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Some Limit Results

on the Haar-Fisz Transform

for Inhomogeneous Poisson Signals

Thorsten Schmidt and Ling Xu

Abstract. One method to estimate the intensity of inhomogeneous Poisson processes,
suggested by Fryzlewicz and Nason in [J. Comput. Graph. Statist. 13 (2004)(3)], is
first to preprocess the data using the so-called Haar–Fisz transform and then to
apply wavelet methods to the outcome of the first step. For this procedure it is
necessary, that the outcomes of the preprocessing step can be approximated by a
normal distribution. In this paper we establish the necessary weak convergence results
for the case of inhomogeneous Poisson processes which show that the outcome of the
preprocessed data can be approximated by Gaussian random variables and wavelet
shrinkage with a global threshold may be applied. A small simulation studies the
application to shot-noise models. It suggests that this method is able to detect small
peaks while at the same time it does not over-smooth large peaks in comparison with
kernel estimators or standard wavelet estimators.
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1. Introduction

Poisson processes have a long history in insurance and finance as risk-arrival
processes and are well analysed. The homogeneous case is obviously the most
convenient one as far as estimation is concerned. However, in practice quite of-
ten inhomogeneous processes are more suitable due to seasonalities or changes in
the considered environment and so on. In particular, this research was inspired
by the work of Dassios and Jang (2003), where the pricing of reinsurance claims
which are subject to catastrophes has been analysed. If a catastrophe occurs,
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the number of claims rises sharply, but after a time this effect fades away. The
aim is at estimating this intensity from the claim data. Other applications of
shot-noise processes in finance include Gaspar and Schmidt (2005) and Schmidt
and Stute (2007).

More precisely, this paper considers inhomogeneous Poisson processes and
proposes to estimate the intensity using wavelets. The approach considers a
method proposed in Fryzlewicz and Nason (2004) and gives the necessary weak
convergence results for the case of inhomogeneous Poisson processes. This gen-
eralizes the results in Fryzlewicz and Nason (2004), which obtained weak con-
vergence only for the homogeneous case.

The considered method follows ideas which go back to Fisz (1955). The key
tool is a transformation, the so-called Haar–Fisz transform, which transforms
the observations to approximately normal distributed random variables. In his
paper, Fisz used this property to test the hypothesis that two Poisson variables
have equal means, and the hypothesis that their means are both equal to a given
number. Later, Fryzlewicz and Nason proposed in [5] the analyzed algorithm.
One first preprocesses a vector of Poisson random variables using a nonlinear
wavelet-based transformation and then treat the preprocessed vector as if it
was Gaussian. In [5] it was proved that, in the case of a homogeneous Poisson
process, the transformed vector is approximately normal and the elements are
asymptotically uncorrelated. We extend their results to the inhomogeneous
case.

The estimation procedure, as considered here, consists of two steps: the
preprocessing step and the wavelet analysis of the preprocessed part. In this
paper we provide theoretical considerations on the first step. Fryzlewicz (2007)
provides a mean-square consistency result for the complete estimation procedure
in a more general setting of the data-driven wavelet-Fisz estimation. However,
asymptotic normality of the preprocessed vector is not considered, which is the
topic of this work. The extension of the Haar–Fisz transform to other wavelets
is considered in Jansen (2006) which also provide some partial limit results.
Fryzlewicz and Nason (2006) apply the Haar–Fisz transform and related ideas
for estimating the local variance of a locally stationary Gaussian time series.

The paper is organized as follows. In Section two we describe the estimation
procedure. In Section three we establish weak convergence results for inhomoge-
neous Poisson processes. In Section four we give some simulation results which
illustrate the applicability of the chosen approach to intensities of the shot-noise
type and compare it to kernel estimators.

2. The procedure

The main goal of this paper is a suitable transformation of the observed Poisson
process which will allow the application of well-established wavelet techniques.
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Inhomogeneous Poisson processes. An inhomogeneous Poisson process P
is pure-jump process with independent and Poisson distributed increments. It
is determined by its intensity λ : R

+ 7→ R
+, and we have for 0 ≤ s < t

P(Pt − Ps = k) = exp
(

−
∫ t

s

λ(s)ds
)(

∫ t

s
λ(s)ds)k

k!
, k = 0, 1, 2, . . . .

We assume that we observe P on the interval [0, T ] and aim at estimating λ on
this interval.

Haar wavelets play a key role in the used transformation. For the reader’s
convenience we give a short introduction. For a full treatment of wavelets we
refer to [10].

Haar wavelets. Consider J ∈ N. We divide the observation interval [0, T ]
in 2J =: N intervals of equal length. The Haar wavelet filters are given by a
family of vectors ψj,l ∈ R

N with j ∈ {1, . . . , J} and l ∈ {1, . . . , 2J−j}. Here
j is a scale parameter and l is a location parameter. It is more convenient to
consider k = k(l, j) = (l − 1)2j + 1 instead of l. Throughout the paper we
simply write k instead of k(l, j). The Haar wavelet filters ψj,l = (ψj,l

1 , . . . , ψ
j,l
N )

are defined by

ψj,l
n = 1{n∈[k,k+2j−1)} − 1{n∈[k+2j−1,k+2j)}.

For a given degree of fineness N , we also need to take care of the overall scale
on the considered intervals. In analogy to ψ we therefore introduce the Haar
scaling filters φj,l ∈ R

N defined by

φj,l
n = 1{n∈[k,k+2j)}.

To have an easy access to the used indices we define for J0 ∈ {1, . . . , J} the set

AJ
J0

:=
{

(j, l)
∣

∣ (j, l) ∈ Z
2 and 1 ≤ j ≤ J0, 1 ≤ l ≤ 2J−j

}

.

Clearly, the Haar wavelet filters and Haar scaling filter satisfy ψj,l = φj−1,2l−1−
φj−1,2l and φj,l = φj−1,2l−1 + φj−1,2l for any (j, l) ∈ AJ

J \ AJ
1 .

Remark 2.1. Haar filters constitute an orthogonal basis of R
N . More precisely,

we have that1

〈ψj,l,φJ,1〉 = 〈ψj,l,1〉 = 0, 〈ψj,l,ψs,t〉 = 2j1{(j,l)=(s,t)}.

Letting ψ̃
j,l

= 2−
j

2 ψj,l and φ̃
j,l

= 2−
j

2 φj,l we find that {φ̃J,1
, ψ̃

j,l
: (j, l) ∈ AJ

J}
is an orthonormal basis of R

N .

1Denote by 〈·, ·〉 the inner product in R
N .
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The Haar–Fisz transformation. The transformation we use was proposed
by [5]. We give a formulation which is suitable for obtaining convergence results.
As the wavelet filters constitute a basis of R

N we have for v ∈ R
N the following

decomposition:

v = AJ,1(v) φ̃
J,1

+
∑

(j,l)∈AJ
J

Dj,l(v) ψ̃
j,l

with AJ,1(v) = 〈v, φ̃J,1〉, Dj,l(v) = 〈v, ψ̃j,l〉. Here, AJ,1(v) gives the overall
scale of the wavelet decomposition while Dj,l(v) refer to the fine structure on
the considered detail level.

Now we are in the position to precisely state the transform.

Definition 2.2. The Haar–Fisz transform is the function F : R
N → R

N de-
fined by

F(v) = AJ,1(v) φ̃
J,1

+
∑

(j,l)∈AJ
J

Gj,l(v) ψ̃
j,l
, (1)

with

Gj,l(v) =
〈v,ψj,l〉
〈v,φj,l〉

1

2

1{〈v,φ
j,l〉>0}.

We will often refer to components of the vector F(v) and therefore simply
set F(v) = (F1(v), . . . ,FN(v)).

The reason for using G instead of D is simply normalization. For a dis-
cretization level J set ∆ := T

N
. Then the discretized observation ξN := (P∆ −

P0, . . . , PN∆−P(N−1)∆) is a vector of independent Poisson random variables with

mean λN where λn =
∫ n∆

(n−1)∆
λ(s) ds. Then, under some assumptions, Gj,l(ξN)

will converge to a normally distributed random variable with unit variance as
we will see later. Hence we are able to apply well-established wavelet denoising
techniques with global thresholding.

2.1. The estimation procedure. For fixed N we consider the discretized
observation ξN as above. The estimation procedure consists of the following
three steps proposed by [5]:

1. Given the vector ξN of independent Poisson random variables, we first
preprocess it using F(ξN). As will be shown in Theorem 3.4, F(ξN) is
F(λN) plus approximately white noise.

2. Denoise F(ξN) with standard wavelet techniques and denote the outcome
by F̃(ξ

N
). These steps are outlined detailed in Section 4.

3. The inverse Haar–Fisz transform gives the estimator: F−1(F̃(ξN)).
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Remark 2.3. The estimating procedure basically consists of two steps. The
first step, is the transformation of the data, given by the function F . The
second step consists in the application of standard wavelet techniques. Finally,
the inverse Haar–Fisz transform is applied.

The second step requires that the transformation F has an outcome which
can be approximated by normally distributed random variables. This paper
mainly concentrates on this and gives the necessary weak convergence results
in our main result, Theorem 3.4.

3. Convergence results for the Haar–Fisz transform

This section gives precise results for convergence of the preprocessing step. By
L→ we denote convergence in distribution. Central to the following argumenta-
tion will be the following result provided in [3].

Theorem 3.1. Let ξ1 and ξ2 be independent and Poisson distributed with in-

tensity λ1 and λ2, respectively. If λ1 → ∞, λ2 → ∞ and λ1

λ2

→ 1, then we have

that

η :=
ξ1 − ξ2√
ξ1 + ξ2

1{ξ1+ξ2>0} −
λ1 − λ2√
λ1 + λ2

L−−→ N (0, 1).

Furthermore, from the proof of this result we learn that

ξ1 − ξ2√
ξ1 + ξ2

1{ξ1+ξ2>0} −
ξ1 − ξ2√
λ1 + λ2

P−−→ 0, (2)

where
P→ denotes convergence in probability. In Lemma 6.2 we proof uniform

L3-boundedness of {η : λ1, λ2 > 1} and so from convergence to N (0, 1) it follows
that

E(η) → 0, E(η2) → 1, and Var(η) → 1. (3)

It will prove useful to have a convenient representation of vectors like ψ,
φ, G and others. In the following we therefore write simply (G1, . . . ,GN−1) for
(G1,1,G1,2, . . . ,G1,2J−1 ,G2,1, . . . ,G2,2J−2 , . . . ,GJ,1) and similar for ψ and φ. The
different indexation should suffice to avoid confusion. Set G := (G1, . . . ,GN−1)
and let cni := ψ̃i

n and cn = (cn1 , . . . , c
n
N−1), n = 1, . . . , N . Note that then

((

c1

2−
J
2

)

, . . . ,

(

cN

2−
J
2

))

=
(

ψ̃
1
, . . . , ψ̃

N−1
, φ̃

J,1
)⊤
. (4)

First, we derive a useful representation of F(v). In this simpler notation,
(1) reads

Fn(v) = 2−
J
2 AJ,1(v) + 〈cn,G(v)〉. (5)

A first step is the following generalization of Theorem 3.1. By IN we denote
the identity matrix.
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Theorem 3.2. Consider a vector ξ of independent Poisson random variables

with mean λ = (λ1, . . . , λN). If λi → ∞ and | λi

λj
− 1| → 0 for all i and j, then

G(ξ) − G(λ)
L−−→ N (0, IN).

Proof. The proof mainly relies on (2). To apply this result, we denote by

G̃i(ξ) = 〈ξ,ψi〉 · 〈λ,φi〉− 1

2 and set G̃ = (G̃1, . . . , G̃N−1). Note that

G̃i(ξ) − Gi(λ) =
〈ξ − λ,ψi〉
〈λ,φi〉 1

2

=

〈

ξ − λ√
λ1

,

√
λ1ψ

i

〈λ,φi〉
1

2

〉

hence G̃(ξ) − G(λ) is of the form
(ξ−λ)⊤√

λ1

Ψ with appropriate Ψ ∈ R
N×N . Fur-

thermore, √
λ1ψ

i

〈λ,φi〉
1

2

→ ψi

〈1,φi〉
1

2

= ψ̃
i

hence Ψ⊤Ψ → IN .

On the other hand, using that the components of ξ are independent, we

obtain by Lemma 6.1
ξ−λ√

λ1

L−−→ N (0, IN) and we therefore have shown that

G̃(ξ) − G(λ)
L−−→ N (0, IdN). Using (2), we have Gi(ξ) − G̃i(ξ)

P−−→ 0, and so

we get G(ξ) − G̃(ξ)
P−−→ 0 and the desired result follows.

Up to now, N was always fixed. Our main result, Theorem 3.4 considers
the case where N goes to infinity and the λi relate appropriately. Recall that
we want to approximate a rescaled Poisson random variable by a Gaussian
distribution and it is therefore necessary that the intensity is sufficiently high. In
the inhomogeneous case, additionally the intensities must scale properly which
leads to the following Assumption 3.3. We therefore introduce ρ and let λi be
increasing with ρ. Besides letting the grid getting finer and finer by increasingN
we also increase the intensity of the Poisson signals by increasing ρ.

The precise assumptions are as follows. Recall that the observation ξN was
Poisson distributed with mean λN . We need some uniform convergence of the
components of λN and to be able to state this conveniently we assume that
λN = λN(ρ) = (λ1(ρ), . . . , λN(ρ)) with ρ > 0. Then we examine convergence
for N and ρ going to infinity.

Assumption 3.3. Assume that for any N and ǫ, δ > 0 there exits a ρ0, s.t. for

ρ > ρ0

inf
1≤i≤N

λi(ρ) > δ, sup
1≤i,j≤N

∣

∣

∣

∣

λi(ρ)

λj(ρ)
− 1

∣

∣

∣

∣

< ǫ, (6)

where ǫ, δ, ρ0 do not depend on N .
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We are ready to state the main result.

Theorem 3.4. Assume Assumption 3.3 holds and
〈λN ,φ

J,1〉 1

2

N
→ 0 for ρ,N →

∞. Then

Fn(ξN) −Fn(λN)
L−−−−−−→

ρ,N→∞
N (0, 1) (7)

as well as Cov(Fm(ξN),Fn(ξN)) → 0 for any m 6= n.

Example 3.5. Consider the case where λi(ρ) = ρ for all i. Then, Assump-
tion 3.3 is trivially satisfied. Next,

〈λN ,φ
J,1〉 1

2

N
=

√
Nρ

N
=

√

ρ

N
.

If we choose, for example, ρ =
√
N the assumptions in Theorem 3.4 are satisfied.

The proof extends the ideas in [4] to the inhomogeneous setting.

Proof. Let z := G(ξN) − G(λN). By (5), we obtain

Fn(ξN) −Fn(λN) = 2−
J
2 (AJ,1(ξN) −AJ,1(λN)) + 〈cn, z〉 := M +Xn.

First, we show that M converges to zero. To this, note that 〈ξN ,φ
J,1〉 is

Poisson with mean 〈λN ,φ
J,1〉). Hence, by Lemma 6.1 in the appendix, Y :=

(〈ξN ,φ
J,1〉 − 〈λN ,φ

J,1〉) 〈λN ,φ
J,1〉− 1

2 converges in distribution to N (0, 1). Set

ϑ = ϑ(N,λN) := 1
N
〈λN ,φ

J,1〉 1

2 . Then we obtain that M = Y ϑ
P−−→ 0. Further-

more, as Var(Y ) = 1, we have that

Var(M) = Var(Y ) ϑ2 −→ 0.

Second, we consider the convergence of Xn. For this part, the condition that
ϑ converges to zero is not necessary and we directly show that Xn converges to
N (0, 1) as both ρ and J go to infinity. The main idea is to split Xn up in a
part which converges to a random variable which is arbitrary close to standard
normal and a part which is arbitrary close to zero. Fix a J0 and consider J > J0.
Recall the definition of cn prior to (4) and set cn

1 = (cn1 , . . . , c
n
2J−2J−J0

)⊤ as well

as cn
2 = (cn

2J−2J−J0+1
, . . . , cnN−1)

⊤. We similarly divide z in z1 and z2. Then

Xn = Xn
1 +Xn

2 ,
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where Xn
i = 〈cn

i , zi〉. Note that Xn
1 does not depend on J . Denote by b(n) =

(b1(n), b2(n), . . . ) the binary representation of the integer n. Then2

Xn
1 =

J0
∑

j=1

(−1)bj(n) 2−
j

2

(

Gj,⌈ n

2j ⌉(ξN) − Gj,⌈ n

2j ⌉(λN)
)

L−−→ N
(

0,

J0
∑

j=1

[

(−1)bj(n)2−
j

2

]2
)

= N
(

0, 1 − 2−J0

)

follows.

On the other hand, we have that, by the definition of cn, ‖cn
2‖2

1 ≤ (
√

2 +

1)2−
J0

2 . A consequence of (13) provided in the appendix is that there exists a
ρ0 such that, for all ρ > ρ0, supJ,(ji,li)∈AJ

J
E[(zi)

2] ≤ 2. Hence for ρ > ρ0,

E[(Xn
2 )2] ≤ 2 ‖cn

2‖2
1 ≤ c̃ 2−

J0

2

with c̃ = 2(
√

2 + 1). By the Markov-inequality we get for any ǫ > 0 and ρ > ρ0

that

P(|Xn
2 | > ǫ) ≤ 1

ǫ2
E

[

(Xn
2 )2

]

≤ ǫ−2 c̃ 2−
J0

2 . (8)

These two results suffice for the claim, as we will show now. For any x we have
that for ρ > ρ0

P(Xn ≤ x) = P(Xn ≤ x, |Xn
2 | ≤ ǫ) + P(|Xn

2 | > ǫ).

For the first term we use that {Xn
1 +Xn

2 ≤ x, |Xn
2 | ≤ ǫ} ⊂ {Xn

1 ≤ x + ǫ} and
obtain

lim
J,ρ→∞

P(Xn ≤ x) ≤ lim
ρ→∞

P(Xn
1 ≤ x+ ǫ) + ǫ−2 c̃ 2−

J0

2

= Φ

(

x+ ǫ√
1 − 2−J0

)

+ ǫ−2 c̃ 2−
J0

2 .

As J0 was arbitrary, we obtain limJ,ρ→∞ P(Xn ≤ x) ≤ Φ(x). For the other
inclusion, observe that for ρ > ρ0

P(Xn ≤ x) ≥ P(Xn
1 +Xn

2 ≤ x, |Xn
2 | ≤ ǫ)

≥ P(Xn
1 + ǫ ≤ x) + P(|Xn

2 | ≤ ǫ) − 1

≥ Φ(x− ǫ) + (1 − ǫ−2c̃ 2−J0) − 1

= Φ(x− ǫ) − ǫ−2c̃ 2−J0 .

2Denote by ⌈x⌉ the smallest integer i ≥ x. Note that by the definition of Haar wavelets

we have cni = ψ̃i
n and ψ̃j,l

n = (−1)bj(n)2
−j

2 1{l=⌈ n

2j ⌉} for some j, l.
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Again, as J0 and ǫ are arbitrary, we obtain limJ,ρ→∞ P(Xn ≤ x) ≥ Φ(x) and
therefore the limit equals Φ(x).

The second part of the theorem is a statement about covariances. The
essential ingredient is again Lemma 6.3. First, observe that

|Cov(fm, fn)| = |Var(M) + Cov(M,Xm) + Cov(M,Xn) + Cov(Xm, Xn)|
≤ Var(M) +Var

1

2 (M)
[

Var
1

2 (Xm) +Var
1

2 (Xn)
]

+ |Cov(Xm, Xn)|.

Recall that Var(M) → 0. In the following we show that Cov(Xm, Xn) → 0, as
ρ, J → ∞ and that Var(Xm) is bounded. As in (7), we choose a J0 and use the
decomposition Xn = Xn

1 +Xn
2 . With

|Cov(Xm, Xn)| ≤
2

∑

i,j=1

|Cov(Xm
i , X

n
i )| (9)

we consider, letting N0 = 2J − 2J−J0 ,

|Cov(Xm
1 , X

n
1 )| = |cm⊤

1 Cov(z1, z1)c
n
1 |

≤ |cm⊤
1 (Cov(z1, z1) − IN0

)cn
1 | + |〈cm

1 , c
n
1 〉|.

Recalling that cni = ψ̃i
n, we have that

‖cn
2‖1 =

∑

(j,l)∈AJ
J
\AJ

J0

|ψ̃j,l
n | =

J
∑

j=J0+1

2J−j
∑

l=1

|ψ̃j,l
n | =

J
∑

j=J0+1

2−
j

2 ≤ (
√

2 + 1)2−
J0

2

and similarly, ‖cn
1‖1 ≤

√
2 + 1 and ‖cn

2‖2
2 = 2−J0 − 2−J . With |〈cm

2 , c
n
2 〉| ≤

‖cm
2 ‖

1

2

2 ‖cn
2‖

1

2

2 we obtain

|〈cm
1 , c

n
1 〉| = |〈cm, cn〉 − 〈cm

2 , c
n
2 〉| ≤ 2−J0 .

On the other hand, from Lemma 6.3 we obtain that for given ǫ there exists ρ0,
such that for ρ > ρ0

sup
J≥J0,1≤i,k≤2J (1−2J0 )

|Cov(zi, zk) − 1{i=k}| < ǫ

and hence

|Cov(Xm
1 , X

n
1 )| ≤ ǫ ‖cm

1 ‖1‖cn
1‖1 + 2−J0 = ǫ(1 +

√
2)2 + 2−J0 .

For the remaining terms, observe that Lemma 6.3 also gives

sup
J≥J0,1≤i<2J

|Var(zi) − 1| < ǫ
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and so

Var(Xn
2 ) = cn⊤

2 Cov(z2, z2)c
n
2 ≤ (1 + ǫ)‖cn

2‖2
1 ≤ (1 + ǫ)(2−J0 − 2−J)

Var(Xn
1 ) ≤ (1 + ǫ)‖cn

1‖2
1 ≤ (

√
2 + 1)2(1 + ǫ).

This directly implies

|Cov(Xm
1 , X

n
2 )| ≤ Var

1

2 (Xm
1 ) Var

1

2 (Xn
2 ) ≤ (

√
2 + 1)(1 + ǫ)

√

2−J0 − 2−J

|Cov(Xm
2 , X

n
2 )| ≤ (1 + ǫ) (2−J0 − 2−J),

and as J0 and ǫ were arbitrary, we obtain that all terms in (9) converge to
zero as J, ρ → ∞. Furthermore, as Var(Xm

1 ) is bounded, we also have that
Var(M) Var(Xm

1 ) → 0 and so we conclude |Cov(fn, fm)| → 0.

4. Simulation results

In this section, we compare the performance of the estimation procedure to
kernel-based estimators in the case where the intensity is of the shot-noise type.
Further, comprehensive simulation results may be found in [5].

The analysed scenario is inspired by Dassios and Jang (2003). The authors
discuss an insurance problem where the insurance claims arrive through a Cox
process with shot noise intensity. Here, we concentrate on a somewhat simpler
case, namely the case of inhomogeneous Poisson processes where the intensity
has a shot noise form. The shot noise form is motivated by an occurring catas-
trophe which induces thereafter a high number of claims, but as time passes by
this effect fades away. The question analysed is: if we observe the number of
claims, how can we estimate the claim intensity. Our method is nonparamet-
ric. If, as analysed in [2] one would like to specify a stochastic model for the
intensity, one typically would use filtering methods to estimate the unknown
intensity.

The denoising procedure. We shortly illustrate the denoising procedure. In
principle, an arbitrary wavelet basis can be used. For convenience, we illustrate
the denoising procedure using Haar wavelets. Recall the definitions of the nor-
malized Haar wavelets ψ̃ and φ̃ in Section 2. From Remark 2.1 we obtain the
the set of normalized Haar wavelets constitutes an orthonormal basis of R

N .

Then for a threshold δ > 0, the estimator of v ∈ R
N using a so-called hard

thresholding takes the following form:

v̂ =
∑

(J1,l)∈AJ
J1

\AJ
J1−1

〈

v, φ̃
J1,l

〉

φ̃
J1,l

+
∑

(j,l)∈AJ
J1

〈

v, ψ̃
j,l

〉

1
{|〈v,

˜ψ
j,l

〉|>δ}
ψ̃

j,l
. (10)

Including the denoising steps in the whole procedure we estimate as follows:
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1. Apply transform. First, we preprocess the data using the transform F
and obtain v := F(ξN) which is approximately Gaussian.

2. Discrete wavelet transform. Choose a wavelet basis and a level J1. We
select threshold as follows: using the approximate standard normality of v
we set the threshold to δ =

√
2 logN and therewith compute denoised v̂

as in (10).

3. Inverse transform. Finally, the transformation is inverted and the esti-
mator of the Poisson intensity is F−1(v̂).

One of the most important things is the choice of the proper wavelet scaling
function3. Generally speaking, for appropriate denoising the wavelet scaling
function should have properties which are similar to the original signal. There-
fore, in our estimation we choose to denoise F(ξN) with Daubechies-3 wavelets.
The illustration above just uses Haar wavelets as we already introduced them.
However, if we used Haar wavelets for the estimation, the result would be very
poor.

The chosen estimation method is very well suited to estimate intensities
which have extremely sharp spikes. However, when the procedure is used for
the estimation of smoother intensities, its performance is as good as that of
kernel methods. We illustrate this with some simulations.

Simulation results. In Figure 1 we compare the estimation method based on
the Haar–Fisz transform with a kernel estimator of the intensity and a stan-
dard wavelet estimator. We rely on a standard, i.e., symmetric and smooth
kernel (Gaussian) as well as we use standard, symmetric and smooth wavelets
(Daubechies-3). The intensity is, as already mentioned, assumed to be subject
to certain shocks and therefore has a peaky, shot-noise like shape. The number
of jumps in the considered intervals clearly reflects this. Figure 1 gives four
plots. The first and the second pair of plots differ in the true intensity. On the
left side, we compare the estimation method based on the Haar–Fisz transform
(H-F estimator) with the outcomes from a kernel estimator. On the right side
we compare the H-F estimator with a standard wavelet approach not using the
Haar–Fisz transform. All plots suggests the advantage of the H-F estimator
over the other methods. In particular, this estimator is able to capture the
large peaks without over-smoothing it. It is notably, that the standard wavelet
approach is quite close to the H-F estimator. As was to be expected, the kernel
estimator shows an over-smoothing of these peaks. Furthermore, in the left
plot, the kernel estimator is not able to detect the two smaller peaks following
each other.

3We refer to [11] for more information on the choice of the wavelet scaling function in
practice.
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Figure 1: Simulation and estimation of inhomogeneous Poisson processes for
two different, given intensities. The solid line gives the true intensity and the
bars show the number of jumps in the considered intervals. The plots give
the different estimators: a kernel estimator, a standard wavelet estimator and
the estimator based on the Haar–Fisz transform (H-F estimator) as given in
Section 2.1.

5. Conclusion

This paper considers a wavelet based method for the estimation of the inten-
sity of an inhomogeneous Poisson process. The procedure first transforms the
observation to a vector which is approximately Gaussian and then applies well
established wavelets methods. In this paper we establish the necessary weak
convergence results which provide asymptotic normality of the preprocessed
data. A small simulation study considers the application to inhomogeneous
Poisson processes with intensities of the shot-noise type.

6. Appendix

First, we recall the following well-known result:

Lemma 6.1. Let ξ ∼ Poiss(λ), then ξ−λ√
λ

L−−→ N (0, 1), asλ→ ∞.
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Next, we give a result on boundedness of certain transforms of Poisson
random variables.

Lemma 6.2. Consider, as in Theorem 3.1, independent ξi ∼ Poisson(λi), i =
1, 2, and set

η = η(λ1, λ2) :=
ξ1 − ξ2√
ξ1 + ξ2

1{ξ1+ξ2>0} −
λ1 − λ2√
λ1 + λ2

.

Then {η(λ1, λ2) : λ1, λ2 ≥ 1} is uniformly bounded in L3.

Proof. Set Y (λ1) := (ξ1 − λ1) · λ−
1

2

1 . Then E(Y 6) = 15 + 25 1
λ1

+ 1
λ2

1

and hence

{Y (λ1) : λ1 ≥ 1} is uniformly bounded in L6. Denote by ‖ · ‖p the norm in Lp,
for any p > 0. Observe that

‖ η ‖3 ≤
∥

∥

∥

∥

ξ1 − ξ2√
λ1 + λ2

√
λ1 + λ2√
ξ1 + ξ2

1{ξ1+ξ2>0} −
λ1 − λ2√
λ1 + λ2

∥

∥

∥

∥

3

.

The second term is smaller than
∥

∥

ξ1−λ1√
λ2

∥

∥

3
+

∥

∥

ξ2−λ2√
λ2

∥

∥

3
and hence it is uniformly

L3 bounded by the remark above. To the first term, we have that
∥

∥

∥

∥

ξ1 − ξ2√
ξ1 + ξ2

1{ξ1+ξ2>0} −
ξ1 − ξ2√
λ1 + λ2

∥

∥

∥

∥

3

≤
∥

∥

∥

∥

(ξ1 − ξ2) ·
√
ξ1 + ξ2 −

√
λ1 + λ2

√

(ξ1 + ξ2)(λ1 + λ2)
1{ξ1+ξ2>0}

∥

∥

∥

∥

3

≤
∥

∥

∥

∥

(ξ1 − ξ2)
ξ1 + ξ2 − (λ1 + λ2)

√

(ξ1 + ξ2)(λ1 + λ2) (
√
ξ1 + ξ2 +

√
λ1 + λ2)

1{ξ1+ξ2>0}

∥

∥

∥

∥

3

≤
∥

∥

∥

∥

ξ1 − ξ2

ξ1 + ξ2
1{ξ1+ξ2>0}

∥

∥

∥

∥

1

2

6

·
∥

∥

∥

∥

ξ1 + ξ2 − (λ1 + λ2)√
λ1 + λ2

∥

∥

∥

∥

1

2

6

.

The first term is smaller than 1 and the second term is uniformly bounded as
noted above. Thus we have shown the result.

The following lemma is used in the proof of Theorem 3.4.

Lemma 6.3. Assume that Assumption 3.3 holds. Then for all ǫ > 0, there

exists ρ0, such that for all ρ > ρ0,

sup
2J ,1≤i<2J

|Var(Gi(ξ2J )) − 1| < ǫ. (11)

Furthermore, for any J0 ∈ N, for all ǫ > 0, there exists ρ0, such that for all
ρ > ρ0,

sup
J≥J0, 1≤i6=k≤2J (1−2J0 )

|Cov(Gi(ξ2J ),Gk(ξ2J ))| < ǫ.
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Proof. Consider some J and set N = 2J . Recall the notational convention
(G1, . . . ,GN−1) = (G1,1,G1,2, . . . ,G1,2J−1 ,G2,1, . . . ,G2,2J−2 , . . . ,GJ,1). So the supre-
mum is over suitable i’s, and hence this is equivalent to consider all suitable
(j, l)’s which are precisely all (j, l) ∈ AJ

J . It is essential to observe that for in-
creasing N but fixed (j, l) the vectors ψj,l get filled up with zeros, so the value
of 〈ψj,l,v〉, for any v does not change if N is increased. With k = (l− 1)2j + 1
set

η1 = 〈1[k,k+2j−1), ξN〉, η2 = 〈1[k+2j−1,k+2j), ξN〉,

and νi = E(ηi). Observe that ηi ∼ Poiss(νi), and η1 and η2 are independent.
Then

η = Gi(ξN) − Gi(λN) =
〈ψi, ξN〉
〈φi, ξN〉

1

2

− 〈ψi,λN〉
〈φi,λN〉

1

2

=
η1 − η2√
η1 + η2

− ν1 − ν2√
ν1 + ν2

.

By (3) we have that Var(η) → 1 if ν1, ν2 both converge to infinity and ν1

ν2

converges to 1. Hence, for all ǫ > 0, there exist ǫ0, δ0, such that for all ν1, ν2 > δ0
and |ν1

ν2

− 1| < ǫ0 it holds that |Var(η)− 1| < ǫ. By Assumption 3.3 (6), for this
ǫ0 and δ0 there exits a ρ0, such that for all ρ > ρ0,

inf
i∈N

λi(ρ) > δ0, sup
i,j∈N

∣

∣

∣

∣

λi(ρ)

λj(ρ)
− 1

∣

∣

∣

∣

< ǫ0.

Hence for all ρ > ρ0 we have that |Var(η) − 1| < ǫ and so (11) is proved.

For the second result, we start with a simple observation on the considered
covariances. Using Theorem 3.2 together with (3) we have that for i 6= k,
Cov(Gi(ξN),Gk(ξN)) → 0.

Next, the observation ξN is split up into parts of fixed length 2J0 , which we
denote by un, s.t. we have ξ⊤N = (u⊤

1 , . . . ,u
⊤
J̃
) with J̃ = 2J

2J0
. Of course, all un

are independent as are the components of ξN . For fixed 1 ≤ i 6= k ≤ (2J0 − 1)
it follows from the remark above that for all ǫ > 0, there exists ρi,k, such that
for all ρ > ρi,k,

sup
n

Cov(Gi(un),Gk(un)) < ǫ. (12)

Set ρ0 = max1≤i6=k<2J0 ρi,k. Clearly, for any ρ > ρ0, (12) holds. Now consider
arbitrary J ≥ J0. As is clear from the definition, Gj,l(ξN) is equal to Gj̃,l̃(uñ)

with appropriate j̃, l̃, ñ. Combining Cov(Gi(un),Gk(um)) = 0 for n 6= m because
of independence with (12) we obtain

sup
J≥J0, 1≤i6=k≤2J (1−2J0 )

|Cov(Gi(ξ2J ),Gk(ξ2J ))| < ǫ.

and therefore the proof is finished.
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Remark 6.4. It will also be useful to have a result on the second moments
instead of the variances. Note that with Var(η) → 1 we have also E(η2) → 1,
compare (3). A analogous argument to the one used in Theorem 6.3 then yields
that for any ǫ > 0 there exists ρ0, such that thereafter

sup
2J ,1≤i<2J

|E((Gi(ξ2J )2) − 1| < ǫ. (13)
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