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Regularity of Minimizers

of some Variational Integrals with Discontinuity

Maria Alessandra Ragusa and Atsushi Tachikawa

Abstract. We prove regularity properties in the vector valued case for minimizers of
variational integrals of the form

A(u) =

∫

Ω
A(x, u, Du) dx

where the integrand A(x, u, Du) is not necessarily continuous respect to the variable x,

grows polinomially like |ξ|p, p ≥ 2.
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1. Introduction

In this note we consider the regularity problem of minimizers of the variational
integral

A(u) =

∫

Ω

A(x, u,Du) dx (1.1)

where Ω is a bounded domain of R
m, u : Ω → R

n is a mapping in a suitable
Sobolev space, Du = (Dαui) (α = 1, . . . ,m, i = 1, . . . , n). The nonnegative
integrand function A : Ω × R

n × R
mn is in the class VMO with respect to the

variable x, continuous in u and of class C2 with respect to Du. It is also assumed
that for some p ≥ 2 there exist two constants λ1 and Λ1 such that

λ1(1 + |ξ|p) ≤ A(x, u, ξ) ≤ Λ1(1 + |ξ|p), ∀(x, u, ξ) ∈ Ω × R
n × R

mn.
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A minimizer for the functional A is a function u ∈ W 1,p(Ω, Rn) such that, for
every ϕ ∈ W

1,p
0 (Ω, Rn),

A(u; suppϕ) ≤ A(u + ϕ; suppϕ).

For the case that A(x, u, ξ) is continuous in x, many sharp regularity results
for minimizers of A have been already known (see, e.g., [7, 8, 10, 12]). On the
other hand, when A(·, u, ξ) is assumed only to be L∞, we can not expect the
regularity of minimizers in general, as a famous example due to De Giorgi
contained in [5] asserts. So, it seems to be natural to consider the regularity
problems for A(x, u, ξ) with “mild” discontinuity with respect to x. In 1996
Huang in [13] investigates regularity results for the elliptic system

−Dα(aαβ
ij (x)Dβuj) = gi(x) − divf i(x), i, j = 1, . . . , n; α, β = 1, . . . ,m

assuming that a
αβ
ij belong to the Sarason class V MO of vanishing mean os-

cillation functions. Then he generalizes Acquistapace’s [1] and Campanato’s
results [7, p. 88, Theorem 3.2]. Campanato showed regularity properties under
the assumption that the coefficients a

αβ
ij are in Cα(Ω). Acquistapace refined the

results by Campanato, considering the coefficients in the class so-called “small
multipliers of BMO”.

In a recent study made by Daněček and Viszus [4], it is considered the
following functional:

∫

Ω

{

A
αβ
ij (x)DαuiDβuj + g(x, u,Du)

}

dx,

where A
αβ
ij are in general discontinuous, more precisely belong to the vanishing

mean oscillation class (V MO class) and satisfy a strong ellipticity condition
while the lower order term g is a Charathéodory function satisfying the following
growth condition:

|g(x, u, z)| ≤ f(x) + H|z|κ,

where f ≥ 0, a.e. in Ω, f ∈ Lp(Ω), 2 < p ≤ ∞, H ≥ 0, 0 ≤ κ < 2.

We also recall the paper by Di Gironimo, Esposito and Sgambati [6] where
is treated the Morrey regularity for minimizers of the functional

∫

Ω

A
αβ
ij (x, u)DαuiDβuj dx,

where (Aαβ
ij (x, u)) are elliptic and of the V MO class in the variable x.

In [17] the authors extend the results of [4] and [6] to the case that the
functional is given by

∫

Ω

{

A
αβ
ij (x, u)DαuiDβuj + g(x, u,Du)

}

dx.
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In the note [18], it is studied the Morrey regularity for minimizer of the more
general functionals

A(u) =

∫

Ω

A(x, u,Du) dx,

where A(x, u, ξ) is a nonnegative function defined on Ω × R
n × R

mn which is
of class V MO as a function of x, continuous in u and of class C2 with respect
to ξ. We point out that it is assumed that for some positive constants µ0 ≤ µ1,

µ0|ξ|
2 ≤ A(x, u, ξ) ≤ µ1|ξ|

2 ∀(x, u, ξ) ∈ Ω × R
n × R

mn.

We point out that in the above mentioned papers concerning functionals
given by integrals with V MO class integrands, we have considered quadratic
growth functionals. The super quadratic cases with continuous coefficients are
treated in [2] and [11].

In the present note we investigate the partial regularity of the minima of A,

defined by (1.1) under p-growth hypothesis of the integrand function A, p ≥ 2.
This study can be considered as an improving of [17] and [18] because of the
growth condition is more general.

2. Definitions and preliminary tools

In the sequel we set

Q(x,R) =
{

y ∈ R
m : |yα − xα| < R, α = 1, . . . ,m

}

a generic cube in R
m having center x and side 2R.

Let us now give some useful definitions, starting to the Morrey space Lp,λ .

Definition 2.1. (see [16]). Let 1 ≤ p < ∞, 0 ≤ λ < m. A measurable function
G ∈ Lp(Ω, Rn) belongs to the Morrey class Lp,λ(Ω, Rn) if

‖G‖Lp,λ(Ω) = sup
0<ρ<diam Ω

x∈Ω

1

ρλ

∫

Ω∩Q(x,ρ)

|G(y)|pdy < +∞,

where Q(x, ρ) ranges in the class of the cubes of R
m.

Definition 2.2. Let H ∈ L1(Ω, Rn). The integral average Hx,R is defined by

Hx,R =

∫

−
Ω∩Q(x,R)

H(y) dy =
1

|Ω ∩ Q(x,R)|

∫

Ω∩Q(x,R)

H(y) dy,

where |Ω ∩ Q(x,R)| is the Lebesgue measure of Ω ∩ Q(x,R). In the case that
we are not interested in specifying which the center is considered, we simply
write HR.
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Let us introduce the Bounded Mean Oscillation class.

Definition 2.3 ([15]). Let H ∈ L1
loc(R

m). We say that H belongs to BMO(Rm)
if

‖H‖∗ ≡ sup
Q(x,R)

1

|Q(x,R)|

∫

Q(x,R)

|H(y) − Hx,R|dy < ∞.

Let us now introduce the space of vanishing mean oscillation functions.

Definition 2.4 ( [19]). If H ∈ BMO(Rm) and

η(H; R) = sup
ρ≤R

1

|Q(x, ρ)|

∫

Q(x,ρ)

|H(y) − Hρ|dy

We define that H ∈ V MO(Ω) if limR→0 η(H; R) = 0.

Throughout the present paper we consider p ≥ 2 and u : Ω → R
n a mini-

mizer of the functional

A(u) =

∫

Ω

A(x, u,Du) dx

where the hypothesis on the integrand function A(x, u, ξ) are the following.

(A-1) For every (u, ξ) ∈ R
n × R

mn, A(·, u, ξ) ∈ V MO(Ω) and the mean os-

cillation of A(·,u,ξ)
|ξ|p

vanishes uniformly with respect to u, ξ in the fol-

lowing sense: there exist a positive number ρ0 and a function σ(z, ρ) :
R

m × [0, ρ0) → [0,∞) with

lim
R→0

sup
ρ<R

∫

−
Q(0,ρ)∩Ω

σ(z, ρ)dz = 0,

such that A(·, u, ξ) satisfies, for every x ∈ Ω and y ∈ Q(x, ρ0) ∩ Ω,
∣

∣A(y, u, ξ) − Ax,ρ(u, ξ)
∣

∣ ≤ σ(x − y, ρ)(1 + |ξ|2)
p
2 ∀(u, ξ) ∈ R

n × R
mn,

where Ax,ρ(u, ξ) =
∫

−
Q(x,ρ)∩Ω

A(y, u, ξ)dy.

(A-2) For every x ∈ Ω, ξ ∈ R
mn and u, v ∈ R

n,
∣

∣A(x, u, ξ) − A(x, v, ξ)
∣

∣ ≤ (1 + |ξ|2)
p
2 ω(|u − v|2),

where ω is some monotone increasing concave function with ω(0) = 0.

(A-3) For almost all x ∈ Ω and all u ∈ R
n, A(x, u, ·) ∈ C2(Rmn).

(A-4) There exist positive constants λ1, Λ1 such that

λ1(1 + |ξ|p) ≤ A(x, u, ξ) ≤ Λ1(1 + |ξ|p)

λ1(1 + |η|p) ≤
∂2A(x, u, ξ)

∂ξi
α∂ξ

j
β

ηi
αη

j
β ≤ Λ1(1 + |η|p)

for all (x, u, ξ, η) ∈ Ω × R
n × R

mn × R
mn.
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Let us state the main theorem of the paper concerning the partial regularity
of the minimizers of the functionals A.

Theorem 2.5. Assume that Ω ⊂ R
m is a bounded domain with sufficiently

smooth boundary ∂Ω and that p ≥ 2. Let u ∈ H1,p(Ω, Rn) a minimizer of the
functional A(u, Ω) =

∫

Ω
A(x, u,Du) dx in the class Xg(Ω) = {u ∈ H1,p(Ω) ; u−

g ∈ H
1,p
0 (Ω)} for a given boundary data g ∈ H1,s(Ω) with s > p. Suppose that

assumptions (A-1), (A-2), (A-3)and (A-4) are satisfied. Then, for some positive
ε, for every 0 < τ < min{2 + ε,m(1 − p

s
)} we have

D u ∈ Lp,τ (Ω0, R
mn),

where Ω0 is a relatively open subset of Ω which satisfies

Ω \ Ω0 =

{

x ∈ Ω: lim inf
R→0

1

Rm−p

∫

Ω(x,R)

|Du(y)|pdy > 0

}

.

Moreover, we have Hm−p−δ(Ω \ Ω0) = 0 for some δ > 0, where Hr denotes the
r-dimensional Hausdorff measure.

As a corollary of the above theorem we have the following partial Hölder
regularity result.

Corollary 2.6. Let g, u and Ω0 be as in Theorem 2.5. Assume that p + 2 ≥ m

and that s > max{m, p}. Then, for some α ∈ (0, 1), we have

u ∈ C0,α(Ω0, R
n).

Moreover, as a corollary of the proof of Theorem 2.5, we have the following
full-regularity result for the case that A does not depend on u.

Corollary 2.7. Assume that A and g satisfy all assumptions of Theorem 2.5
and that A does not depend on u. Let u be a minimizer of A in the class Xg

then
D u ∈ Lp,τ (Ω, Rmn). (2.1)

Moreover, if p+2 ≥ m and s > max{m, p}, we have full-Hölder regularity of u,
namely u ∈ C0,α(Ω, Rn).

3. Preliminary lemmas and proof of the main results

Throughout the paper we use the following notation:

Q+(x,R) = {y ∈ R
m ; |yα − xα| < R, α = 1, . . . ,m, ym > 0}

for x ∈ R
m ∩ {x ; xm = 0}, R > 0,

Ω(x,R) = Q(x,R) ∩ Ω

Γ(x,R) = Q(x,R) ∩ ∂Ω.
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When the center x is understood, we sometimes omit the center and write
simply Q(R), Q+(R) etc. For the sake of simplicity, we always assume that
0 < R < 1 in the following.

We can always reduce locally to the case of flat boundary, by means of a
diffeomorphism which does not change properties of the functional assumed in
the conditions (A-1)–(A-4). More precisely, we can choose a positive constant
R1 depending only on ∂Ω which has the following properties:

1. A finite number of cubes {Q(x,R1)} centered at x ∈ ∂Ω cover the bound-
ary, namely ∂Ω ⊂

⋃N
k=1 Q(xk, R1), xk ∈ ∂Ω, k = 1, . . . , N.

2. For every Q(xk, 2R1), by means of a suitable diffeomorphism, we can
assume that xk = 0 and that

Γ(xk, 2R1) = Q(0, 2R1) ∩ ∂Ω ⊂ {x ∈ R
m ; xm = 0}

Q(xk, 2R1) ∩ Ω = Q+(0, 2R1) = {x ∈ R
m ; |x| < 2R1, xm > 0}.

Let us define a so-called frozen functional. For some fixed point x0 ∈ Ω and
R > 0 let us define A0(ξ) and A0(u) by

A0(ξ) = AR(uR, ξ) :=

∫

−
Ω(x0,R)

A(y, uR, ξ) dy

A0(u, Ω(x0, R)) :=

∫

Ω(x0,R)

A0(Du) dx,

where uR = ux0,R =
∫

−
Ω(x0,R)

u(y)dy.

For weak solutions of the Euler-Lagrange equation of A0, we have the fol-
lowing regularity results.

For interior points, we have the following (see [2, Theorem 3.1]).

Lemma 3.1. Let u ∈ H1,p(Ω, Rn) p ≥ 2, be a solution of the system

Dαaα
i (Du) = 0, i = 1, . . . , n, in Ω,

in the sense that
∫

Ω
aα

i (Du)Dαϕi dx = 0, for all ϕ ∈ C∞
0 (Ω, Rn), under the

conditions

(1) aα
i (0) = 0;

(2) there exist two constants ν > 0 and M > 0 such that, for all x ∈ Ω and
for all ξ, ζ ∈ R

mn,

‖A(ξ)‖ ≤ M · (1 + ‖ξ‖2)
p−2

2

A
αβ
ij (ξ)ζ i

αζ
j
β ≥ ν · (1 + ‖ξ‖2)

p−2

2 ‖ζ‖2,

where A = (Aαβ
ij ) and A

αβ
ij (ξ) =

∂aα
i (ξ)

∂ξj
β

.
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Then, for all Q(σ) = Q(x0, σ) ⊂⊂ Ω and for all t ∈ (0, 1),
∫

Q(tσ)

|Du|p dx ≤ ctλ0

∫

Q(σ)

|Du|p dx, λ0 = min{2 + ε0,m},

for some positive constants ε0 and c which do not depend on t, σ and x0.

In the neighborhood of the boundary, by the proof of [2, Theorem 7.1], we
have the following.

Lemma 3.2. Let aα
i (ξ) and λ0 be as in Lemma 3.1 and v ∈ H1,p(Q+(0, R)) be

a solution of the problem










∫

Q+(0,R)

aα
i (Dv + Dg)Dαϕi dx = 0 ∀ϕ ∈ C∞

0 (Q+(0, R))

v = 0 on Γ(0, R),

(3.1)

where g is a given function with Dg ∈ Ls(Q+(0, R)) for some s > p. Then,
for every x0 ∈ Γ(0, R) and τ0 with 0 < τ0 < min{λ0,m(1 − p

s
)}, there exist a

constant c > 0 such that
∫

Q+(x0,tσ)

|W (Dv)|2 dx

≤ ctτ0
∫

Q+(x0,σ)

|W (Dv)|2 dx + cστ0

(
∫

Q+(x0,σ)

|W (Dg)|
2s
p dx

)
p
s

,

(3.2)

for any σ ∈ (0, R − |x0|] and t ∈ (0, 1), where W (ξ) = (1 + |ξ|2)
p−2

4 ξ.

Outline of the proof. Since (3.1) is exactly (7.6) of [2], we can proceed as in [2,
pp. 148–150] and get the following estimates:

∫

Q+(x0,tσ)

|W (Dv)|2 dx

≤ c1t
λ

∫

Q+(x0,σ)

|W (Dv)|2 dx + c1

∫

Q+(x0,σ)

(

1 + |Dv| + |Dg|
)p−2

|Dg|2 dx

∫

Q+(x0,σ)

(

1 + |Dv| + |Dg|
)p−2

|Dg|2 dx

≤ c2

∫

Q+(x0,σ)

|W (Dg)|2dx + c2

∫

Q+(x0,σ)

|Dv|p−2|Dg|2dx

∫

Q+(x0,σ)

|Dv|p−2|Dg|2dx

≤
(

1 −
2

p

)

δ

∫

Q+(x0,σ)

|W (Dv)|2 dx +
2

p
δ1− p

2

∫

Q+(x0,σ)

|W (Dg)|2 dx
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for any δ > 0. These estimates are nothing else than (17)–(19) of [2]. Combining
them, we get

∫

Q+(x0,tσ)

|W (Dv)|2 dx ≤ c1

{

tλ + c2

(

1 −
2

p

)

δ

}
∫

Q+(x0,σ)

|W (Dv)|2 dx

+ c1c2

(

1 +
2

p
δ1− p

2

)
∫

Q+(x0,σ)

|W (Dg)|2 dx

≤ c1

{

tλ + c1c2

(

1 −
2

p

)

δ

}
∫

Q+(x0,σ)

|W (Dv)|2 dx

+ c3(p, δ)σ
m(1− p

s
)

(
∫

Q+(x0,σ)

|W (Dg)|
2s
p dx

)
p
s

.

Now, using “A useful lemma” of [8, p. 44], we get (3.2).

Moreover, we have the following Lq-estimate for u.

Lemma 3.3. Assume that u ∈ H1,p(Q+(0, R)) satisfies

A(u,Q+(0, R)) ≤ A(u + ϕ,Q+(0, R)), ϕ ∈ H
1,p
0 (Q+(0, R)),

and that u = g on Γ(0, R) for some g ∈ H1,q1(Q+(0, R)) with q1 > p. Then
there exists an exponent q ∈ (p, q1] such that u ∈ H1,q(Q+(0, r)) for any r < R.
Moreover, if x0 ∈ Q+(0, r) ∪ Γ(0, r) and ρ < R − r, we have the estimate

(
∫

−
Q(x0,ρ/2)∩Q+(0,R)

(1 + |Du|2)
q
2 dx

)
1

q

≤

(
∫

−
Q(x0,ρ)∩Q+(0,R)

(1 + |Du|2)
p
2 dx

)
1

p

+ c

(
∫

−
Q(x0,ρ)∩Q+(0,R)

(1 + |Dg|2)
q
2 dx

)
1

q

.

(3.3)

In addition, if Q(x0, ρ) ⊂⊂ Q+(0, R), then we have

(

∫

−
Q(x0, ρ

2
)

(

1 + |Du|2
)

q
2 dx

)
1

q

≤ c

(
∫

−
Q(x0,ρ)

(

1 + |Du|2
)

p
2 dx

)
1

p

. (3.4)

Outline of the Proof. For the case that Q(x0, ρ) ⊂⊂ Q+(0, R), we can proceed
as in the proof of [9, Theorem 4.1] to get (3.4). For general case, mentioning
the difference on the growth conditions, we can proceed as in the proof of [14,
Lemma 1].

Mention that the above lemma is valid for minimizers of A0 also.

For bounded domain D with smooth boundary, covering ∂D with a finite
number of cubes and using the above local estimates we get the following global
Lq-estimates for a minimizer.
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Corollary 3.4. Let D ⊂ R
m be an open set with smooth boundary ∂D, and let

v ∈ H1,p(D) be a minimizer for the functional A (or A0) in the class

Xg := {w ∈ H1,p(D); w − g ∈ H
1,p
0 (D)}

for a given map g ∈ H1,q1(D), q1 > p. Then Dv ∈ Lq(D) for some q ∈ (p, q1)
and

∫

D

(

1 + |Dv|2
)

q
2 dx ≤ c

∫

D

(

1 + |Dg|2
)

q
2 dx.

We show the partial regularity of u by comparing u with v. For this purpose,
we need the following lemma which can be shown as [11, Theorem 4.2, (4.8) ].

Lemma 3.5. Let v ∈ H1,p(Ω(x0, r)) is a minimizer for A0(w, Ω(x0, r)) in the
class {w ∈ H1,p(Ω(x0, r)) ; w − u ∈ H

1,p
0 (Ω(x0, r))} for a given function u ∈

H1,p(Ω(x0, r)). Then we have

∫

Ω(x0,r)

|Du − Dv|p dx ≤ c
{

A0(u; Ω(x0, r)) −A0(v; Ω(x0, r))
}

.

Now, we can prove our main theorem.

Proof of Theorem 2.5. Assume that Q(R)=Q(x0, R)⊂⊂ Ω. Let v∈H1,p(Q(R))
be a minimizer of A0(ṽ, Q(R)) in the class {ṽ∈H1,p(Q(R)) ; u−ṽ∈H

1,p
0 (Q(R))},

and let w = u−v. First we will estimate
∫

Q(R)
|Dw|p dx. By Lemma 3.5 we can

see that
∫

Q(R)

|Dw|p dx = c
{

A0(u) −A0(v)
}

≤ c

∫

Q(R)

∣

∣AR(uR, Du) − A(x, uR, Du)
∣

∣ dx

+ c

∫

Q(R)

∣

∣A(x, uR, Du) − A(x, u,Du)
∣

∣ dx

+ c

∫

Q(R)

∣

∣A(x, v,Dv) − A(x, uR, Dv)
∣

∣ dx

+ c

∫

Q(R)

∣

∣A(x, uR, Dv) − AR(uR, Dv)
∣

∣ dx.

Here we have used the minimality of u. So, using the assumptions on A, we get

∫

Q(R)

|Dw|p dx ≤

∫

Q(R)

{

σ(x,R) + ω(|u − uR|
2)
}(

1 + |Du(x)|2
)

p
2 dx

+

∫

Q(R)

{

σ(x,R) + ω(|v − uR|
2)
}(

1 + |Dv(x)|2
)

p
2 dx.

(3.5)
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Using Hölder’s inequality, Lemma 3.3, (3.4) and the boundedness of ω and σ,
we have

∫

Q(R)

{

σ(x,R) + ω(|u − uR|
2)
}(

1 + |Du(x)|2
)

p
2 dx

≤ C

{

(
∫

−
Q(R)

σ(x,R) dx

)
q−p

q

+

(
∫

−
Q(R)

ω(|u − uR|
2) dx

)
q−p

q

}

×

∫

Q(2R)

(

1 + |Du(x)|2
)

p
2 dx.

(3.6)

Using Corollary 3.4, and (3.4) we get similarly
∫

Q(R)

{

σ(x,R) + ω(|v − uR|
2)
}(

1 + |Dv(x)|2
)

p
2 dx

≤ C

{

(
∫

−
Q(R)

σ(x,R) dx

)
q−p

q

+

(
∫

−
Q(R)

ω(|v − uR|
2) dx

)
q−p

q

}

×

∫

Q(2R)

(

1 + |Du(x)|2
)

p
2 dx.

(3.7)

By virtue of concavity of ω, using Jensen’s inequality and Poincaré inequality,
we have

∫

−
Q(R)

ω(|u − uR|
2) dx

∫

−
Q(R)

ω(|v − uR|
2) dx















≤ Cω

(

Rp−m

∫

Q(R)

|Du|p dx

)

. (3.8)

Combining (3.5) – (3.8), we obtain

∫

Q(R)

|Dw|p dx ≤ C

{

(
∫

−
Q(R)

σ(x,R)dx

)
q−p

q

+ ω

(

Rp−m

∫

Q(R)

|Du|pdx

)
q−p

q

}

×

∫

Q(2R)

(1 + |Du(x)|2)
p
2 dx.

Now, from Lemma 3.1 and the above inequality, we get
∫

Q(r)

|Du|pdx ≤

∫

Q(r)

(

|Dv|p + |Dw|p
)

dx

≤ C

{

( r

R

)λ

+

(
∫

−
Q(R)

σ(x,R) dx

)
q−p

q

+ ω

(

Rp−m

∫

Q(R)

|Du|2dx

)
q−p

q

}

∫

Q(2R)

(

1 + Du(x)|p
)

p
2 dx.

(3.9)
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Let us consider the behavior of u near the boundary. Let Q(xl, 2R1) be a
member of the covering {Q(xk, 2R1)} which is introduced at the beginning of
this section. Then, u satisfies

{

A(u,Q+(xl, 2R1)) ≤ A(u + ϕ,Q+(xl, 2R1)) ∀ϕ ∈ H
1,p
0 (Q+(xl, 2R1))

u = g on Γ(xl, 2R1).

Fix a point x0 ∈ Γ(xl, R1) and a positive number R < R1 arbitrarily (here, men-
tion that Q+(x0, R) ⊂ Q+(xl, 2R1)). Let v ∈ H1,p(Q+(x0, R)) be a minimizer of
A0(v,Q+(x0, R)) in the class {v ∈ H1,p(Q+(x0, R)) ; u− v ∈ H

1,p
0 (Q+(x0, R))},

and put w = u − v. Then, using Lemma 3.5, we can proceed as in the interior
case and get

∫

Q+(R)

|Dw|p dx ≤

∫

Q+(R)

{

σ(x,R) + ω(|u − uR|
2)
}(

1 + |Du(x)|2
)

p
2 dx

+

∫

Q+(R)

{

σ(x,R) + ω(|v − uR|
2)
}(

1 + |Dv(x)|2
)

p
2 dx.

Moreover, using (3.3) instead of (3.4) and proceeding as in the interior case, we
have
∫

Q+(R)

|Dw|p dx

≤ C

{

(
∫

−
Q+(R)

σ(x,R) dx

)
q−p

q

+ ω

(

Rp−m

∫

Q+(R)

|Du|p dx

)
q−p

q

}

×

∫

Q+(2R)

(

1 + |Du(x)|2
)

p
2 dx + CR

m q−p
q

(
∫

Q+(2R)

(

1 + |Dg|2
)

q
2 dx

)
p
q

.

(3.10)

Now, combining (3.2) and (3.10), we obtain

∫

Q+(r)

|Du|p dx ≤ C

{

( r

R

)τ0
+

(
∫

−
Q+(R)

σ(x,R) dx

)
q−p

q

+ ω

(

Rp−m

∫

Q+(R)

|Du|p dx

)
q−p

q

}

×

∫

Q+(2R)

(

1 + |Du(x)|2
)

p
2 dx

+ cRτ0

(
∫

Q+(R)

(

1 + |Dg|2
)

s
2 dx

)
p
s

+ CR
m q−p

q

(
∫

Q+(2R)

(

1 + |Dg|2
)

q
2 dx

)
p
q

.

(3.11)
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Since we are assuming that Dg ∈ Ls for some s > p, and we can choose q > p

sufficiently near to p, without loss of generality we can assume that s > q > p.
So, we can estimate the last term of (3.11) as follows:

R
m q−p

q

(
∫

Q+(2R)

(

1 + |Dg|2
)

q
2 dx

)
p
q

≤ CRm(1− p
s
)

(
∫

Q+(2R)

(

|1 + |Dg|2
)

s
2 dx

)
p
s

.

Here, we can assume that R < 1, so the above estimates hold even if m(1 − p
s
)

can be replaced by the smaller constant τ0. Mentioning the above fact and
combining the above estimate with (3.11), we get the following estimate:

∫

Q+(r)

|Du|p dx ≤ C

{

( r

R

)τ0
+

(
∫

−
Q+(R)

σ(x,R) dx

)
q−p

q

+ ω

(

Rp−m

∫

Q+(R)

|Du|p dx

)
q−p

q

}

×

∫

Q+(2R)

(

1 + |Du(x)|2
)

p
2 dx + C(g)Rτ0 .

(3.12)

By the assumption (A-1), we have
∫

−
Q(R)

σ(x,R) dx → 0 as R → 0. So, using

“a useful Lemma” on p. 44 of [8] for (3.9) and (3.12), and putting

Φ(x, r) =

∫

Ω(x,r)

(

1 + |Du|2
)

p
2 dx,

we can see that for any τ with 0 < τ < τ0(< λ0) there exist positive constants δ,
M and R0 (R0 < R1

2
) with the following properties:

Interior Case. If r1, r
p−m
1 Φ(x, r1)< δ for some r1∈(0, R0) with Q(x, r1)⊂⊂ Ω,

then for 0 < ρ < r < r1 we have

Φ(x, ρ) ≤ M
(ρ

r

)τ

Φ(x, r).

Boundary Case. For x ∈ ∂Ω, if r1, r
p−m
1 Φ(x, r1) < δ for some r1 ∈ (0, R0),

then we have
Φ(x, ρ) ≤ M

(ρ

r

)τ

Φ(x, r) + Mρτ .

Now, we can proceed as in Giusti’s book [12, pp. 318–319] to show partial
Morrey-type regularity of u. Namely, there exist positive constants δ and M

with the following properties: for any x ∈ Ω, if r0, r
p−m
0 Φ(x, r0) ≤ δ for some

r0 > 0, then ρ−τΦ(x, ρ) ≤ M̃. So, we get the assertion.

Proof of Corollary 2.6. When p + 2 ≥ m and s > max{m, p}, we can take τ

sufficiently near to min{2 + ε,m(1 − p
s
)} so that τ > m − p. So, Corollary 2.6

is a direct consequence of Theorem 2.5 and Morrey’s theorem on the growth of
the Dirichlet integral (see, for example, [8, p.43]).
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Proof of Corollary 2.7. When A(x, u, ξ) does not depend on u, we can proceed
as in the proof of Theorem 2.5 without the term with ω and get, instead of (3.9)
and (3.11),

∫

Q(x0,r)

|Du|p dx ≤ C

{

( r

R

)λ

+

(
∫

−
Q(R)

σ(x,R) dx

)
q−p

q

}

×

∫

Q(2R)

(

1 + |Du(x)|2
)

p
2 dx.

for Q(2R) = Q(x0, 2R) ⊂⊂ Ω and

∫

Q+(x0,r)

|Du|p dx ≤ C

{

( r

R

)λ

+

(
∫

−
Q+(R)

σ(x,R) dx

)
q−p

q

}

×

∫

Q+(2R)

(

1 + |Du(x)|2
)

p
2 dx + C(g)Rτ,

for x0 ∈ ∂Ω. So, we can proceed as in the last part of Theorem 2.5 without
assuming that

r
p−m
1 Φ(x, r1) = r

p−m
1

∫

Ω(x,r1)

(

1 + |Du|2
)

p
2 dx < δ.

and see that ρ−τΦ(x, ρ) ≤ M̃ for all x ∈ Ω. Thus we get the assertions.

Remark 3.6. Without any restriction on the dimension of the domain, it is
not possible to obtain a Hölder regularity result in all the domain Ω as showed
by V. Šverak and X. Yan in a counterexample contained in [20].
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