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Resultants of Chebyshev Polynomials

Jemal Gishe and Mourad E. H. Ismail

Abstract. Recently, K. Dillcher and K. B. Stolarsky [Trans. Amer. Math. Soc.

357 (2004), 965 – 981] used algebraic methods to evaluate the resultant of two linear
combinations of Chebyshev polynomials of the second kind. In this paper we give
an alternative method of computing the same resultant and resultants of more gen-
eral combinations of Chebyshev polynomials of the second kind. We also consider
resultants of linear combinations of Chebyshev polynomials of the first kind.

Keywords. Chebyshev polynomials, resultants, discriminants, lowering (annihila-
tion) operators
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1. Introduction

A resultant is a scalar function of two polynomials which is non-zero if and only
if the polynomials are relatively prime. The theory of resultants is an old and
much studied topic in what used to be called the theory of equations [5]. Resul-
tants are interesting for many reasons. They can be used in matrix theory and in
problems on locations of roots of polynomials. This is relevant to applications in
linear control systems, in robotics and computer aided geometric design. There
are many results on the theoretical properties of resultants especially in relation
to algebraic geometry. For history and details of some of the applications of
resultants, see [3, 4, 7, 8]. Discriminants are special resultants and are useful in
Ring Theory. In electrostatic equilibrium problems (see [10]), the discriminant
represents the interaction free energy at equilibrium of a Coulomb gas model.
Two noteworthy results are Apostol’s evaluation of the resultant of two cyclo-
tomic polynomials [2] and Roberts’ [12] recent evaluation of discriminants of
certain polynomials which appear in Painlevé analysis.
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In this paper we compute resultants of linear combinations of Chebyshev
polynomials. The resultant is expressible in terms of Chebyshev polynomials
whose coefficients and arguments are rational functions of the coefficients in
the linear combinations. The resultant of two two- term linear combinations
of Chebyshev polynomials of the second kind is given in the recent work of
Dilcher and Stolarsky [6]. They used algebraic properties of resultants with
respect to division, and Euclidean algorithms for polynomials. We used a simple
method which enabled us to compute resultants of a more general combination
of Chebyshev polynomials. In Section 2 we compute resultants of different
combinations of Chebyshev polynomials of second kind and in Section 3 we
prove analoguous results involving Chebyshev polynomials of the first kind.

We follow classical definition of resultants, namely if

A(x) = an

n
∏

k=1

(x − xk) and B(x) = bm

m
∏

j=1

(x − yj),

then the resultant of A and B is Res(A,B) = am
n bn

m

∏n

k=1

∏m

j=1 (xk − yj). It
follows that

Res(A,B) = am
n

n
∏

j=1

B(xj). (1.1)

The following useful theorem is due to I. Schur, see [13, §6.71].

Theorem 1.1. Let {pn(x)} be a sequence of polynomials satisfying the recur-

rence formula

pn(x) = (anx + bn) pn−1(x) − cn pn−2(x), n = 2, 3, . . . , (1.2)

and the intial conditions p0(x) = 1, p1(x) = a1x + b1. Assume that a1ancn 6= 0
for n > 1 and let {xj,n} be the zeros of pn(x). Then,

∆n :=
n

∏

j=1

pn−1 (xj,n) = (−1)
n(n−1)

2

n
∏

j=1

{

a
n−2j+1
j c

j−1
j

}

, n = 1, 2, 3, . . . . (1.3)

Our approach is as follows. Assume {rn(x)} and {sn(x)} are sequences of
polynomials such that rn and sn have exact degree n for all n, n ≥ 0. Construct
functions An(x) and Bn(x) such that sn−1(x) = An(x)rn−1(x) + Bn(x)rn(x).
With rn(x) = ρn

∏n

j=1 (x − ζj,n) then

Res
{

rn(x), sn−1(x)
}

= ρn−1
n

[ n
∏

j=1

rn−1(ζj,n)

][ n
∏

j=1

An(ζj,n)

]

. (1.4)

When rn(x) satisfies a three term recurrence relation of the form (1.2) then
Theorem 1.1 evaluates the first product on the last line of (1.4). The product
∏n

j=1 An(ζj,n) is evaluated on a case-by-case basis.
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The motivation for our approach came from the work [9] on discriminants of
general orthogonal polynomials. In Section 2 we rederive the Dilcher–Stolarsky
results, see Theorem 2.1. We then generalize the evaluation of resultants of
two two-term linear combinations of Chebyshev polynomials of the second kind
to the sum of three term linear combinations of the same polynomials (see
Theorem 2.2 and (2.11)). Section 3 contains similar results for Chebyshev
polynomials of the first kind.

2. Chebyshev polynomials of the second kind

The Chebyshev polynomials of the second kind {Un(x)} are defined as

Un(x) =
sin(n + 1)θ

sin θ
,

where x = cos θ (see [13] and [1]). They solve the three term recurrence relation

2xyn(x) = yn+1(x) + yn−1(x) (2.1)

under the initial conditions U0(x) = 1, U1(x) = 2x. These polynomials satisfy
the orthogonality relation

∫ 1

−1

Un(x)Um(x)
√

1 − x2 dx =
π

2
δm,n.

Theorem 2.1 ( [6]). For n ≥ 2, the resultant formula

Res {Un(x)+kUn−1(x), Un−1(x)+hUn−2(x)} = (−1)
n(n−1)

2 2n(n−1) dn(h, k)

holds, with dn(x, y) = xn
[

Un

(

1+xy

2x

)

− yUn−1

(

1+xy

2x

)]

.

Proof. Let rn(x) := Un(x) + kUn−1(x) and sn(x) := Un(x) +hUn−1(x). Thus we
need to evaluate Res {rn(x), sn−1(x)}. It is not hard to see that

sn−1(x) = An(x)rn−1(x) + Bn(x)rn(x) (2.2)

holds with

An(x) =
h

k

x + 1+hk
2h

x + 1+k2

2k

, Bn(x) =
k − h

1 + 2xk + k2
. (2.3)

The polynomial rn(x) has degree n with leading coefficient 2n. Thus rn(x) =
2n

∏n

j=1(x − xj). Hence (2.2) shows that sn−1(xj) = An(xj)rn−1(xj), which
implies

n
∏

j=1

sn−1(xj)=
n

∏

j=1

An(xj)
n

∏

j=1

rn−1(xj)=∆n

hn

kn

n
∏

j=1

−xj − 1+hk
2h

−xj − 1+k2

2k

=∆n

hn

kn

rn(−1+hk
2h

)

rn(−1+k2

2k
)
,
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where ∆n =
∏n

j=1 rn−1(xj). Now Un(−x) = (−1)nUn(x) and Un

(

1+k2

2k

)

=
kn+1

−k−n−1

k−k−1 implies

n
∏

j=1

sn−1(xj) = ∆n

hn

kn

Un

(

1+hk
2h

)

− kUn−1(
1+hk
2h

)

Un(1+k2

2k
) − kUn−1

(

1+k2

2k

) .

This implies
∏n

j=1 sn−1(xj) = ∆n dn(h, k). Since {rn(x)} solves (2.1), we apply

Theorem 1.1 and conclude that ∆n = (−1)
n(n−1)

2

∏n

j=1 2n−2j+1 = (−1)
n(n−1)

2 .

This establishes Theorem 2.1.

Next we consider the more general linear combination of {Un(x)}. Let

Un(x; a, k) := Un(x) + (ax + k) Un−1(x), (2.4)

f(x) := 1 + (bx + h) (2x + ax + k)

g(x) := 1 + (ax + k) (2x + ax + k).
(2.5)

Theorem 2.2. We have

Res {Un(x; a, k), Un−1(x; b, h)} =
(−1)(

n

2)

(2 + a)2
2(n−1)(n−2)Res {f(x), Un(x; a, k) } .

Proof. It can be readily verified that

Un−1(x; b, h) = An(x) Un−1(x; a, k) + Bn(x) Un(x; a, k) (2.6)

holds with

An(x) =
1 + (bx + h)(2x + ax + k)

1 + (ax + k)(2x + ax + k)
, Bn(x) =

(a − b)x + k − h

1 + (ax + k)(2x + ax + k)
.

Let c1, c2 and d1, d2 be the zeros of f and g, respectively. Thus

An(x) =
b

a

(x − c1)(x − c2)

(x − d1)(x − d2)
. (2.7)

From (2.4) we see that

Un(x; a, k) = 2n−1(2 + a)
n

∏

j=1

(x − xj,n). (2.8)

Applying (2.8) in (2.6) and using (2.7) we arrive at

n
∏

j=1

Un−1(xj,n; b, h) =
n

∏

j=1

An(xj,n)
n

∏

j=1

Un−1(xj,n; a, k)

= ∆n

bn

an

n
∏

j=1

(c1 − xj,n)(c2 − xj,n)

n
∏

j=1

(d1 − xj,n)(d2 − xj,n)
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where ∆n =
∏n

j=1 Un−1(xj,n; a, k). This implies,

n
∏

j=1

Un−1 (xj,n; b, h) = ∆n

bn

an

Un (c1; a, k) Un (c2; a, k)

Un (d1; a, k) Un (d2; a, k)
. (2.9)

We now compute ∆n. It is clear that U0(x; a, k) = 1 and U1(x; a, k) = (2 +
a)x + k. Moreover Un(x; a, k) satisfies the three term recurrence relation (2.1).

Applying Theorem 1.1 we conclude that ∆n = (−1)
n(n−1)

2 21−n(2 + a)n−1. From
the above result and (2.9) we have the following equality:

n
∏

j=1

Un−1(xj,n; b, h)= (−1)
n(n−1)

2

(

1 +
a

2

)n−1 bn

an

Un(c1; a, k)Un(c2; a, k)

Un(d1; a, k)Un(d2; a, k)
. (2.10)

Clearly (b(a + 2))nUn(d1; a, k)Un(d2; a, k) = Res (f(x), Un(x; a, k)), and we only
need to evaluate Un(d1; a, k)Un(d2; a, k). Multiply (2.6) by g and let d be either
d1 or d2. Thus f(d) Un−1(d; a, k) + [(a − b)d + k − h] Un(d; a, k) = 0, which
implies Un(d; a, k) = (2d + ad + k) Un−1(d; a, k), from which we conclude that
Un(d; a, k) = ((a + 2)d + k)n. Therefore Un(d1; a, k)Un(d2; a, k) =

(

a+2
a

)n
. The

result now follows from (2.10).

Observe that

Un(x; a, k) =
(

1 +
a

2

)

Un(x) + kUn−1 +
a

2
Un−2(x)

Un(x; b, h) =
(

1 + b
2

)

Un(x) + hUn−1 + b
2

Un−2(x),

hence one can evaluate in closed form the resultant of polynomials of the form
∑2

j=0 cj Un−j and
∑2

j=0 dj Un−j.

Remark 2.1. Let vn(x) =
∑m

j=0 cj Un−j(x) and wn(x) =
∑m

j=0 dj Un−j(x).
Then, in general, there exist polynomials f , g and h of degrees m, m and
m − 1, respectively, such that

f(x) wn−1(x) = g(x) vn−1(x) + h(x) vn(x). (2.11)

This is intuitively clear for the following reason. The left-hand side of (2.11)
is a polynomial of degree m + n − 1 and by repeatedly using (2.1) it can be
expressed as

∑3m

k=0 αkUn+m−1−k and there is no loss of generality in assuming
α0 = 1, that is f(x) = 2mxm+· · · . By equating coefficients of various Chebyshev
polynomials Un we find 3m + 1 linear equations in the coefficients of f , g and
h. The total number of coefficents in f , g and h is 2(m + 1) + m coefficients.
Since one coefficient has already been specified we only have 3m + 1 unknowns
and 3m + 1 equations, so the problem is doable in general. The case of the
Chebyshev polynomials of the first kind is more transparent, see §3.
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Let x1, x2, . . . , xn be the zeros of vn(x), that is

vn(x) = 2n

n
∏

j=1

(x − xj) . (2.12)

Moreover we let f(x) = 2m
∏m

k=1(x − fk) and g(x) = γ
∏m

k=1(x − gk). The fact

n
∏

j=1

g(xj)

f(xj)
=

γn

2mn

n
∏

j=1

m
∏

k=1

(xj − gk)

(xj − fk)
=

γn

2mn

m
∏

k=1

vn(gk)

vn(fk)
,

and (2.12) imply

n
∏

j=1

wn−1 (xj) =
n

∏

j=1

g(xj)vn−1 (xj)

f (xj)
=

γn

2mn

m
∏

k=1

vn (gk)

vn (fk)
∆n,

and ∆n :=
∏n

j=1 vn−1(xj), which can be found from Theorem 1.1.

3. Chebyshev polynomials of the first kind

Chebyshev polynomials of the first kind are defined as

Tn(x) = cos nθ, x = cos θ,

for n = 0, 1, 2, . . . (see [13] and [1]). Indeed T0(x) = 1, T1(x) = x and the
polynomials {Tn(x)} satisfy the recurrence in (2.1). The first main result of
this section is the following.

Theorem 3.1. Let {Tn(x)} be the sequence of Chebyshev polynomials of first

kind. Then,

Res {Tn(x) + kTn−1(x), Tn−1(x) + hTn−2(x)}

=
2n2

−3n+3

(−1)
n(n−1)

2

hn

[

Tn

(

1 + hk

2h

)

− kTn−1

(

1 + hk

2h

)]

.

Proof. Set

rn(x) = Tn(x) + kTn−1(x), sn(x) = Tn(x) + hTn−1(x). (3.1)

Since {Tn(x)} and {Un(x)} satisfy the same recurrence relation it follows that
sn−1(x)= An(x) rn−1(x)+Bn(x) rn(x), where An(x) and Bn(x) are given by (2.3).
From (3.1) we see that rn(x) is a polynomial of degree n with leading coefficient
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2n−1. Let {yj}n

j=1 be zeros of rn(x). Therefore rn(x) = 2n−1
∏n

j=1(x − yj), and
sn−1(yj) = An(yj)rn−1(yj). This implies

n
∏

j=1

sn−1 (yj) =
hn

kn

n
∏

j=1

(

−yj − 1+hk
2h

)

(

−yj − 1+k2

2k

)

n
∏

j=1

rn−1 (yj)

= ∆n

hn

kn

rn

(

−1+hk
2h

)

rn

(

−1+k2

2k

)

= ∆n

hn

kn

Tn

(

−1+hk
2h

)

+ kTn−1

(

−1+hk
2h

)

Tn

(

−1+k2

2k

)

+ kTn−1

(

−1+k2

2k

) ,

where ∆n =
∏n

j=1 rn−1(yj). Recall that Tn(−x) = (−1)nTn(x) and Tn

(

z+z−1

2

)

=
zn+z−n

2
. This leads to

n
∏

j=1

sn−1 (yj) =
2∆nhn

1 − k2

[

Tn

(

1 + hk

2h

)

− kTn−1

(

1 + hk

2h

)]

. (3.2)

One can easily verify that the polynomials {rn(x)} satisfy the recurrence relation
(2.1). Applying (1.3) and observing that ∆1 = 1 − k2 it follows that ∆n =

(−1)
n(n−1)

2 21−n(1 − k2). Using this in (3.2) we have,

n
∏

j=1

sn−1 (yj) =
(−1)

n(n−1)
2 22−nhn

1 − k2

[

Tn

(

1 + hk

2h

)

− kTn−1

(

1 + hk

2h

)]

. (3.3)

The theorem now follows from (1.1) and (3.3).

Next we consider the resultant of the following combination of Chebyshev
polynomials of first kind. We let

Tn(x; a, k) := Tn(x) + (ax + k)Tn−1(x). (3.4)

A calculation leads to the following expression for Tn−1(x; b, h):

Tn−1(x; b, h) = An(x)Tn−1(x; a, k) + Bn(x)Tn(x; b, k)

with An and Bn given by

An(x) =
1 + (bx + h)(2x + ax + k)

1 + (ax + k)(2x + ax + k)
, Bn(x) =

(a − b)x + k − h

1 + (ax + k)(2x + ax + k)
.

This implies

An(x) =
b

a

(x − c1) (x − c2)

(x − d1) (x − d2)
, (3.5)
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where, as before, ci and di for i = 1, 2 are the zeros of f and g defined in (2.5).

From (3.4) we observe that Tn(x; a, k) is a polynomial of degree n with lead-
ing coefficient 2n−2(2 + a). Hence we can assume that Tn(x; a, k) = 2n−2(2 +
a)

∏n

j=1(x − yj,n). The evaluation of Tn−1(x; b, h) at the zeros of Tn(x; a, k) is
given by Tn−1(yj,n; b, h) = An(yj,n)Tn−1(yj,n; a, k). This together with (3.5) im-
plies that

n
∏

j=1

Tn−1(yj,n; b, h) =
bn

an

n
∏

j=1

(c1 − yj,n)(c2 − yj,n)

n
∏

j=1

(d1 − yj,n)(d2 − yj,n)

n
∏

j=1

Tn−1(yj,n; a, k).

It follows that

n
∏

j=1

Tn−1(yj,n; b, h) =
bn

an
∆n

Tn(c1; a, k)Tn(c2; a, k)

Tn(d1; a, k)Tn(d2; a, k)
, (3.6)

where ∆n =
∏n

j=1 Tn−1(yj,n; a, k). As in the proof of Theorem 2.2 we apply
T0(x; a, k) = 1 and T1(x; a, k) = (a + 1)x + k to show that

∆n =
n

∏

j=1

Tn−1(yj,n; a, k)

=
(

2n−3(2 + a)
)n

n
∏

j=1

(yj,n − y1,n−1) · · · (yj,n − yn−1,n−1)

= 2−2(2 + a)
n−1
∏

j=1

Tn(yj,n−1; a, k)

= (−1)n−1(2 + a)2−2∆n−1.

We used the three term recurrence relation given above in the last equality.
This inductively implies that

∆n = (−1)
n(n−1)

2 (2 + a)n−122−2n. (3.7)

Theorem 3.2. Let Tn(x; a, k) be defined by (3.4). Then,

Res {Tn(x; a, k), Tn−1(x; b, h)}= (−1)
n(n−1)

2 2n2
−5n+4 Res{f, Tn(x; a, k)}

(a + 1)2 − k2
. (3.8)

Proof. It follows from (1.1), (3.6) and (3.7) that the left-hand side of (3.8)
equals

(−1)
n(n−1)

2 (2 + a)2n−22n2
−5n+4 bn

an

Tn(c1; a, k)Tn(c2; a, k)

Tn(d1; a, k)Tn(d2; a, k)
.
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A calculation gives Tn(dj; a, k) = [(a + 2)d + k]Tn−1(dj; a, k), j = 1, 2, and

Res {g(x), T1(x; a, k)} = (a + 1 + k)(a + 1 − k)

Res {g(x), T2(x; a, k)} = (a + 2)2(a + 1 + k)(a + 1 − k).

Hence Res {g, Tn(.; a, k)} = an(a + 2)nTn(d1; a, k)Tn(d2; a, k) = (a + 2)2n−2(a +
1 + k)(a + 1 − k). This completes the proof.

Recall that the Chebyshev polynomials are special Jacobi polynomials. In-
deed

Tn(x) =
n!

(1
2
)n

P
(− 1

2
,− 1

2
)

n (x), Un(x) =
(n + 1)!

(3
2
)n

P
( 1
2
, 1
2
)

n (x),

where (a)n := a(a + 1) · · · (a + n − 1) is a shifted factorial. The expansion
formula [11, (2), p. 262]

(1 − x)n

2n(1 + α)n

=
n

∑

k=0

(−n)k(1 + α + β + 2k)(1 + α + β)k

(α + 1)k(1 + α + β)n+k+1

P (α,β)
n (x) (3.9)

contains the expansions of powers of 1±x in Chebyshev polynomials of the first
and second kinds, since P

(α,β)
n (−x) = (−1)n P

(β,α)
n (x). The term k = 0 in (3.9)

when α= β = −1
2

seems to be indeterminate, but it can be found by a limiting

procedure to be 1
n!

. Thus

(1 − x)n

2n(1
2
)n

=
1

n!
+ 2

n
∑

k=1

(−n)kk!

(1
2
)k(n + k)!

Tn(x). (3.10)

We now discuss the case when

ṽn(x) =
m

∑

j=0

cj Tn−j(x), w̃n(x) =
m

∑

j=0

dj Tn−j(x), c0 = d0 = 1.

As per Remark 2.1, in general, there exist polynomials f , g and h of degrees m,
m and m − 1, respectively, such that

f(x) w̃n−1(x) = g(x) ṽn−1(x) + h(x) ṽn(x).

In this case the analysis is made simpler by expanding f , g and h in powers
of 1 − x, applying (3.10) and using Tn(x) Tm(x) = 1

2
[Tm+n(x) + Tm−n(x)], to

set up the linear system of equations satisfied by the coefficients of f , g and h.
The difference between this case and the case of Chebyshev polynomials of the
second kind is that the linearization of products is more complicated.

Since Tn(x) = 2n−1xn + · · · , we let

ṽn(x) = 2n−1

n
∏

j=1

(x − yj), f(x) = 2m

m
∏

k=1

(x − fk), g(x) = γ

m
∏

k=1

(x − gk).
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Indeed,
∏n

j=1
g(xj)

f(xj)
= γn

2mn

∏m

k=1
ṽn(gk)
ṽn(fk)

and (2.1) imply

n
∏

j=1

w̃n−1(xj) =
γn

2mn

m
∏

k=1

ṽn(gk)

ṽn(fk)
∆̃n, ∆̃n :=

n
∏

j=1

ṽn−1(xj).

Now ∆̃n can be computed using Theorem 1.1.
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