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1. Introduction

Throughout this paper we shall follow the standard terminologies and notations
in Nonlinear Analysis. For the convenience of the reader we shall recall some
of them.

Let X be a nonempty set and T : X → X an operator. Then T 0 := 1X ,
T 1 := T , T n+1 := T ◦T n, n ∈ N , denote the iterate operators of the operator T .
Also, by FT := {x ∈ X|T (x) = x} we will denote the fixed point set of the
operator T .

By (X,→) we will denote an L-space. For example, Hausdorff topological
spaces, metric spaces, generalized metric spaces (in Perov’ sense: d(x, y) ∈ R

m
+ ,

in Luxemburg-Jung’ sense: d(x, y) ∈ R+ ∪ {+∞}, d(x, y) ∈ K, K a cone
in an ordered Banach space, d(x, y) ∈ E, E an ordered linear space with a
notion of linear convergence, etc.), 2-metric spaces, D-R-spaces, probabilistic
metric spaces, gauge spaces, syntopogenous spaces, have a natural structure of
L-spaces ( [2,4,6,9,11,14,15,21,27,28,30]). For more details see M. Fréchet [16],
L. M. Blumenthal [10] and I. A. Rus [26].

In this paper, we need the following notions (I. A. Rus [26]):
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Definition 1.1. Let (X,→) be an L-space. An operator T : X → X is a Picard

operator (briefly PO) if:

(i) FT = {x∗};

(ii) T n(x) → x∗ as n → ∞, for all x ∈ X.

Definition 1.2. Let (X,→) be an L-space. An operator T : X → X is a
weakly Picard operator (briefly WPO) if the sequence (T n(x))n∈N converges for
all x ∈ X and the limit (which may depend on x) is a fixed point of T .

If T : X → X is a WPO, then we may define the operator T∞ : X → X by
T∞(x) := limn→∞ T n(x). Obviously T∞(X) = FT . Moreover, if T is a PO and
we denote by x∗ its unique fixed point, then T∞(x) = x∗, for each x ∈ X.

The following open problem was posed by I. A. Rus (see [26, Problem 10.5]):

Fibre Picard operator problem. Let (X,
1
→) and (Y,

2
→) be two L-spaces.

Let B : X → X be a PO and C : X × Y → Y be such that C(x, ·) : Y → Y is
a PO, for every x ∈ X. Consider the triangular operator A defined as follows:

A : X × Y → X × Y, A(x, y) := (B(x), C(x, y))

In which conditions A is a PO ?

The purpose of this paper is to give some answers to this problem in gauge
spaces. As application, the differentiability with respect to parameters of the
solution of a Volterra functional-integral equation is discussed.

2. Fibre Picard operator problem

To our knowledge, the first contribution in this respect belongs to M. W. Hirsch,
C. C. Pugh in [19] (see also M. W. Hirsch, C. C. Pugh, M. Shub [20] and I. C.
de Oliveira [23]).

Theorem 2.1 (Hirsch-Pugh [19]). Let (X, d), (Y, ρ) be two metric spaces. Let

B : X → X be an operator having an attractive fixed point p ∈ X. Let C :
X × Y → Y be such that:

(a) there exists α ∈]0, 1[ such that C(x, ·) : Y → Y is an α-contraction, for

each x ∈ X;

(b) the operator A : X×Y → X×Y , A(x, y) := (B(x), C(x, y)) is continuous;

(c) (Y, ρ) is complete.

Let q ∈ Y be a fixed point for C(p, ·). Then (p, q) is an attractive fixed point

for A.
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Some generalizations of Hirsch-Pugh result, as well as, other partial answers
to the above open question are given in J. K. Hale, L. A. C. Ladeira [18], I. A.
Rus [24,25], M. A. Şerban [30], G. Dezsö [13], C. Bacoţiu [6] and Sz. Andras [1,2].

For example, we have:

Theorem 2.2 (I. A. Rus [24]). Let (X, d), (Y, ρ) be two metric spaces. Let

B : X → X and C : X×Y → Y be two operators. Consider A : X×Y → X×Y ,

defined by A(x, y) := (B(x), C(x, y)). Suppose that:

(a) (Y, ρ) is complete;

(b) B is a WPO;

(c) there exists α ∈]0, 1[ such that C(x, ·) : Y → Y is an α-contraction, for

each x ∈ X;

(d) if (x∗, y∗) ∈ FA, then the operator C(·, y∗)) is continuous in x∗.

Then A is a WPO. Moreover, if B is a PO, then A is a PO too.

Throughout this paper, a gauge space is a set endowed with a gauge struc-
ture induced by a family {di : i ∈ I} of pseudo-metrics, where I is a directed
set. The basic definitions and properties of gauge spaces may be found, for
example, in [14].

For our first main theorem we need some auxiliary results.

Lemma 2.3. Let (X, (di)i∈I) be a sequentially complete Hausdorff gauge space

and let T, Tn : X → X be operators such that:

(i) the sequence (Tn)n∈N pointwise converges to T ;

(ii) for every i ∈ I there exists αi ∈]0; 1[ such that

di(Tn(x), Tn(y)) ≤ αi · di(x, y)

di(T (x), T (y)) ≤ αi · di(x, y),

for each x, y ∈ X.

Then T, Tn, n ∈ N, are POs and the sequence (Tn ◦Tn−1 ◦ · · · ◦T0)n∈N pointwise

converges to T∞.

Proof. From (ii) and a Colojoara’s theorem [12] we deduce that there exists a
unique x⋆ ∈ FT , so T∞(x) = x⋆, for all x ∈ X. Let x ∈ X. We have

di((Tn ◦ Tn−1 ◦ · · · ◦ T0)(x), x⋆)

≤ di((Tn ◦ Tn−1 ◦ · · · ◦ T0)(x), (Tn ◦ Tn−1 ◦ · · · ◦ T0)(x
⋆))

+ di((Tn ◦ Tn−1 ◦ · · · ◦ T0)(x
⋆), Tn(x⋆)) + di(Tn(x⋆), x⋆)

≤ · · ·

≤ αn+1
i di(x, x⋆) + αn

i di(T0(x
⋆), x⋆) + · · · + αidi(Tn−1(x

⋆), x⋆)

+ di(Tn(x⋆), x⋆).
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Let an := di(Tn(x⋆), x⋆) and bn := αn
i . Since an → 0, as n → ∞, and

∑∞
k=0 bk <

∞, we get
∑n

k=0 akbn−k → 0, as n → ∞ (see [24, Lemma 2.2]). This proves
that

di((Tn ◦ Tn−1 ◦ · · · ◦ T0)(x), x⋆) → 0 (n → ∞),

for all i ∈ I. The proof is complete.

Lemma 2.4. Let (X,→) be an L-space and (Y, (di)i∈I) be a sequentially com-

plete Hausdorff gauge space. Let xn, x
⋆ ∈ X and f : X × Y → Y be an

operator such that:

(i) xn → x⋆, as n → ∞;

(ii) the operator f(·, y) : X → X is continuous, for all y ∈ Y ;

(iii) for every i ∈ I there exists αi ∈]0; 1[ such that

di(f(x, y1), f(x, y2)) ≤ αi · di(y1, y2), for all x ∈ X and y1, y2 ∈ Y

(we denote by y⋆ the unique fixed point of f(x⋆, ·)).

Then the sequence (yn)n∈N defined by

y0 ∈ Y, yn+1 = f(xn, yn) (n ∈ N)

converges to y⋆, for all y0 ∈ Y .

Proof. We consider

Tn, T : Y → Y, Tn(y) = f(xn, y), T (y) = f(x⋆, y).

We successively have

yn+1 = f(xn, yn) = Tn(yn) = Tn(f(xn−1, yn−1)) = Tn(Tn−1(yn−1))

= · · · = (Tn ◦ Tn−1 ◦ · · · ◦ T0)(y0).

From Lemma 2.3 we get that

(Tn ◦ Tn−1 ◦ · · · ◦ T0)(y0) → T∞(y0) = y⋆ = f(x⋆, y⋆),

which means that yn → y⋆, as n → +∞.

The first main result of this paper is the following:

Theorem 2.5. Let (X,→) be an L-space and (Y, (di)i∈I) be a sequentially com-

plete Hausdorff gauge space. Let B : X → X and C : X × Y → Y be two

operators. We suppose that:

(i) B is a PO (we denote by x∗ its unique fixed point);
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(ii) for every i ∈ I there exists αi ∈]0; 1[ such that

di(C(x, y1), C(x, y2)) ≤ αi · di(y1, y2), for all x ∈ X and y1, y2 ∈ Y

(we denote by y∗ the unique fixed point of the operator C(x∗, ·));

(iii) the operator C(·, y∗) is continuous in x∗.

Then, the operator A : X × Y → X × Y, A(x, y) := (B(x), C(x, y)) is a PO.

Moreover, FA = {(x⋆, y⋆)}.

Proof. Let x0 ∈ X and y0 ∈ Y . We show that

An(x0, y0) → (B∞(x0), y
⋆) = (x⋆, y⋆),

where {y⋆} = FC(B∞(x0),·) = FC(x⋆,·). It is easy to check that

An(x0, y0) = (Bn(x0), yn),

where xn = Bn(x0), yn+1 = C(xn, yn). From (i) we have that xn = Bn(x0) → x⋆.
Using again Lemma 2.3 for

Tn, T : Y → Y, Tn(y) = C(xn, y), T (y) = C(x⋆, y),

we obtain that yn → y⋆, as n → ∞.

In the second part of this section we will extend Theorem 2.5 by using a
Hadžić–Stanković type condition (see [17]).

Lemma 2.6. Let (X, (di)i∈I) be a sequentially complete Hausdorff gauge space,

j : I → I and let T, Tn : X → X be operators such that:

(i) the sequence (Tn)n∈N pointwise converges to T ;

(ii) for every i ∈ I there exists αi ∈ R+ such that

di(Tn(x), Tn(y)) ≤ αi · dj(i)(x, y)

di(T (x), T (y)) ≤ αi · dj(i)(x, y),

for all x, y ∈ X;

(iii) for every i ∈ I there exists mi ∈ N such that for m ≥ mi we have

αjm(i) ≤ α(i) < 1;

(iv) for every i ∈ I there exists p(i) > 0 such that

djm(i)(x, Tn(x)) ≤ p(i) < ∞ and djm(i)(x, T (x)) ≤ p(i) < ∞,

for all x ∈ X, n ∈ N and m ≥ 0;
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(v) for each i ∈ I there is β(i) ∈ I such that

djm(i)(x, Tn(x)) ≤ dβ(i)(x, Tn(x)),

for all x ∈ X and m ≥ 0.

Then T, Tn, n ∈ N are POs and the sequence (Tn ◦ Tn−1 ◦ · · · ◦ T0)n∈N pointwise

converges to T∞.

Proof. From (ii), (iii) and (iv) we deduce that there exists a unique x⋆ ∈ FT ,
T∞(x) = x⋆, for all x ∈ X and djm(i)(x, x∗) ≤ q(i, x) := q(p(i), x) < +∞, for all
m ≥ 0 (see [17]). Let x ∈ X. We have

di((Tn ◦ Tn−1 ◦ · · · ◦ T0)(x), x⋆)

≤ di((Tn ◦ Tn−1 ◦ · · · ◦ T0)(x), (Tn ◦ Tn−1 ◦ · · · ◦ T0)(x
⋆))

+ di((Tn ◦ Tn−1 ◦ · · · ◦ T0)(x
⋆), Tn(x⋆)) + di(Tn(x⋆), x⋆)

≤ · · ·

≤ αiαj(i) . . . αjn(i)djn+1(i)(x, x⋆)

+ αiαj(i) . . . αjn−1(i)djn(i)(T0(x
⋆), x⋆)

+ · · · + αidj(i)(Tn−1(x
⋆), x⋆) + di(Tn(x⋆), x⋆).

For n ≥ mi,

di((Tn ◦ Tn−1 ◦ · · · ◦ T0)(x), x⋆)

≤ αiαj(i) . . . αjmi (i)α(i)n−midjn+1(i)(x, x⋆)

+

mi
∑

k=1

αiαj(i) . . . αjk−1(i)djk(i)(Tn−k(x
⋆), x⋆)

+
n

∑

k=mi+1

αiαj(i) . . . αjk−1(i)djk(i)(Tn−k(x
⋆), x⋆) + di(Tn(x⋆), x⋆)

≤ αiαj(i) . . . αjmi (i)α
n−mi(i)q(i, x)

+

mi
∑

k=1

αiαj(i) . . . αjk−1(i)djk(i)(Tn−k(x
⋆), x⋆)

+
n

∑

k=mi+1

αk(i)dβ(i)(Tn−k(x
⋆), x⋆) + di(Tn(x⋆), x⋆)

Since α(i) < 1 we have that αn−mi(i) → 0, as n → ∞.

The sum
∑mi

k=1 αiαj(i) . . . αjk−1(i)djk(i)(Tn−k(x
⋆), x⋆) is finite and we have

that djk(i)(Tn−k(x
⋆), x⋆) → 0, as n → ∞.

For the sum
∑n

k=mi+1 αk(i)dβ(i)(Tn−k(x
⋆), x⋆) we can apply again Lemma 2.2

from [24], with ak := dβ(i)(Tk(x
⋆), x⋆) and bk := αk(i). Thus ak → 0 as k → ∞
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and
∑∞

k=0 bk < ∞. Therefore
∑n

k=0 akbn−k → 0, as n → ∞. This proves that

di((Tn ◦ Tn−1 ◦ · · · ◦ T0)(x), x⋆) → 0, as n → ∞, for every i ∈ I.

The proof is now complete.

Lemma 2.7. Let (X,→) be an L-space and (Y, (di)i∈I) be a sequentially com-

plete Hausdorff gauge space and j : I → I. Let xn, x
⋆ ∈ X and f : X×Y → Y

be an operator such that

(i) xn → x⋆ as n → ∞;

(ii) the operator f(·, y) : X → X is continuous, for all y ∈ Y ;

(iii) for every i ∈ I there exists αi ∈ R+ such that

di(f(x, y1), f(x, y2)) ≤ αi · dj(i)(y1, y2),

for all x ∈ X and y1, y2 ∈ Y ;

(iv) for every i ∈ I there exists mi ∈ N such that for m ≥ mi we have

αjm(i) ≤ α(i) < 1 ;

(v) for every i ∈ I there exists p(i) > 0 such that

djm(i)(y, f(x, y)) ≤ p(i) < ∞,

for all x ∈ X, y ∈ Y and m ≥ 0;

(vi) for each i ∈ I there is β(i) ∈ I such that

djm(i)(y, f(xn, y)) ≤ dβ(i)(y, f(xn, y)),

for all y ∈ Y , m ≥ 0, n ∈ N.

Then the sequence (yn)n∈N defined by

y0 ∈ Y, yn+1 = f(xn, yn) (n ∈ N)

converges to y⋆, for all y0 ∈ Y , where y⋆ is the unique fixed point of f(x⋆, ·).

Proof. We consider

Tn, T : Y → Y, Tn(y) = f(xn, y), T (y) = f(x⋆, y).

We have

yn+1 = f(xn, yn) = Tn(yn) = Tn(f(xn−1, yn−1))

= Tn(Tn−1(yn−1)) = · · · = (Tn ◦ Tn−1 ◦ · · · ◦ T0)(y0).

The proof follows from Lemma 2.6, since

(Tn ◦ Tn−1 ◦ · · · ◦ T0)(y0) → T∞(y0) = y⋆ = f(x⋆, y⋆),

which means that yn → y⋆.
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Theorem 2.8. Let (X,→) be an L-space and (Y, (di)i∈I) be a sequentially com-

plete Hausdorff gauge space and j : I → I. Let B : X → X and C : X×Y → Y

be two operators. We suppose that:

(i) B is a PO (we denote by x∗ its unique fixed point);

(ii) for every i ∈ I there exists αi ∈ R+ such that

di(C(x, y1), C(x, y2)) ≤ αi · dj(i)(y1, y2),

for all x ∈ X and y1, y2 ∈ Y ;

(iii) for every i ∈ I there exists mi ∈ N such that for m ≥ mi we have

αjm(i) ≤ α(i) < 1

(we denote by y∗ the unique fixed point of the operator C(x∗, ·));

(iv) for every i ∈ I there exists p(i) > 0 such that

djm(i)(y, C(x, y)) ≤ p(i) < ∞,

for all x ∈ X, y ∈ Y and m ≥ 0;

(v) for each i ∈ I there is β(i) ∈ I such that

djm(i)(y, C(Bn(x), y)) ≤ dβ(i)(y, C(Bn(x), y)),

for all x ∈ X, y ∈ Y , m ≥ 0 and n ∈ N;

(vi) the operator C(·, y⋆) is continuous in x⋆.

Then the operator A : X × Y → X × Y, A(x, y) := (B(x), C(x, y)) is a PO.

Moreover, FA = {(x⋆, y⋆)}.

Proof. Let x0 ∈ X and y0 ∈ Y . We show that

An(x0, y0) → (B∞(x0), y
⋆) = (x⋆, y⋆),

where {y⋆} = FC(B∞(x0),·) = FC(x⋆,·). It is easy to check that

An(x0, y0) = (Bn(x0), yn)

where xn = Bn(x0), yn+1 = C(xn, yn). From (i) we have that xn = Bn(x0) → x⋆.
Using again Lemma 2.3 for

Tn, T : Y → Y, Tn(y) = C(xn, y), T (y) = C(x⋆, y),

we obtain that yn → y⋆ as n → ∞.

Another extension of Theorem 2.5 relies on the notion of ϕ-contraction in
gauge spaces (see V. Angelov [3]).

The following result generalize the fiber ϕ-contraction theorem given by
M. A. Şerban [30,31]. We first need a definition and some preparatory results.
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Definition 2.9 (V. Berinde [7, 8]). A function ϕ : R+ → R+ is called a (c)-
comparison function if the following conditions hold:

(i) ϕ is monotone increasing;

(ii) there exist two numbers k0, α, 0 < α < 1, and a convergent series of
nonnegative terms

∑∞
i=0 vk such that

ϕk+1(t) ≤ αϕk(t) + vk

for each t > 0 and each k ≥ k0.

For some examples of (c)-comparison functions see [8].

Lemma 2.10 (V. Berinde [7,9]). If ϕ : R+ → R+ is a (c)-comparison function

then:

(a) ϕ(t) < t, for each t > 0;

(b) ϕ is continuous in 0;

(c) the series
∑∞

k=0 ϕk(t) converges for each t ∈ R+;

(d) the sum of the series s(t) =
∑∞

k=0 ϕk(t) is monotone increasing and con-

tinuous in 0;

(e) (ϕn(t))n∈N converges to 0, as n → ∞, for each t > 0.

Lemma 2.11. Let (X, (di)i∈I) be a sequentially complete Hausdorff gauge space,

j : I → I, ϕi : R+ → R+, i ∈ I, are (c)-comparison functions and let T, Tn :
X → X be operators such that:

(i) the sequence (Tn)n∈N pointwise converges to T ;

(ii) for each i ∈ I the function ϕi is subadditive, i.e. ϕi(t1 + t2) ≤ ϕi(t1) +
ϕi(t2), for all t1, t2 ∈ R+;

(iii) for all i ∈ I we have

di(Tn(x), Tn(y)) ≤ ϕi(dj(i)(x, y))

di(T (x), T (y)) ≤ ϕi(dj(i)(x, y)), for all x, y ∈ X;

(iv) for all i ∈ I there exists a (c)-comparison function Φi such that

sup{ϕjn(i)(t) : n ∈ N} ≤ Φi(t), for each t ∈ R+;

(v) for every i ∈ I there exists p(i) > 0 such that

djm(i)(x, Tn(x)) ≤ p(i) < ∞ and djm(i)(x, T (x)) ≤ p(i) < ∞,

for all x ∈ X, n ∈ N and m ≥ 0;
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(vi) for each i ∈ I there is β(i) ∈ I such that

djm(i)(x, Tn(x)) ≤ dβ(i)(x, Tn(x)),

for all x ∈ X, m ≥ 0 and n ∈ N.

Then T, Tn, n ∈ N are POs and the sequence (Tn ◦ Tn−1 ◦ · · · ◦ T0)n∈N pointwise

converges to T∞.

Proof. From (ii), (iii) and (iv) we deduce that there exists a unique x⋆ ∈ FT ,
T∞(x) = x⋆, for all x ∈ X, and djm(i)(x, x∗) ≤ q(i, x) := q(p(i), x) < +∞, for
all m ≥ 0. Let x ∈ X. We have

di((Tn ◦ Tn−1 ◦ · · · ◦ T0)(x), x⋆)

≤ di((Tn ◦ Tn−1 ◦ · · · ◦ T0)(x), (Tn ◦ Tn−1 ◦ · · · ◦ T0)(x
⋆))

+ di((Tn ◦ Tn−1 ◦ · · · ◦ T0)(x
⋆), Tn(x⋆)) + di(Tn(x⋆), x⋆)

≤ · · ·

≤ ϕi ◦ ϕj(i) ◦ · · · ◦ ϕjn(i)(djn+1(i)(x, x⋆))

+ ϕi ◦ ϕj(i) ◦ · · · ◦ ϕjn−1(i)(djn(i)(T0(x
⋆), x⋆))

+ · · · + ϕi(dj(i)(Tn−1(x
⋆), x⋆)) + di(Tn(x⋆), x⋆)

≤ Φn+1
i (djn+1(i)(x, x⋆)) +

n
∑

k=0

Φk
i (djk(i)(Tn−k(x

⋆), x⋆))

≤ Φn+1
i (si(p(i, x))) +

n
∑

k=0

Φk
i (dβ(i)(Tn−k(x

⋆), x⋆)),

where si(t) =
∑∞

k=0 Φk
i (t).

Since Φi is a (c)-comparison function we get Φn+1
i (si(p(i, x))) → 0, as n →

∞. For the sum
∑n

k=0 Φk
i (dβ(i)(Tn−k(x

⋆), x⋆)) we can apply Lemma 3.1. from
M. A. Şerban [30] by taking ak := dβ(i)(Tk(x

⋆), x⋆). Obviously ak → 0, as k →
∞ and Φi is a (c)-comparison function, so

∑n

k=0 Φk
i (dβ(i)(Tn−k(x

⋆), x⋆)) → 0, as
n → ∞. This proves that

di((Tn ◦ Tn−1 ◦ · · · ◦ T0)(x), x⋆) → 0, as n → ∞, for every i ∈ I.

The proof is complete.

Lemma 2.12. Let (X,→) be an L-space and (Y, (di)i∈I) be a sequentially com-

plete Hausdorff gauge space and j : I → I. Let xn, x
⋆ ∈ X, ϕi : R+ → R+,

i ∈ I, are (c)-comparison functions and f : X × Y → Y be an operator such

that:

(i) xn → x⋆ as n → ∞;

(ii) for each i ∈ I the functions ϕi are subadditive;
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(iii) the operator f(·, y) : X → X is continuous for all y ∈ Y ;

(iv) for every i ∈ I we have

di(f(x, y1), f(x, y2)) ≤ ϕi(dj(i)(y1, y2)),

for all x ∈ X, y1, y2 ∈ Y ;

(v) for every i ∈ I there exists a (c)-comparison function Φi such that

sup{ϕjn(i)(t) : n ∈ N} ≤ Φi(t), for each t ∈ R+;

(vi) for every i ∈ I there exists p(i) > 0 such that

djm(i)(y, f(x, y)) ≤ p(i) < ∞, where j : I → I,

for all x ∈ X, y ∈ Y and for all m ≥ 0;

(vii) for each i ∈ I there is β(i) ∈ I such that

djm(i)(y, f(xn, y)) ≤ dβ(i)(y, f(xn, y)),

for all y ∈ Y , m ≥ 0, n ∈ N.

Then the sequence (yn)n∈N defined by

y0 ∈ Y, yn+1 = f(xn, yn) (n ∈ N)

converges to y⋆, for all y0 ∈ Y , where y⋆ is the unique fixed point of f(x⋆, ·).

The proof is essentially the same as of Lemma 2.7 with the modification
that instead of Lemma 2.6 we will apply Lemma 2.11.

Theorem 2.13. Let (X,→) be an L-space and (Y, (di)i∈I) be a sequentially

complete Hausdorff gauge space and j : I → I. Let B : X → X and C :
X×Y → Y be two operators and consider ϕi : R+ → R+, i ∈ I, (c)-comparison

functions. We suppose that:

(i) B is a PO (we denote by x∗ its unique fixed point);

(ii) for every i ∈ I

di(C(x, y1), C(x, y2)) ≤ ϕi(dj(i)(y1, y2)),

for all x ∈ X and y1, y2 ∈ Y ;

(iii) for all i ∈ I there exists a (c)-comparison function Φi such that

sup{ϕjn(i)(t) : n ∈ N} ≤ Φi(t), for each t ∈ R+

(we denote by y∗ the unique fixed point of the operator C(x∗, ·));
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(iv) for every i ∈ I there exists p(i) > 0 such that:

djm(i)(y, C(x, y)) ≤ p(i) < ∞,

for all x ∈ X, y ∈ Y and m ≥ 0;

(v) For each i ∈ I there is β(i) ∈ I such that

djm(i)(y, C(Bn(x), y)) ≤ dβ(i)(y, C(Bn(x), y)),

for all x ∈ X, y ∈ Y , m ≥ 0 and n ∈ N;

(vi) the operator C is continuous.

Then the operator A : X × Y → X × Y defined by A(x, y) := (B(x), C(x, y)) is

a PO. Moreover, FA = {(x⋆, y⋆)}.

Proof. The proof is the same as of Theorem 2.8 with the modification that
instead of Lemma 2.6 we will apply Lemma 2.11.

3. Applications to some functional-integral equations

Let (B, +, R.| · |) be a real Banach space, K ∈ C(R2 × B
2, B), g ∈ C(R, B)

and h ∈ C(R, R). In what follow we consider the functional-integral equation
(see [5, 32])

x(t) =

∫ t

−t

K(t, s, x(s), x(h(s))) ds + g(t), t ∈ R. (1)

We have:

Theorem 3.1. We suppose that:

(i) K ∈ C(R2 × B
2, B), g ∈ C(R, B);

(ii) h ∈ C(R, R) and |h(t)| ≤ |t|, for all t ∈ R;

(iii) there exists LK > 0 such that

|K(t, s, u1, v1) − K(t, s, u2, v2)| ≤ LK(|u1 − u2| + |v1 − v2|),

for all t, s ∈ R, ui, vi ∈ B, i ∈ {1, 2}.

Then:

(a) the equation (1) has in C(R, B) a unique solution x⋆;

(b) for all x0 ∈ C(R, B), the sequence

xn+1(t) =

∫ t

−t

K(t, s, xn(s), xn(h(s))) ds + g(t), t ∈ R,

uniformly converges to x⋆ on each compact subset of R.
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Proof. We consider the gauge space X := (C(R, B), (dn)n∈N), where

dn(x, y) = max
−n≤t≤n

(

|x(t) − y(t)| · e−τ |t|
)

, τ > 0,

and the operator B : X → X defined by

B(x)(t) :=

∫ t

−t

K(t, s, x(s), x(h(s))) ds + g(t).

From condition (iii), for each t ∈ [−n; n], we have

|B(x)(t) − B(y)(t)| ≤ LKdn(x, y)

∣

∣

∣

∣

∫ t

−t

eτ |s| ds

∣

∣

∣

∣

≤ LKdn(x, y)

∫ |t|

−|t|

eτ |s| ds

≤
2LK

τ
dn(x, y)eτ |t|.

So,

dn(B(x), B(y)) ≤
2LK

τ
dn(x, y), for all x, y ∈ X, n ∈ N.

Choosing τ > 2LK we can apply the result of Colojoară [12] (see also [22,
pp. 26], [29, pp. 27]) and thus we obtain the conclusion.

Remark 3.2. In the conditions of Theorem 3.1, B is a PO on the gauge space
(C(R, B), (dn)n∈N).

Let us consider the following functional-integral equation with parameter:

x(t, λ) =

∫ t

−t

K(t, s, x(s, λ), x(h(s), λ), λ) ds + g(t, λ), t ∈ R, λ ∈ J ⊂ R. (2)

Theorem 3.3. We suppose that:

(i) J is a compact interval of R and K ∈ C(R2×B
2×J, B), g ∈ C(R×J, B);

(ii) h ∈ C(R, R) and |h(t)| ≤ |t|, for all t ∈ R;

(iii) K(t, s, ·, v, λ), K(t, s, u, ·, λ) ∈ C1(B, B) and there exists M > 0 such that

‖D3K(t, s, ·, v, λ)‖ ≤ M, ‖D4K(t, s, u, ·, λ)‖ ≤ M,

for all t, s ∈ R, u, v ∈ B, λ ∈ J ;

(iv) g(t, ·) ∈ C1(J, B), for all t ∈ R.

Under these conditions we have:

(a) the equation (2) has a unique solution x⋆ in C(R × J, B);
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(b) for all x0 ∈ C(R × J, B), the sequence

xn+1(t, λ) =

∫ t

−t

K(t, s, xn(s, λ), xn(h(s), λ), λ) ds + g(t, λ)

(t∈R, λ∈J) converges uniformly, on each compact subset of R×J , to x⋆;

(c) x⋆(t, ·) ∈ C1(J, B), for all t ∈ R.

Proof. Let X = C(R × J, B) and B : X → X,

B(x)(t, λ) :=

∫ t

−t

K(t, s, x(s, λ), x(h(s), λ), λ) ds + g(t, λ), t ∈ R, λ ∈ J.

Conclusions (a) and (b) follow as in the proof of Theorem 3.1.

To show (c), we shall use the following heuristic argument. We suppose
that there exists ∂x⋆

∂λ
. Then from (2) we have

∂x⋆

∂λ
(t, λ) =

∫ t

−t

(

D3K(t, s, x⋆(s, λ), x⋆(h(s), λ), λ)
)∂x⋆

∂λ
(s, λ) ds

+

∫ t

−t

(

D4K(t, s, x⋆(s, λ), x⋆(h(s), λ), λ)
)∂x⋆

∂λ
(h(s), λ) ds

∫ t

−t

∂K

∂λ
(t, s, x⋆(s, λ), x⋆(h(s), λ), λ) ds +

∂g

∂λ
(t, λ).

This relation suggests to consider the operator

C : X × X → X, such that (x, y) 7→ C(x, y),

where

C(x, y)(t, λ) :=

∫ t

−t

(

D3K(t, s, x(s, λ), x(h(s), λ), λ)
)

(y(s, λ)) ds

+

∫ t

−t

(

D4K(t, s, x(s, λ), x(h(s), λ), λ)
)

(y(h(s), λ)) ds

+

∫ t

−t

∂K

∂λ
(t, s, x(s, λ), x(h(s), λ), λ) ds +

∂g

∂λ
(t, λ)

with t ∈ R, λ ∈ J . In this way we have the triangular operator

A : X × X → X × X, defined by A(x, y) := (B(x), C(x, y)).
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From (iii) it follows that C(x, ·) : X → X, x ∈ X, are contractions. Indeed, we
have

|C(x, y)(t, λ) − C(x, z)(t, λ)|

≤

∫ |t|

−|t|

∣

∣

(

D3K(t, s, x(s, λ), x(h(s), λ), λ)
)

(y(s, λ) − z(s, λ))
∣

∣ ds

+

∫ |t|

−|t|

∣

∣

(

D4K(t, s, x(s, λ), x(h(s), λ), λ)
)

(y(h(s), λ) − z(h(s), λ))
∣

∣ ds

≤ M

∫ |t|

−|t|

|y(s, λ) − z(s, λ)| ds + M

∫ |t|

−|t|

|y(h(s), λ) − z(h(s), λ)| ds

≤ 2Mdn(y, z)

∫ |t|

−|t|

eτ |s| ds

≤
4M

τ
dn(y, z)eτ |t|, t ∈ [−n; n].

Therefore

dn(C(x, y), C(x, z)) ≤
4M

τ
dn(y, z),

for all x, y, z ∈ X. In this case, we can choose τ > 4M and so the operator
B and the operators C(x, ·) are contractions. Using Theorem 2.5 we conclude
that the operator A is PO and the sequences

xn+1(t, λ) =

∫ t

−t

K(t, s, xn(s, λ), xn(h(s), λ), λ) ds + g(t, λ),

yn+1(t, λ) =

∫ t

−t

(D3K(t, s, xn(s, λ), xn(h(s), λ), λ))(yn(s, λ) ds

+

∫ t

−t

(D4K(t, s, xn(s, λ), xn(h(s), λ), λ))(yn(h(s), λ)) ds

+

∫ t

−t

∂K

∂λ
(t, s, xn(s, λ), xn(h(s), λ), λ) ds +

∂g

∂λ
(t, λ)

(t ∈ R, λ ∈ J) converge uniformly on each compact of R × J to (x⋆, y⋆) ∈ FA,
for all x0, y0 ∈ X. But for fixed x0, y0 ∈ X such that y0 = ∂x0

∂λ
we have that

y1 = ∂x1

∂λ
and by induction we can prove that yn = ∂xn

∂λ
. So ∂xn

∂λ
converges

uniformly on each compact of R × J to y⋆. These imply that there exists ∂x⋆

∂λ

and ∂x⋆

∂λ
= y⋆.
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tains espaces fonctionnels (in French). Ann. Univ. Sci. Budapest. Eötvös Sect.
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