, 1])

lim
n→∞

Bn(f) − Ln,λ(f) = 0 uniformly on [0, 1].
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Accordingly, for every f ∈ C([0, 1]) there exists (ϕn)n≥1 in C([0, 1]) such that

Bn(f) = Ln,λ(f) + ϕn and ‖ϕn‖ → 0 (n→ ∞).

Moreover the semigroup represented by (Bn)n≥1 is the same one represented by
(Ln,λ)n≥1.

These remarks could be useful to study the saturation class of the sequence
(Bn)n≥1.

Note added in proof. Under the general assumption of Section 3, as a con-
sequence of Theorem 3.4, it is possible to show that C2([0, 1]) is a core for
(A,DV (A)) and hence D∗

V (A) = DV (A).
Choosing indeed λ > 0, then (λI − A)(C2([0, 1])) is dense in C([0, 1]) be-

cause C2([0, 1]) is a core for (A,D∗
V (A)). Since (A,DV (A)) generates a Feller

semigroup too, the above density relation implies in turn that C2([0, 1]) is a
core for (A,DV (A)) and hence the two domains coincide.

We thank Sabina Milella for pointing out this useful remark.
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Räumen von Wahrscheinlichkeitsmaßen. Math. Ann. 180 (1969), 326 – 330.

[29] Sendov, B. and Popov, V. A., The Averaged Moduli of Smoothness. Pure Appl.
Mathematics. Chichester: Wiley 1988.

Received March 16, 2006


