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Superposition Operator in a Space of

Infinitely Differentiable Functions

Mario Romeo

Abstract. In this paper we prove a degeneration result for the superposition oper-
ator in V (Rd), a particular space of infinitely differentiable functions which have all
derivatives uniformly bounded by a constant that does not depend on the order of
derivation.

Keywords. Superposition operator, Roumieu space

Mathematics Subject Classification (2000). 47H30, 26E10

1. Introduction

If f is a function defined on the real line, the (nonlinear) superposition operator
Tf associated with f is defined by Tf (u) := f ◦ u. Given a space E of real
functions, a natural question consists in finding necessary and sufficient con-
ditions on f (called acting conditions) such that Tf (E) ⊆ E (cf. Appell and
Zabrejko [2]).

The superposition operator on various spaces is usually studied in view of
applications to partial differential equations. In particular, to study some differ-
ential equations of infinite order, Ricceri introduced in [5] a certain space V (Rd)
of infinitely differentiable functions. The question about acting conditions in
V (Rd) is stated in [6] as follows.

Problem. Let d be a positive integer. Denote by V (Rd) the space of all functions

u ∈ C∞(Rd) such that, for each bounded subset Ω ⊂ R
d, one has

sup
α∈Nd

0

sup
x∈Ω

|Dαu(x)| < +∞,

where Dαu = ∂α1+···+αdu

∂x
α1
1

···x
αd
d

and N0 = N ∪ {0}. Let f : R → R be a function such

that, for each u ∈ V (Rd), the composite function x → f(u(x)) belongs to V (Rd).
Then must f be of the form f(t) = at + b?

M. Romeo: Department of Mathematics and Computer Science, University of Catania,
Viale A. Doria 6, 95125 Catania, Italy; romeo@dmi.unict.it



464 M. Romeo

The aim of this paper is to give a positive answer to it. Note that the space
V (Rd) can be seen as a particular case of the well studied class of Roumieu

spaces (see [2, page 217]), but known results for the superposition operator in
Roumieu spaces ( [1, 4, 9]) do not fit with our problem. The author does not
know if the proof presented here could be adapted to improve known results for
superposition operator in Roumieu spaces.

2. Result

Let us first remember the following formula for the derivatives of the composite
function (for a short proof see [7]). The usual k-order derivative of a function f

is denoted by f (k).

Lemma 2.1 (Faà de Bruno Formula). Suppose that v and f are C∞ real func-

tions on R. Then the derivatives of the composite function f ◦ v are given

by

(f ◦ v)(n)(x) =
∑ n!

k1!k2! · · · kn!
f (k)(v(x))

(

v(1)(x)

1!

)k1
(

v(2)(x)

2!

)k2

· · ·

(

v(n)(x)

n!

)kn

,

where k = k1 + k2 + · · · + kn and the sum is taken over all k1, k2, . . . , kn ∈ N0

for which k1 + 2k2 + · · · + nkn = n.

We note that if a derivative v(i)(x) is zero, then the corresponding index ki

in the formula above can be assumed to be zero. As a corollary, we have the
following result.

Corollary 2.2. Let f be a C∞ real function on R and suppose that v is a real

polynomial v(x) := a0 + a1x
i1 + a2x

i2 + · · · + arx
ir , where r ≥ 1 is an integer,

a0, . . . , ar are real numbers and i1, . . . , ir are integers with 0 < i1 < i2 < · · · < ir.

Then

(f ◦ v)(n)(0) =
∑ n!

h1!h2! · · ·hr!
f (k)(a0)a

h1

1 ah2

2 · · · ahr

r

where k = h1 + h2 + · · · + hr and the sum is taken over all h1, h2, . . . , hr ∈ N0

for which i1h1 + i2h2 + · · · + irhr = n.

The next Lemma will be used in the proof of Theorem 2.4.

Lemma 2.3. Let f and v be as in the previous corollary. For i > ir integer

and c ∈ R define vi(x) := v(x) + cxi. Then

(f ◦ vi)
(i1+i)(0) = (f ◦ v)(i1+i)(0) + ca1(i1 + i)!f (2)(a0).
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Proof. Corollary above shows that

(f ◦ vi)
(i1+i)(0) =

∑ (i1 + i)!

h1!h2! · · ·hr!h!
f (k)(a0)a

h1

1 ah2

2 · · · ahr

r ch, (1)

where k = h1 +h2 + · · ·+hr +h and the sum is taken over all h1, h2, . . . , hr ∈ N0

and all h ∈ N0 for which i1h1 + i2h2 + · · · + irhr + ih = i1 + i. Since i1 < i,
condition above forces index h to be 0 or 1. So the sum in (1) can be split in
two terms, regarding if h = 0 or h = 1. Using again the Corollary above we
get that the first one, for h = 0, is equal to (f ◦ v)(i+i1)(0). The second one, for
h = 1, is

∑ (i1 + i)!

h1!h2! · · ·hr!
f (k)(a0)a

h1

1 ah2

2 · · · ahr

r c, (2)

where k = h1 +h2 + · · ·+hr +1 and the sum is taken over all h1, h2, . . . , hr ∈ N0

for which i1h1 + i2h2 + · · · + irhr = i1. Since i1 is smaller than i2, . . . , ir, the
sum in (2) reduces to the single term ca1f

(2)(a0)(i1 + i)! and this concludes the
proof of the lemma.

Theorem 2.4. Let f : R → R be a function such that, for each u ∈ V (Rd),
the composite function x → f(u(x)) belongs to V (Rd). Then f is of the form

f(t) = at + b.

Proof. Suppose first that d = 1.

Since the identity function id(x) := x belongs to V (R), obviously f = f ◦ id

is a C∞ function. The theorem follows if we prove that f (2)(a0) = 0 for every
fixed a0 ∈ R.

Consider the set {0, 1} with the discrete topology, and let Q be its numerable
product {0, 1}N endowed with the product topology. For each element q = (qk)
of Q define functions uq : R → R by

uq(x) := a0 +
∞

∑

k=1

qk

k!
xk. (3)

It is easy to check that functions uq belong to V (R). Therefore f ◦uq belong to
V (R) and in particular there exist constants Mq such that

sup
n≥1

∣

∣(f ◦ uq)
(n)(0)

∣

∣ ≤ Mq ∀q ∈ Q. (4)

We want to use the usual Baire argument (in its version for Hausdorff
compact spaces, see for example [3, Theorem 7.12]) to find an upper bound M̄

in (4) which does not depend on q. For M ∈ N put

QM :=
{

q ∈ Q : sup
n≥1

∣

∣(f ◦ uq)
(n)(0)

∣

∣ ≤ M
}
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so that by (4) we have
⋃

M∈N
QM = Q. Moreover QM are closed sets in Q:

observe that

QM =
⋂

n∈N

T−1
n ([−M,M ]),

where the functions Tn : Q → R are defined by

Tn(q) := (f ◦ uq)
(n)(0).

The expression (f ◦uq)
(n)(0) depends on first n derivatives of uq in 0, that is on

q1, . . . , qn, but does not depend on others components of q. This implies that
each Tn is continuous and hence that QM are closed subsets of Q.

Since Q is a Hausdorff compact set, by the Baire Lemma there exists M̄ ∈ N

such that QM̄ has non–empty interior. Therefore there exist two finite disjoint
(non-empty) subsets I, J of N with the following property: if q ∈ Q is such that
qk = 1 for k ∈ I and qk = 0 for k ∈ J , then q ∈ int(QM̄) and hence

sup
n∈N

∣

∣(f ◦ uq)
(n)(0)

∣

∣ ≤ M̄. (5)

Let n̄ := max(I ∪ J) and suppose I = {i1, . . . , ir} with 0 < i1 < i2 < · · · < ir.
For i > n̄ define

v(x) := a0 +
xi1

i1!
+ · · · +

xir

ir!
and vi(x) := a0 +

xi1

i1!
+ · · · +

xir

ir!
+

xi

i!
,

so that by (5) it follows that

sup
n∈N

∣

∣(f ◦ v)(n)(0)
∣

∣≤ M̄ and sup
n∈N

∣

∣(f ◦ vi)
(n)(0)

∣

∣≤ M̄.

In particular, choosing n = i1 + i, we get

∣

∣(f ◦ vi)
(i1+i)(0) − (f ◦ v)(i1+i)(0)

∣

∣≤ 2M̄. (6)

We may apply Lemma 2.3, with c = 1
i!
, to find

|f (2)(a0)| ≤ 2M̄
i1! i!

(i1 + i)!
,

and considering the limit for i → +∞ we obtain as required that f (2)(a0) = 0.

If d > 1 we can repeat the same argument, just considering functions
ũq(x) = uq(x1) which depend only on first component x1 of x = (x1, . . . , xd) and

using partial derivatives ∂n(f◦ũq)

∂xn
1

instead of ordinary derivatives (f ◦ uq)
(n).
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