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Uniform Rectifiability
from Mean Curvature Bounds

Stephan Luckhaus

Abstract. A version of Allard’s rectifiability theorem with explicit bounds is given.
The condition on the mean curvature would correspond to a bound in Sobolev spaces
with fractional negative exponents.
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1. Introduction

The present paper deals with an extension of Allard’s famous rectifiability the-
orem. The way Allard’s theorem is stated, it deals with varifolds whose density
is bounded from below and whose first variation is a vector valued measure.
Recall that

Definition 1. A d-dimensional varifold x in an open domain 2 C R" is a Radon
measure on {2 x G4(n), where G4(n) = {P € R"*" | P = P?> = P! Tr(P) = d}.

And the first variation or mean curvature is given by

Definition 2. The first variation H, of a varifold y is defined by

H,() = / Tr(PDE(x))du(z, P) for € € CHLRY),

where D¢ denotes the derivative of €.

For classical d dimensional surfaces Allard’s theorem entails, that from (lo-
cal) bounds on the d-dimensional measure and the L; norm of the mean curva-
ture, compactness of the tangent planes w.r.t. convergence in measure follows.
L.e., there exists for arbitrary € > 0 an abstract modulus of continuity w. of the
tangent planes outside of a set of measure ¢.
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The present paper gives a short proof of this result using no more geometric
measure theory than the Vitali covering lemma, and it extends the result in two
ways. It makes the modulus of continuity and the estimate on the exceptional
set explicit. And it allows for mean curvature estimates which are weaker
than L'. The interest in the latter comes from free boundary problems with
surface tension effects, e.g. the Stefan Gibbs Thompson problem. For these the
functional whose first variation is taken, has a bulk and a surface term. From
the bulk term one gets terms which still are integrals of D¢ rather than &, but
these integrals are with respect to a d + 1 dimensional measure.

The main tool in the proof of the main result of this paper, Theorem 1 below,
is the monotonicity formula, just as in Allard’s paper [1]. The simplifying trick
used here is integration of the monotonicity formula w.r.t. its base point.

Further, we use the following notation:

a) For a d-dimensional varifold p, we will use the representation

[ vte.Pan= [ ( [ oty ) it

for v € Co(Q2 x Gy4(n)), where p, is a probability measure on Gy4(n)
depending on z in a weakly measureable way.

b) 0, will denote the Dirac measure concentrated at p.
c) H? denotes the d-dimensional Hausdorff measure.

2. Main result

The main result is an explicit estimate on the measure of the exceptional set,
where the logarithmic continuity of the tangent plane is violated.

Theorem 1. Suppose i is a d-dimensional varifold in ) an open domain in R™.
Suppose the following assumptions are satisfied:

Al. The density of || is bounded below, i.e., there exists © > 0 such that for
| a.a. x € Q
© < limsup p~| | (B, (x)) -
p—

A2. There exist a Radon measure v, a vector valued density v, and an R™™
valued density A with |v| < 1,|A| < 1 such that the first variation of u
satisfies the identity

Hu(g):/ﬂﬁ-vdu—k/QTT(ADg)du for £ € Cp(2,R™). (1)
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A3. The R™"™ valued density A satisfies the inequality
pdl/ |A|dv < 81F<p, sup RdV(BR(J;))) (2)
B,(x) p<R<dist(x,00)
for x € Q, 0 < p < dist(x,09), with a function F : RT x RT — R*
satisfying
OF >0, OF >0, 9)F <0
})% F(p,L)=0 for all L (3)

lim L~ inf {R™*+ F(R,L)| R> 0} =0.

L—oo

Then one has for |p| a.a. x € Q, p, = 0p,. And for € > 0 arbitrary there exist
K. with |p|(K.) < € such that, if x1,x9 ¢ K., dist(x;, 0Q) > Ry,

-1

Y

[Pay = Pry] < wr (e Bo, (), [1l(9) | |21 - 2

where the constant wr(€, Ry, v(2), |1|(2)) can be given explicitly.

3. Proof

3.1. Structure of the proof. Outside of a set of “exceptionally large mean
curvature” K(r), characterized in terms of the measure v, the monotonicity
formula for |p| is used. The formula is integrated with respect to radius and
base point. This yields an estimate of the form
2
(Id — P)—’ dpd|p|, for Q cc Q.

/ /Ix—yl‘d
O\K (1) /Q |37—Z/|

Since |z — y|~¢ is not integrable by the assumption on the density of |u|, u, has
to be a Dirac measure dp, and the continuity estimate for P, can be derived.

r—Y

3.2. Proof of Theorem 1.
Step 1: the monotonicity formula. The monotonicity estimate is used for

u(p,x) = p~? [ (1) dlu|(y) where " < 0; ¢(s) =1 for s < 4; ¢(s) = 0 for
s>1and |¢'| < 3. One derives

oputps) == [ o (E=M)

[ ('“"";y') 22 dle)
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(oo (2o () e
_p_d_l/g), (h«;m) |x;y| [1_ \Pﬁﬂ du(P.y).

And using Assumption Al one gets

2

olpea) ==t [E2 N (B2 g ) 220 )
—p @ /a:—y)mp(|x |>d1/
p
o ofi (5 o
Now with the Assumption A3 (2) one can estimate, either
9, (u(p, )+ F(p, L)(d +3) + pL)
/ |z — y] (Ix—y|> ‘(M p)|x_y| 2du(P,y)

or there exists p < p < dist(x,0) with v(B;(z)) > Lp?. Define Ry by the
equation (d+3)F(Ry, L)+ Ry L = R;* then, using the monotonicity of F in R:

Ry* <inf{(d+3)F(R,L)+ RL+ R R >0}

< (d+3)inf {F(R,L)+ R " R>0}+inf {RL+ R™* R >0}

d \d
So by Assumption A3 (3), Ry, < L™'R;% — 0 as L — oo. Define K;(L) by

d
d+1 (L\ &7
= (d+3)inf {F(R L)+ R R>0} +—— i (—) :

K;i(L) = {x | dist(x, 02) > Ry, 1iIIlSélp u(p,x) < %}
p—
) {x

Then if v ¢ K;(L), p < dist(x, 09), dist(x,0Q) > Ry,

dist(x,092) > Ry, sup R™(Bgr(x)) > L}.
O<R<dist(x,00)
©
ulp, ) +(d+3)F(p, L) + pL 25

9, (u(p,z) + (d+ 3)F(p, L) + pL) > — p—d—l/ |z — 9 ® (|x ; y|)

2

— Y\ du(P,y),

|z — |

X [(Id — P)
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and for |u| a.a. x € K;(L) there exists
pe = max {p | p~"w(B,(z)) > L,p < dist(x, Q) }.

If 10p, > Ry, then |u|(Bs, (z)) < YS00(B,, (x)). If 10p, < Ry, < dist(x, 9Q),
L
then

1l(Bs (2)) < (10p,)"u(10p,, 2) < (10p,)*(u(Rp.x) + Ry L+ (d+3)F(Ry, L).

In the latter case,

1(Bopu () < (109 R (1l(9) + 1) < md%u@m»

To sum up one has the following

Lemma 1. For L arbitrary, Ry, defined by (d+3)F(Ry, L)+ Ry L = R there
exists K1(L) C Q with

a) [p|(Ki(L)) > 10%(Q)(|ul(Q) + 1)L R,
and if dist(x,0Q) < Ry, for x ¢ Ky(L), then for p < dist(x, 0Q),
b) (e, ) + (d+3)F(p, L) + Lo

¢) 9p(ulp,x) + (d+3)F(p, L) + Lp) 2
L r—yl  [|lr—y T —y
> —p? 1/' |<p (' |) ‘(Id—P) ‘ dp(P,y).
p P [z — y
Moreover R, < L™'R;* — 0 as L — co.

Proof. We use Vitali’s covering theorem to cover K;(L) by balls Bs,, (z;) such
that B,, (z;) are disjoint. O

With the same methods we can prove another lemma whose use will become
apparent later. Rougly speaking it is a bound from below on the right hand
side in statement c¢) in the case that supp (|u|) is not locally flat.

Lemma 2. Define KoL) = {&130 [W(B,e) 1 Ki(L) > eld)lul(Bay(o)}-

8) [l(Ka(D)) > @mwm

and with €(d) specified below, for any 11 € Gfﬁ)l, r & Ky(L), Bgr,(r) C 9,
p < R< Ry,
y—x

2
Id—1I y — x| 7|l (y
( )’y_:E| |y — 2|~ %d|ul(y)

b |
(Br(z)\Bp(x))\K1(L)
R
2 @Cl(d) - In (;) — Cg(d, L)
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Here e(d) =

O (d) = d57%27170, ¢y(d, L) = 2(2+L) R +2"2|ul (Q R, Y,
where F(rq, L) =

d+3)

Proof. To prove a) cover Ky(L) by balls B, (x;) such that B, (z;) are disjoint
and |p| B, (x;) N K1 (Ly) > e(d)p (B5p.(xz-)). Then

il (K(L) <) |l (Bsp, () ZIMI i) 0K (L ))<$IMI(K1(L))-

To prove b) set ¥(r) = | (( r(l’)\Kl( ) N{I(d —)(y — 2)| = 6(d)]y — x|},
then with d(d) to be specified later

/ =m0 L=y —
(Br(2)\Bp(z))\K1(L)

> §(d)? / rtdy(r)

R
> ds(@)? [ o) = 6 ).
p
In order to estimate ¢ (r) from below cover
(B (2)\IK1(L)) N {yl(Id = I)(y — )| < 6(d)(y — )} =: By(x)
by balls By 554 (yi) such that y; € B,(z) and B jz5ay-(yi) are disjoint. O

The number of y; is estimated by (I + §(d))?16(d)' =%, and by Lemma 1
1 (Bavsiar ) < (435 " (4v/35(a)r. )
< (4\/55(61)7") (u(dr), y:) + (d + 3)F(4r, L) + L(4r)
< (w2s(d)r) d(| l(Bry () (4r) '+ (d + 3)F (4, L) + 47L).



Uniform Rectifiability 457

Using the concavity of F' for any ry one can estimate further

3

——F(ro, L)r®.

ul (B.(x)
<L (3 o2 ) (1) 5

That means:

IS,

QARTCi%M”dTZLKRTdIDMKBAx»__(dd)+

Now

r (B (x) = 7

5d) 1 (Bor ()

€

)

“d+3

(d+3)F(ro,L) + L

>yl (% — (d+ 3)F(ry, L))
again using Lemma 1. Finally

/ ) > {% —(@+3)F “‘0’”} m%

To

—2<(d+3)

To

+ L) R st

Y

(2)

|dist(x, 90) 5

and p~"(p) < 29 Dsd. Choose (d+3)F(ry, L) = € and the result follows.

8

Step 2: integration of the monotonicity formula w.r.t. its base point.

Take L fixed Ry, as in Lemma 1, Ry < Ry define

Qp, = {z € Q] dist(x,09) > Ro}.



458 S. Luckhaus

Integrate the monotonicity formula Lemma 1 ¢) over x € Qg \K;(L) w.r.t. |y
and over p from 0 to Ry. That gives

(Ralul(9) + (d+ 3)F(Ro, L) + RoLL) |l (€)

[ UL, 2 (55
0 Qry\K1(L) Q Gatn) P P

|1 2 () )alul ) ) i) )

=
oo (L)t
<[ -t () 1) )t o).

Interchanging the order of integration one gets

(L UL |
2 \JGa(n) \JBr,, )N, \K1(L) |x—y|

< lo y\ddw(x)) duy<P>)dmr<y>

< (Rg"lul() + (d+ 3)F(Ro, L) + RoL) (%),

(Id— P)~—Y

where ¢, = [ 0%¢/|(07!)do. Define

NI
Gg4(n)J B Y)NQr \K1(L) ’[L’ y’

Ro\2
Then |p|(K5(M)) < 57|nl () (By |1l (©2) + (d + 3)F(Ro, L) + RoL).
Let us summarise the result of the second step in a lemma.

Ks3(M

“il(1a - p) \dw( V(P> ).

Lemma 3. Outside of a set K3(M) with measure

a1 (55 (0)) < < 1l() (R “ll() + (d + 3)F (R, L) + Ryl

one has

/ / |z —y| ™
Ga(n) By, @\F (D)

(Id— P)-~

. m\ dlul(y) dyia(P) < AL
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Step 3: proof of the theorem. With the help of a linear algebra lemma it
is possible to combine the estimate from below in Lemma 2 with the one from
above in Lemma 3. Let us state the lemma first:

Lemma 4. For P, P, € G4(n) one has a Il in G4—1(n) such that for x € R"
arbitrary

2
Proof. Choose x1, |z1| = 1,|(P1 — Py)xy| = |Py — P2|. It follows that (P, —
Py))zy = +|P; — P3|z, and we may assume w log that Pix; # 0. Define II by
[x = Pix — %Pﬁcl, then IT € G4_1(n). We have |z — lIz]* = |z — Piz|* +
(x, Pix1)?|Pyzy|? and

(x, Pix1)? = (P2, z,)?

= (Pio1(Id — Py)x,)?| P — Py| 2
= |P, — Po| Y Py, (Idy) Py )?
=P — P H(Id — P)x — (Id — P,)(Id — Py)z, Piay)®

<2||(1d = P)al* +|(1d = P)al’| [P PP = Pl 0

|(1d — )z|* < (1+ )[|([d—P1):z:|2—|—|(]d—P2):z:|2].

To finish the proof of the theorem, suppose now x,zs ¢ Ko(L) U K3(M),
|21 — 22| = p, BE22 = z. Then

2
| 2ly — 2l)2d

P 2 2 —d—2d
- 5) (Cly—z)) |-
BR*p/Z(x)\Bp(z)

The last integral is estimated by

P\? —d—
/ (%) 2ty ol iy
Br(x)\Bp(z)
R
=274 [ (B ()
P

R
< 9P R 42 | (Bp(a)) + 27 / (d + 2793l (B, (2))dr

2R
<2 PR (Br(e) + 4(d+ 26 [ Sl e

2p
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< 27p* R |u|(Brg(x))

0

(2p)?

< (d+2) <<(’;<RQ)>2 +(d+3)F(R,L) + RL) .

+2(d+2)

(u(2R,z) + (d+ 3)F(R,L) + RL)

Combining this with Lemmas 2 and 4 one gets

(2% + 1)M + (d +2) ('{;l%?d) +(d+3)F(R,L) + RL)

> [l i (A (ea@ g - e 1),
Ga(n)xGa(n) [P — Pof* +2

This implies directly that p, is a Dirac measure if x ¢ Ko(L) U K3(M).
And secondly,

! 1 |t242?
A-bl =g @M@QW“+”M‘9““mW”
Q
+ eo(d, L) + (d+ 2) (”;L(%%) +(d+3)F(Rp, L) + RLL».
That proves the theorem. O

4. Further conclusions

Rectifiability is now an easy conclusion of the result stated in Theorem 1. First
we state a lemma identifying the projections on almost tangent planes, in order
to be able to quote standard results from the literature.

Lemma 5. With the definition of K3(M) as in Lemma 3 one has:
If © & yrer+ K3(M), then for 6 > 0 arbitrary

yg%p‘d|u| ({y ‘ ly—z| <p, |(Id=P) (y —x)| > 5/)}) =0.

Proof. This follows from
Syl ({y|ly—al <27 [1a-P)(y—a)| > 527})

1 _ _
5{/u—y|ﬂad—RJW—xWﬂm. 0

<
—1-2d
Remark. So P, is an almost tangent space for |u| a.a. . Note though that

Lemma 5 is not an explicite estimate. As a conclusion one has with standard
results from [7, Theorem 3.8.3].
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Theorem 2. Suppose for the d-dimensional varifold p that its density is posi-
tive, i.e.,
0 <limsupp™|u| (B,(2)) for |u| a.a. =,
p—

and that the assumptions (1), (2), (3) from Theorem 1 hold. Then y is rectifiable.
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