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Decay Estimates for Hyperbolic Balance Laws
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Abstract. This work is concerned with time-decay properties of small-amplitude
global smooth solutions to the initial value problem for hyperbolic systems of balance
laws admitting an entropy and satisfying the stability condition. By using energy
methods in both the physical space and the Fourier space, we obtain the optimal
decay estimates of solutions and their derivatives in the L

2-norm up to order s − 1,
provided that the initial data are in H

s. A key ingredient in our analysis is a time-
weighted energy estimate, leading to a decay estimate for multi-dimensional problems
without assuming the L

1 property on initial data.
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1. Introduction

Hyperbolic balance laws are partial differential equations of the form

wt +
d
∑

j=1

f j(w)xj
= g(w). (1.1)

Here w = w(x, t) is the unknown m-vector valued function of spatial variable
x = (x1, x2, . . . , xd) ∈ R

d and time t ≥ 0, taking values in an open convex
set Ow ⊂ R

m (called state space); f j(w) (j = 1, 2, . . . , d) and g(w) are given
smooth mappings from Ow into R

m; and the subscripts t and xj refer to the
partial derivatives with respect to t and xj, respectively.

As fundamental partial differential equations and as transition models be-
tween the Boltzmann equation and hyperbolic conservation laws, balance laws
(1.1) describe a great number of non-equilibrium phenomena. Important

Shuichi Kawashima: Graduate School of Mathematics, Kyushu University, Fukuoka
812-8581, Japan; kawashim@math.kyushu-u.ac.jp
Wen-An Yong: Zhou Pei-Yuan Center for Appl. Math., Tsinghua University, Beijing
100084, China; wayong@tsinghua.edu.cn



2 S. Kawashima and W.-A. Yong

examples occur in the study of chemically reactive flows, gas dynamics with
relaxation, radiation hydrodynamics, traffic flows, nonlinear optics, and so on.
See [14] and references cited therein.

Consider initial value problems of (1.1) with initial data close to a constant
state in equilibrium. We know that the existence of global smooth solutions to
the above problems was first pointed out in [14] for the general system (1.1)
satisfying an entropy-dissipation condition therein and the stability condition
introduced in [12]. The result can be regarded as a generalization of that in
[7, 12] for discrete-velocity kinetic models and can be proved with exactly the
same argument as in [7, 12]. The details were later carried out in [3] for one-
dimensional problems and in [15] for multi-dimensional ones. In addition, a
quite different approach was used in [13] to show the global existence for a
specific model – three-dimensional compressible Euler equations with damping.
Moreover, some time-decay properties and the Chapman-Enskog limits of the
global solutions were earlier obtained in [7,8] for discrete-velocity kinetic models
and in [1,16] for the general system (1.1) satisfying the above entropy-dissipation
and stability conditions.

In this paper, we intend to improve the main decay estimates in [1,16] and
thus generalize the results in [7,8] for discrete-velocity kinetic models – a class of
semilinear problems – to the general quasilinear system (1.1). We assume that
the general system (1.1) admits an entropy (function) defined in [9] and satisfies
the stability condition in [12]. The main difficulty of this work stems from the
quasilinearity of (1.1) and arises when deriving decay estimates for derivatives
of the solution. To overcome this difficulty, we employ a time-weighted energy
method which was first developed in [11] for the compressible Navier-Stokes
equation (see also [5]).

As a by-product, the time-weighted energy estimates lead to a decay esti-
mate for the multi-dimensional problems without assuming the L1-smallness of
initial data. Namely,

Theorem 1.1. Let d ≥ 2 and s > d
2

+ 1 an integer. Fix w̄ ∈ Ow satisfying
g(w̄) = 0 and suppose w0 = w0(x) is close sufficiently to w̄ in the usual Sobolev
space Hs = Hs(Rd). Then, under the above entropy and stability conditions,
the global-in-time solution w = w(x, t) to (1.1) with initial data w0 = w0(x)
satisfies the following decay estimates

‖∂k
x(w(·, t) − w̄)‖Lp ≤ C‖w0 − w̄‖Hs(1 + t)−γ′

p−
k
2 (1.2)

for p ∈ [2,∞] and 0 ≤ k ≤ s−2γ′p (k 6= s− d
2

if p = ∞), where γ′p = d
2
(1

2
− 1

p
) is

the decay exponent of the Lp – L2 decay estimate for the linear heat equation.

In (1.2), C is a generic constant and other notation are explained in the end
of this section. Remark that γ′2 = 0 for p = 2 and that Theorem 1.1 does



Decay Estimates 3

not assume that w0(x) − w̄ ∈ L1(Rd) and thus is not contained in [1, 16]. The
complete version of this theorem is Theorem 4.3 in Section 4 with further details
and conclusions.

Having the time-weighted estimates, we adopt the standard linearization
method, also used in [1], to derive sharper decay estimates under the assump-
tion that the initial data are close to the constant state in the L1-norm. This
approach requires suitable decay properties of the corresponding linearized prob-
lems. The required properties can be derived with the energy method in the
Fourier space, while one-dimensional problems need an additional spectral anal-
ysis of the linearized operator. Moreover, we use a technique from [7], instead
of the Duhamel principle, for multi-dimensional problems. The main results are
stated in Theorem 6.2 for multi-dimensional problems and in Theorem 7.3 for
one-dimensional ones. They can briefly summarized as follows.

Theorem 1.2. Let s > d
2

+ 1. Suppose w0 − w̄ ∈ Hs ∩ L1 and

E1 := ‖w0 − w̄‖Hs + ‖w0 − w̄‖L1

is sufficiently small. Then, under the above entropy and stability conditions, the
global solution w(x, t) to (1.1) satisfies the following decay estimates

‖∂k
x(w(·, t) − w̄)‖Lp ≤ CE1(1 + t)−γp−

k
2 (1.3)

for p ∈ [2,∞] and 0 ≤ k ≤ s − 1 − 2γ′p (k 6= s − 1 − d
2

if p = ∞). Here

γp = d
2
(1− 1

p
) is the decay exponent of the Lp – L1 decay estimate for the linear

heat equation and γ′p is the same as in Theorem 1.1.

Besides the aforementioned works [7, 8, 12], let us mention that the decay
estimate (1.3) with k = 0 was earlier derived in [16]. Recently, similar decay
estimates have been obtained by Bianchini et al. in [1]. The authors did not
use our time-weighted energy estimates to treat the difficulty due to the quasi-
linearity, and consequently they derived (1.3) only for non-negative integer k
with σ(= s− k) large enough (see the theorems in Section 5 of [1]).

Moreover, our method is different from that used in [1], where a somewhat
long analysis of the Green function for the linearized system is used to derive
decay properties of the corresponding linearized problems. In contrast, the
present paper derives the required properties by using the energy method in
the Fourier space, while one-dimensional problems need an additional spectral
analysis of the linearized operator. Moreover, we use a technique from [7],
instead of the Duhamel principle, for multi-dimensional problems.

The paper is organized as follows. In Section 2 we review the notion of
entropy and the stability condition for (1.1) from [9] and [12], respectively.
The energy method is recalled in Section 3 to show the existence of small-
amplitude global smooth solutions under the framework of [9]. Section 4 is
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devoted to the time-weighted energy estimates. In Section 5, we use the en-
ergy method in the Fourier space to derive the optimal decay estimate for the
corresponding linearized problems. The sharper decay estimates for nonlinear
problems are derived in Section 6 for multi-dimensional case and in Section 7
for one-dimensional one. Finally, in Appendix we analyze spectral properties of
one-dimensional operators in the low-frequency region.

Notation. We use 〈· , ·〉 and ( · , · ) to denote the standard inner products in the
real R

m and in the complex C
m, respectively. | · | is the corresponding norm

in R
m or C

m. For a function u on R
d and a positive integer k, ∂k

xu denotes
either all the k-th order derivatives {∂α

xu; |α| = k} or any one of them, where
α = (α1, α2, . . . , αd) is a multi-index. Letters c and C denote positive generic
constants which may vary from line to line. For p ∈ [1,∞], Lp = Lp(Rd) is
the usual Lebesgue space on R

d. For s ≥ 0 an integer, Hs = Hs(Rd) is the
Sobolev space which consists of functions in L2 whose distribution derivatives
of order ≤ s are all in L2. For a Banach space X, we always denote its norm by
‖ · ‖X . When u depends on t as well as on x, we write ‖u(t)‖X or ‖u(·, t)‖X to
recall that the norm is taken with respect to x while t is viewed as a parameter.
Furthermore, C(I;X) denotes the space of continuous functions on the interval
I with values in X.

2. Preliminaries

In this section, we review the notion of entropy and the stability condition
for (1.1) from [9] and [12], respectively. To begin with, we set

M := {ψ ∈ R
m ; 〈ψ, g(w)〉 = 0 for all w ∈ Ow}.

In the discrete kinetic theory [12], M is called the space of summational (colli-
sion) invariants. Moreover, we denote by E the set of equilibrium states for (1.1):

E := {w ∈ Ow ; g(w) = 0}.

In the following, Dw denotes the (row) gradient operator with respect to w and
the superscript T denotes the transpose.

2.1. Entropy and symmetrization. In [9], an entropy (function) for (1.1) is
defined as follows.

Definition 2.1. Let η = η(w) be a smooth function defined on Ow. It is called
an entropy (function) for (1.1) if the following four conditions are satisfied:

- η(w) is strictly convex on Ow in the sense that the Hessian D2
wη(w) is

positive definite for w ∈ Ow.

- The matrix Dwf
j(w)(D2

wη(w))−1 is symmetric for w ∈ Ow and j =
1, 2, . . . , d.
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- Let w ∈ Ow. Then w ∈ E if and only if (Dwη(w))T ∈ M.

- For w ∈ E , the matrix Dwg(w)(D2
wη(w))−1 is symmetric and nonpositive

definite, and its null space coincides with M.

Let η = η(w) be an entropy defined thus and put

u(w) := (Dwη(w))T . (2.1)

It was shown in [9] that the mapping u = u(w) is a diffeomorphism from Ow onto
its range Ou. Let w = w(u) be the inverse mapping which is a diffeomorphism
from Ou onto Ow. Putting w = w(u) in (1.1), we obtain

A0(u)ut +
d
∑

j=1

Aj(u)uxj
= h(u), (2.2)

where

A0(u) := Duw(u)

Aj(u) := Duf
j(w(u)) = (Dwf

j)(w(u))Duw(u)

h(u) := g(w(u)).

(2.3)

Let us define
L(u) := −Duh(u) = −(Dwg)(w(u))Duw(u). (2.4)

Since Duw(u) = ((D2
wη)(w(u)))−1 by (2.1), we see that

A0(u) := (D2
wη(w))−1

Aj(u) := Dwf
j(w)(D2

wη(w))−1

L(u) := −Dwg(w)(D2
wη(w))−1,

where w on the right-hand side is evaluated at w(u). Moreover, it was shown
in Theorem 2.1 of [9] that (2.2) is a symmetric dissipative system in the sense
defined as follows.

Definition 2.2. The system (2.2) is called symmetric dissipative if it satisfies
the following four conditions:

- A0(u) is symmetric and positive definite for u ∈ Ou.

- Aj(u) is symmetric for u ∈ Ou and j = 1, 2, . . . , d.

- Let u ∈ Ou. Then h(u) = 0 if and only if u ∈ M.

- For u ∈ M, the matrix L(u) = −Duh(u) is symmetric and nonnegative
definite, and its null space coincides with M.

Also, we know from Proposition 3.1 of [9] that h(u) has the following useful
expression for any fixed constant state ū ∈ M:

h(u) = −Lu+ r(u), (2.5)
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where L = L(ū), r(u) ∈ M⊥ (the orthogonal complement of M) for all u ∈ Ou

and satisfies
|r(u)| ≤ C|u− ū||(I − P )u| (2.6)

for u ∈ Ou close to ū, with I the identity mapping on R
m and P the orthogonal

projection onto M.

In addition, we recall the equation satisfied by the entropy η(w). Since
Aj(u) = Duf

j(w(u)) is symmetric, it is well-known that there exists a smooth
function q̃j(u) defined on Ou such that (Duq̃

j(u))T = f j(w(u)). Define

qj(w) := 〈u(w), f j(w)〉 − q̃j(u(w)).

We know from [9] that the entropy η(w) verifies

η(w)t +
d
∑

j=1

qj(w)xj
= 〈u(w), g(w)〉, (2.7)

which can be derived by taking the inner product of (1.1) with u(w) and using
the fact that (Dwq

j(w))T = (Dwf
j(w))Tu(w).

2.2. Normal form. In [9], we also transformed (1.1) to a symmetric dissipative
system of the normal form in the sense defined below.

Definition 2.3. A symmetric dissipative system (2.2) is said to be of the normal
form if A0(u) is block-diagonal associated with the orthogonal decomposition
R

m = M⊕M⊥.

Use the partition as w =
(

w1

w2

)

, u =
(

u1

u2

)

associated with the orthogonal

decomposition R
m = M⊕M⊥. We consider the mapping w −→ v defined by

v :=

(

w1

u2

)

, (2.8)

where u2 = (Dw2
η(w))T . This is a diffeomorphism from Ow onto its range Ov.

Denote by w = w(v) the inverse mapping which is a diffeomorphism from
Ov onto Ow. We set w = w(v) in (1.1) and multiply from the left with
Dvw(v)T (D2

wη)(w(v)) to obtain

Ã0(v)vt +
d
∑

j=1

Ãj(v)vxj
= h̃(v), (2.9)

where

Ã0(v) := (Dvw)TD2
wη(w)Dvw

Ãj(v) := (Dvw)TD2
wη(w)Dwf

j(w)Dvw

h̃(v) := (Dvw)TD2
wη(w)g(w),

and w on the right-hand side is evaluated at w(v).
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Let u = u(v) be the diffeomorphism composed by u = u(w) and w =
w(v). Then a straightforward computation using the relation (Dvw)TD2

wη(w) =
(Dvu)

T shows that

Ã0(v) := (Dvu)
TA0(u)Dvu

Ãj(v) := (Dvu)
TAj(u)Dvu

h̃(v) := (Dvu)
Th(u),

where A0(u), Aj(u) and h(u) are given in (2.3), and u is evaluated at u(v). This
means that the system (2.9) can also be obtained from (2.2) by multiplying from
the left with (Dvu)

T .

Theorem 3.3 of [9] indicates that (2.9) is a symmetric dissipative system of
the normal form. Precisely, we have the following refinement of Theorem 3.3
of [9].

Theorem 2.4. The system (2.9) is a symmetric dissipative system of the normal
form and h̃(v) = h(u). Moreover, between the variables u and v it holds that
u ∈ M if and only if v ∈ M. Furthermore, the matrix L̃(v) := −Dvh̃(v) can
be expressed in terms of L(u) defined in (2.4) as

L̃(v) = (Dvu)
TL(u)Dvu

and verifies L̃(v) = L(u) if v ∈ M (i.e., u ∈ M).

Proof. We give an outline of the proof. Use the partition of A0(u) and h(u) as

A0(u) =

(

A0
11 A0

12

A0
21 A0

22

)

, h(u) =

(

0
h2

)

associated with the decomposition R
m = M⊕M⊥. Then, noting (2.8) and (2.3),

we have

Duv =

(

A0
11 A0

12

O Ir

)

,

where Ir is the unit matrix of order r := dim(M⊥), and hence

Dvu =

(

(A0
11)

−1 −(A0
11)

−1A0
12

O Ir

)

. (2.10)

Now, a straightforward computation shows that

Ã0(v) =

(

(A0
11)

−1 O

O (Ã0
22)

−1

)

, h̃(v) =

(

0
h2

)

,
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where Ã0
22 := A0

22 − A0
21(A

0
11)

−1A0
12. Therefore, Ã0(v) is block-diagonal and

h̃(v) = h(u).

Next, it follows from h̃(v) = h(u) that L̃(v) = L(u)Dvu. Here L(u) is
defined in (2.4) and is expressed as

L(u) =

(

O O

L21 L22

)

,

where L21 = O for u ∈ M as observed in [9]. Therefore, a direct computation
using (2.10) gives

L̃(v) =

(

O O

L21(A
0
11)

−1 L̃22

)

,

where L̃22 = L22 − L21(A
0
11)

−1A0
12. Thus, we see that L̃(v) = (Dvu)

TL(u)Dvu.
On the other hand, v ∈ M means that u2 = 0 in (2.8), which is equivalent to
u ∈ M. Since L21 = 0 for u ∈ M, we see that L̃(v) = L(v) if u ∈ M (i.e.,
v ∈ M). The other statements are obvious and hence the proof is complete.

As a simple corollary, we have an analogue of (2.5) that h̃(v) has the fol-
lowing expression for any fixed constant state v̄ ∈ M (i.e., ū ∈ M):

h̃(v) = −Lv + r̃(v), (2.11)

where L = L(ū) as in (2.5), and r̃(v) ∈ M⊥ for all v ∈ Ov and

|r̃(v)| ≤ C|v − v̄||(I − P )v| (2.12)

for v ∈ Ov close to v̄.

2.3. Stability condition. In order to show the global existence for the initial
value problem of (1.1), we formulate the stability condition for the symmetric
dissipative system (2.2) or (2.9) obtained from (1.1). Let ū ∈ M be a constant
state and consider the linearized system of (2.2) at u = ū:

A0ut +
d
∑

j=1

Ajuxj
+ Lu = 0, (2.13)

where A0 = A0(ū), Aj = Aj(ū) and L = L(ū). Taking the Fourier transform of
(2.13) with respect to x, we obtain

A0ût + i|ξ|A(ω)û+ Lû = 0, (2.14)

where A(ω) :=
∑d

j=1A
jωj with ω = ξ

|ξ|
∈ Sd−1 (the unit sphere). Let λ =

λ(iξ) be the eigenvalues of (2.14), which solve the corresponding characteristic
equation

det(λA0 + i|ξ|A(ω) + L) = 0.

The stability condition for (2.2) is then formulated as follows.
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Definition 2.5. The system (2.2) satisfies the stability condition at ū ∈ M
if the following holds true: Let φ ∈ R

m satisfy φ ∈ M (i.e., Lφ = 0) and
λA0φ+ A(ω)φ = 0 for a certain real number λ and ω ∈ Sd−1. Then φ = 0.

This stability condition was first formulated in [12] for a general class of
symmetric hyperbolic-parabolic systems including our symmetric hyperbolic
systems (2.2) and (2.9). The following characterization of the stability con-
dition was also given in [12].

Theorem 2.6. The following four conditions are equivalent to each other.

- The system (2.2) satisfies the stability condition at ū ∈ M.

- Re λ(iξ) < 0 for ξ 6= 0.

- There is a positive constant c such that Re λ(iξ) ≤ − c|ξ|2

1+|ξ|2
for ξ ∈ R

d.

- There is an m × m matrix K(ω) depending smoothly on ω ∈ Sd−1 with
the following properties:

(i) K(−ω) = K(ω) for ω ∈ Sd−1.

(ii) K(ω)A0 is skew-symmetric for ω ∈ Sd−1.

(iii) [K(ω)A(ω)]′ +L is positive definite for ω ∈ Sd−1, where [X]′ denotes
the symmetric part of the matrix X, i.e., [X]′ = 1

2
(X +XT ).

Remark 2.7. We can also formulate the stability condition for (2.9) at the
constant state v̄ ∈ M, corresponding to ū ∈ M. It turns out that the stability
condition for (2.2) at ū ∈ M is equivalent to the stability condition for (2.9) at
v̄ ∈ M.

3. Energy estimates and global existence

For completeness, in this section we prove the existence of small-amplitude
global smooth solutions to (1.1) admitting an entropy and satisfying the stability
condition formulated in [12].

As shown in the previous section, (1.1) is a symmetrizable hyperbolic sys-
tem for it admits an entropy. According to the general local-in-time exis-
tence theory [2], its initial value problem with the initial data w0(x) satisfy-
ing w0 − w̄ ∈ Hs with s > d

2
+ 1 has a unique solution w(x, t) satisfying

w − w̄ ∈ C([0, T0];H
s) with T0 a positive constant, where w̄ ∈ E is a fixed con-

stant state. Ḋefine v = v(x, t) by (2.8). Then v(x, t) is a unique solution with
v − v̄ ∈ C([0, T0];H

s) to the symmetric dissipative system (2.9) of the normal
form, where v̄ ∈ M is the constant state corresponding to w̄.
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The aim of this section is to derive a uniform a priori estimate of solutions
v by the energy method. To this end, we introduce

E0(t) := sup
0≤τ≤t

‖v(τ) − v̄‖Hs

D0(t)
2 :=

∫ t

0

(

‖(I − P )v(τ)‖2
Hs + ‖∂xv(τ)‖

2
Hs−1

)

dτ

M0(t) := sup
0≤τ≤t

‖v(τ) − v̄‖L∞

M1(t) := sup
0≤τ≤t

‖∂xv(τ)‖L∞ .

Our a priori estimate reads as follows.

Proposition 3.1. Suppose (1.1) admits an entropy and the corresponding sym-
metric dissipative system (2.9) satisfies the stability condition at v̄ ∈ M. Let
d ≥ 1, s > d

2
+ 1 be an integer, T > 0, and let v = v(x, t) be a solution with

v− v̄ ∈ C([0, T ];Hs) to the initial value problem of (2.9). Then there is a posi-
tive constant δ0 (independent of T ) such that if E0(T ) ≤ δ0, then the following
uniform estimate holds true for t ∈ [0, T ]:

E0(t)
2 +D0(t)

2 ≤ C‖v0 − v̄‖2
Hs , (3.1)

where v0(x) := v(x, 0).

Proof. The proof is divided into four steps. Thanks to s > d
2
+1, it follows from

the Sobolev inequality that

M0(t) +M1(t) ≤ CE0(t). (3.2)

Thus, we always assume that M0(T ) is suitably small (independent of T ) and
therefore v = v(x, t) takes values in a neighborhood of v̄ ∈ M.

Step 1. First we show the following basic energy estimate

‖v(t) − v̄‖2
L2 +

∫ t

0

‖(I − P )v(τ)‖2
L2 ≤ C‖v0 − v̄‖2

L2 . (3.3)

Let w̄ ∈ E and ū ∈ M be the constant states corresponding to v̄ ∈ M. Intro-
duce the energy form H[w] by

H[w] := η(w) − η(w̄) − 〈ū, w − w̄〉.

Since η(w) is strictly convex in w and u = (Dwη(w))T , H[w] is equivalent to
the quadratic function |w − w̄|2 and hence to |v − v̄|2. On the other hand, we
use (2.7) and (1.1) to compute that

H[w]t +
d
∑

j=1

Qj[w]xj
= 〈u, g(w)〉, (3.4)
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where Qj[w] = qj(w) − qj(w̄) − 〈ū, f j(w) − f j(w̄)〉. Since g(w) = h(u) ∈ M⊥,
it follows from (2.5) and (2.6) that

〈u, g(w)〉 ≤ −c|(I − P )u|2 ≤ −c|(I − P )v|2. (3.5)

Here we have used the fact that u ∈ M is equivalent to v ∈ M. Now we
integrate (3.4) over R

d× [0, t] and use (3.5) to obtain the desired estimate (3.3).

Step 2. Next we estimate the derivatives ∂l
xv for 1 ≤ l ≤ s:

‖∂xv(t)‖
2
Hs−1 +

∫ t

0

‖(I − P )∂xv(τ)‖
2
Hs−1 dτ

≤ C‖∂xv0‖
2
Hs−1 + C(M0(t) +M1(t))D0(t)

2.

(3.6)

By using (2.11), we rewrite the normal form (2.9) as

Ã0(v)vt +
d
∑

j=1

Ãj(v)vxj
+ Lv = r̃(v). (3.7)

Applying ∂l
x (1 ≤ l ≤ s) to this equality, we obtain

Ã0(v)∂l
xvt +

d
∑

j=1

Ãj(v)∂l
xvxj

+ L∂l
xv = r̃l. (3.8)

Here r̃l = r̃l
A + r̃l

L with

r̃l
A = −

d
∑

j=1

Ã0(v)
[

∂l
x, Ã

0(v)−1Ãj(v)
]

vxj

r̃l
L = Ã0(v)

{

−
[

∂l
x, Ã

0(v)−1
]

Lv + ∂l
x

(

Ã0(v)−1r̃(v)
)

}

,

(3.9)

and [ , ] denotes the commutator. Taking the inner product of (3.8) with ∂l
xv,

we obtain

〈

Ã0(v)∂l
xv, ∂

l
xv
〉

t
+

d
∑

j=1

〈

Ãj(v)∂l
xv, ∂

l
xv
〉

xj
+ 2
〈

L∂l
xv, ∂

l
xv
〉

= 2
〈

r̃l, ∂l
xv
〉

+
〈(

Ã0(v)t +
d
∑

j=1

Ãj(v)xj

)

∂l
xv, ∂

l
xv
〉

.

Then the integration over R
d × [0, t] yields

‖∂l
xv(t)‖

2
L2 +

∫ t

0

‖(I − P )∂l
xv(τ)‖

2
L2 dτ ≤ C‖∂l

xv0‖
2
L2 + C

∫ t

0

R(l)(τ) dτ, (3.10)
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where 1 ≤ l ≤ s and

R(l) =

∫

Rd

{(|vt| + |∂xv|)|∂
l
xv|

2 + |r̃l
A||∂

l
xv| + |r̃l

L||(I − P )∂l
xv|}dx.

Here we have used the fact that r̃l
L ∈ M⊥. We claim that

R(l) ≤ C(‖∂xv‖L∞ + ‖(I − P )v‖L∞)‖∂l
xv‖

2
L2

+ C‖v − v̄‖L∞‖(I − P )∂l
xv‖

2
L2

(3.11)

for 1 ≤ l ≤ s. In fact, since |vt| ≤ C(|∂xv| + |(I − P )v|) due to (2.9), we have
∫

Rd

(

|vt| + |∂xv|
)

|∂l
xv|

2dx ≤ C
(

‖∂xv‖L∞ + ‖(I − P )v‖L∞

)

‖∂l
xv‖

2
L2 .

Moreover, by using (3.9) and (2.12), we deduce from the technical calculus
inequalities in Sobolev spaces (see [4, 5, 10]) that

‖r̃l
A‖L2 ≤C‖∂xv‖L∞‖∂l

xv‖L2

‖r̃l
L‖L2 ≤C

(

‖v − v̄‖L∞‖(I − P )∂l
xv‖L2 + ‖(I − P )v‖L∞‖∂l

xv‖L2

)

for 1 ≤ l ≤ s. These computations prove the desired estimate (3.11). Now it
follows from (3.11) that

∫ t

0

R(l)(τ) dτ ≤ C(M0(t) +M1(t))D0(t)
2

for 1 ≤ l ≤ s. Thus, summing up (3.10) for l with 1 ≤ l ≤ s gives the desired
estimate (3.6).

Step 3. In this step, we employ the stability condition to show the following
estimate
∫ t

0

‖∂xv(τ)‖
2
Hs−1 dτ ≤ C‖v0 − v̄‖2

Hs + CM0(t)D0(t)
2

+ C

(

‖v(t) − v̄‖2
Hs +

∫ t

0

‖(I − P )v(τ)‖2
Hs dτ

)

.

(3.12)

For this purpose, we set z = v − v̄ and rewrite (2.9) as

Ã0zt +
d
∑

j=1

Ãjzxj
+ Lz = b, (3.13)

where Ã0 = Ã0(v̄), Ãj = Ãj(v̄) and L are constant matrices, and b = bA + bL
with

bA = −
d
∑

j=1

Ã0(Ã0(v)−1Ãj(v) − (Ã0)−1Ãj)vxj

bL =Ã0
{

− (Ã0(v)−1 − (Ã0)−1)Lv + Ã0(v)−1r̃(v)
}

.

(3.14)
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Taking the Fourier transform of (3.13), we obtain

Ã0ẑt + i|ξ|Ã(ω)ẑ + Lẑ = b̂ (3.15)

with Ã(ω) =
∑d

j=1 Ã
jωj and ω = ξ

|ξ|
. Recall the matrix K̃(ω) in Theorem 2.6

(Remark 2.1). We multiply (3.15) with −i|ξ|K̃(ω) and then take the inner
product with ẑ. From the real part of the resulting equality we have

−
1

2
|ξ|(iK̃(ω)Ã0ẑ, ẑ)t + |ξ|2([K̃(ω)Ã(ω)]′ẑ, ẑ)

= Re {i|ξ|(K̃(ω)Lẑ, ẑ)} − Re {i|ξ|(K̃(ω)b̂, ẑ)}.
(3.16)

Here we have used the fact that iK̃(ω)Ã0 is hermitian. Since [K̃(ω)Ã(ω)]′ + L

is positive definite, we have
(

[K̃(ω)Ã(ω)]′ẑ, ẑ
)

≥ c|ẑ|2 − C|(I − P )ẑ|2.

Moreover, for any ǫ > 0, we have
∣

∣Re {i|ξ|(K̃(ω)Lẑ, ẑ)}
∣

∣ ≤ ǫ|ξ|2|ẑ|2 + ǫ−1C|(I − P )ẑ|2.

Substituting these two inequalities into (3.16) and taking ǫ > 0 suitably small,
we obtain

−|ξ|
(

iK̃(ω)Ã0ẑ, ẑ
)

t
+ c|ξ|2|ẑ|2 ≤ C(1 + |ξ|2)|(I − P )ẑ|2 + C|ξ||b̂||ẑ|. (3.17)

Now, multiplying this inequality by |ξ|2l (0 ≤ l ≤ s − 1) and integrating over
R

d
ξ × [0, t] gives

∫ t

0

‖∂l+1
x v(τ)‖2

L2 dτ ≤ C‖∂l
x(v0 − v̄)‖2

H1 + C

(

‖∂l
x(v(t) − v̄)‖2

H1

+

∫ t

0

‖(I − P )∂l
xv(τ)‖

2
H1 dτ

)

+ C

∫ t

0

S(l)(τ) dτ,

(3.18)

where 0 ≤ l ≤ s − 1 and S(l) =
∫

Rd(|∂
l
xbA| + |∂l

xbL|)|∂
l+1
x v|dx. On the other

hand, with the expressions of bA and bL in (3.14), we deduce from the calculus
inequalities in Sobolev spaces that

‖∂l
xbA‖L2 ≤ C‖v − v̄‖L∞‖∂l+1

x v‖L2

‖∂l
xbL‖L2 ≤ C

(

‖v − v̄‖L∞‖(I − P )∂l
xv‖L2 + ‖(I − P )v‖L∞‖∂l

x(v − v̄)‖L2

)

for 0 ≤ l ≤ s− 1, where the last term ‖(I − P )v‖L∞‖∂l
x(v − v̄)‖L2 is absent for

l = 0. From these estimates it follows that

S(l) ≤ C‖v − v̄‖L∞

(

‖(I − P )∂l
xv‖

2
L2 + ‖∂l+1

x v‖2
L2

)

+ C‖(I − P )v‖L∞‖∂l
x(v − v̄)‖L2‖∂l+1

x v‖L2

(3.19)



14 S. Kawashima and W.-A. Yong

for 0 ≤ l ≤ s− 1, where the last term on the right-hand side is absent for l = 0.
Consequently, we have

∫ t

0

S(l)(τ) dτ ≤ CM0(t)D0(t)
2

for 0 ≤ l ≤ s−1. Thus, adding (3.18) for l with 0 ≤ l ≤ s−1 yields the desired
estimate (3.12).

Step 4. Finally, we combine (3.3), (3.6) and (3.12) to get

E0(t)
2 +D0(t)

2 ≤ C‖v0 − v̄‖2
Hs + C(M0(t) +M1(t))D0(t)

2.

Assume that E0(T ) is suitably small. We use (3.2) to conclude the desired a
priori estimate (3.1). This completes the proof of Proposition 3.1.

On the basis of the a priori estimate (3.1), we use the standard continuation
argument to obtain the following global existence theorem – a refinement of that
in [9].

Theorem 3.2. Suppose (1.1) possesses an entropy and the corresponding sym-
metric dissipative system (2.9) satisfies the stability condition at v̄ ∈ M, where
v̄ is the constant state corresponding to a given constant state w̄ ∈ E. Let d ≥ 1
and let the initial data w0(x) satisfy w0 − w̄ ∈ Hs with s > d

2
+ 1. Then there

is a positive constant δ1 such that if ‖w0 − w̄‖Hs ≤ δ1, the initial value prob-
lem of (1.1) has a unique global solution w with w − w̄ ∈ C([0,∞);Hs), which
satisfies the following uniform estimate:

‖w(t) − w̄‖2
Hs +

∫ t

0

(

‖(I − P )v(τ)‖2
Hs + ‖∂xw(τ)‖2

Hs−1

)

dτ ≤ C‖w0 − w̄‖2
Hs

for t ≥ 0. Here v is defined in (2.8) and P is the orthogonal projection onto
M. Moreover, the solution w converges to the constant state w̄ as t tends to
infinity, namely,

‖∂l
x(w(t) − w̄)‖L∞ −→ 0

as t→ ∞, where 0 ≤ l ≤ s− s0 with s0 =
[

d
2

]

+ 1.

Remark 3.3. It is clear that the global solution v to (2.9) satisfies

‖v(t)− v̄‖2
Hs +

∫ t

0

(

‖(I −P )v(τ)‖2
Hs + ‖∂xv(τ)‖

2
Hs−1

)

dτ ≤ C‖v0 − v̄‖2
Hs (3.20)

for t ≥ 0, where v0(x) is the corresponding initial data.
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4. Time-weighted energy estimates

This section is devoted to time-weighted energy estimates for the global solu-
tion v, constructed in the previous section, to the initial value problem of (2.9).
To this end, we introduce the following time-weighted quantities:

E(t)2 :=
s
∑

k=0

sup
0≤τ≤t

(1 + τ)k‖∂k
x(v(τ) − v̄)‖2

Hs−k

D(t)2 :=
s
∑

k=0

∫ t

0

(1 + τ)k‖(I − P )∂k
xv(τ)‖

2
Hs−k dτ

+
s−1
∑

k=0

∫ t

0

(1 + τ)k‖∂k+1
x v(τ)‖2

Hs−k−1 dτ

M(t) := sup
0≤τ≤t

(1 + τ)
(

‖∂xv(τ)‖L∞ + ‖(I − P )v(τ)‖L∞

)

.

(4.1)

About these quantities, we have

Proposition 4.1. Under the conditions of Theorem 3.2, we have

E(t)2 +D(t)2 ≤ C‖v0 − v̄‖2
Hs + CM(t)D(t)2. (4.2)

Proof. This proof consists of three steps. As in the proof of Proposition 3.1, we
always assume that M0(t) is suitably small so that v = v(x, t) takes values in a
neighborhood of v̄ ∈ M.

Step 1: We first show that

(1 + t)k‖∂k
xv(t)‖

2
Hs−k +

∫ t

0

(1 + τ)k‖(I − P )∂k
xv(τ)‖

2
Hs−k dτ

≤ C‖∂k
xv0‖

2
Hs−k + C

∫ t

0

(1 + τ)k−1‖∂k
xv(τ)‖

2
Hs−k dτ

+ C(M0(t) +M(t))D(t)2

(4.3)

for 1 ≤ k ≤ s. To do this, we take the inner product of (3.8) with ∂l
xv and

integrate over R
d. Then we multiply the resulting equation by (1 + t)k (1 ≤

k ≤ s) and integrate over [0, t]. This yields as a counterpart of (3.10) that

(1 + t)k‖∂l
xv(t)‖

2
L2 +

∫ t

0

(1 + τ)k‖(I − P )∂l
xv(τ)‖

2
L2 dτ

≤ C‖∂l
xv0‖

2
L2 + C

∫ t

0

(1 + τ)k−1‖∂l
xv(τ)‖

2
L2 dτ + C

∫ t

0

(1 + τ)kR(l)(τ) dτ,

(4.4)



16 S. Kawashima and W.-A. Yong

where 1 ≤ k, l ≤ s. Moreover, we see from (3.11) that
∫ t

0
(1 + τ)kR(l)(τ) dτ ≤

C(M0(t) + M(t))D(t)2 for 1 ≤ k ≤ l ≤ s. Thus, adding (4.4) for l with
k ≤ l ≤ s, we arrive at the desired estimate (4.3).

Step 2: In this step, we show that

∫ t

0

(1 + τ)k‖∂k+1
x v(τ)‖2

Hs−k−1 dτ

≤ C‖∂k
xv0‖

2
Hs−k + C(1 + t)k‖∂k

xv(t)‖
2
Hs−k

+ C

∫ t

0

(1 + τ)k‖(I − P )∂k
xv(τ)‖

2
Hs−k dτ

+ C

∫ t

0

(1 + τ)k−1‖∂k
xv(τ)‖

2
Hs−k dτ + C(M0(t) +M(t))D(t)2

(4.5)

for 1 ≤ k ≤ s−1. For this purpose, we multiply (3.17) with |ξ|2l (1 ≤ l ≤ s−1)
and integrate over R

d
ξ . Then we multiply the resulting equation by (1 + t)k

(1 ≤ k ≤ s− 1) and integrate over [0, t]. This yields

∫ t

0

(1 + τ)k‖∂l+1
x v(τ)‖2

L2 dτ

≤ C‖∂l
xv0‖

2
H1 + C(1 + t)k‖∂l

xv(t)‖
2
H1

+ C

∫ t

0

(1 + τ)k‖(I − P )∂l
xv(τ)‖

2
H1 dτ

+ C

∫ t

0

(1 + τ)k−1‖∂l
xv(τ)‖

2
H1 dτ + C

∫ t

0

(1 + τ)kS(l)(τ) dτ,

(4.6)

where 1 ≤ k, l ≤ s−1. Moreover, we deduce from (3.19) that
∫ t

0
(1+τ)kS(l)(τ) dτ

≤ C(M0(t) + M(t))D(t)2 for k ≤ l ≤ s − 1. Thus, adding (4.6) for l with
k ≤ l ≤ s− 1, we arrive at the desired estimate (4.5).

Step 3: Having estimates (4.3) and (4.5), we can easily deduce that

(1 + t)k‖∂k
x(v(t) − v̄)‖2

Hs−k +

∫ t

0

(1 + τ)k‖(I − P )∂k
xv(τ)‖

2
Hs−k dτ

≤ C‖v0 − v̄‖2
Hs + C(M0(t) +M(t))D(t)2

(4.7)

for 0 ≤ k ≤ s and

∫ t

0

(1 + τ)k‖∂k+1
x v(τ)‖2

Hs−k−1 dτ ≤ C‖v0 − v̄‖2
Hs + C(M0(t) +M(t))D(t)2 (4.8)

for 0 ≤ k ≤ s− 1. Note that these two inequalities, together with the smallness
of M0(t), simply give the desired time-weighted estimate (4.2).
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We prove (4.7) and (4.8) by induction on k. First we observe that for k = 0,
(4.7) and (4.8) simply follow from (3.20). Next, let 1 ≤ k ≤ s and assume that
(4.8) holds true for k − 1. Then it follows from (4.3) that (4.7) holds for k.
Furthermore, substituting (4.7) with k and (4.8) with k − 1 into (4.5), we find
that (4.8) holds true for k. This proves Proposition 4.1.

Next we introduce

E⊥(t) :=
s−1
∑

k=0

sup
0≤τ≤t

(1 + τ)
1

2
(k+1)‖(I − P )∂k

xv(τ)‖L2 . (4.9)

About this time-weighted quantity, we have

Proposition 4.2. Under the conditions of Proposition 4.1, it holds that

E⊥(t) ≤ C‖v0 − v̄‖Hs−1 + CE(t) + CM(t)E(t). (4.10)

Proof. Let (v1, v2) be the partition of v according to the orthogonal decompo-
sition R

m = M⊕M⊥. From Theorem 2.4 and (3.7) we see that

Ã0
22(v)v2t +

d
∑

j=1

(

Ã
j
21(v)v1xj

+ Ã
j
22(v)v2xj

)

+ L22v2 = r̃2(v).

Here Ã0
22(v) and L22 are real symmetric and positive definite. We rewrite this

equation as
Ã0

22v2t + L22v2 = b̃2, (4.11)

where Ã0
22 = Ã0

22(v̄) and

b̃2 = Ã0
22

{

− Ã0
22(v)

−1

d
∑

j=1

(Ãj
21(v)v1xj

+ Ã
j
22(v)v2xj

)

− (Ã0
22(v)

−1 − (Ã0
22)

−1)L22v2 + Ã0
22(v)

−1r̃2(v)

}

.

Note that (Ã
0

22)
−1L22 is a positive definite matrix. Solving v2 from the ordinary

differential equation (4.11), applying ∂k
x with 0 ≤ k ≤ s−1 and then taking the

L2-norm, we get

‖(I −P )∂k
xv(t)‖L2 ≤ Ce−ct‖(I −P )∂k

xv0‖L2 +C

∫ t

0

e−c(t−τ)‖∂k
x b̃2(τ)‖L2 . (4.12)

Now we use the calculus inequalities in Sobolev spaces to obtain

‖∂k
x b̃2‖L2 ≤ C‖∂k+1

x v‖L2 + C
(

‖v − v̄‖L∞‖(I − P )∂k
xv‖L2

+ ‖(I − P )v‖L∞‖∂k
x(v − v̄)‖L2

) (4.13)
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for 0 ≤ k ≤ s−1, where the last term on the right-hand side is absent for k = 0.
Thus, it follows from (4.1) and (4.9) that

∫ t

0

e−c(t−τ)‖∂k
x b̃2(τ)‖L2 dτ

≤ C(E(t) +M0(t)E⊥(t) +M(t)E(t))

∫ t

0

e−c(t−τ)(1 + τ)−
1

2
(k+1) dτ

≤ C(E(t) +M0(t)E⊥(t) +M(t)E(t))(1 + t)−
1

2
(k+1).

Substituting this into (4.12), we arrive at

(1 + t)
1

2
(k+1)‖(I − P )∂k

xv(t)‖L2

≤ C‖v0 − v̄‖Hs−1 + C
(

E(t) +M0(t)E⊥(t) +M(t)E(t)
)

for 0 ≤ k ≤ s−1. Summing up the last inequality for k and using the smallness
of M0(t), we arrive at the desired estimate (4.10). This completes the proof.

From the above two propositions, we can derive suitable decay estimates
for the solution v without assuming the condition v0 − v̄ ∈ L1, provided that
d ≥ 2. The decay rate obtained is optimal in the situation where v0 − v̄ ∈ Hs

and the result reads as follows.

Theorem 4.3. Let d ≥ 2 and s > d
2
+ 1. Under the conditions of Theorem 3.2,

suppose that ‖v0− v̄‖Hs is sufficiently small. Then the following decay estimates
hold:

‖∂k
x(v(t) − v̄)‖Lp ≤ C‖v0 − v̄‖Hs(1 + t)−γ′

p−
k
2

for p ∈ [2,∞] and 0 ≤ k ≤ s− 2γ′p (k 6= s− d
2

if p = ∞), and

‖(I − P )∂k
xv(t)‖Lp ≤ C‖v0 − v̄‖Hs(1 + t)−γ′

p−
1

2
(k+1)

for p ∈ [2,∞] and 0 ≤ k ≤ s − 1 − 2γ′p (k 6= s − 1 − d
2

if p = ∞), where

γ′p = d
2
(1

2
− 1

p
) is the decay exponent of the Lp – L2 decay estimate for the linear

heat equation.

Proof. Recall the Gagliardo–Nirenberg inequality

‖f‖L∞ ≤ C‖∂s0

x f‖
θ
L2‖f‖1−θ

L2 (4.14)

with s0 =
[

d
2

]

+ 1 and θ = d
2s0

. We deduce that

‖∂xv(t)‖L∞ ≤ CE(t)(1 + t)−
d
4
− 1

2

‖(I − P )v(t)‖L∞ ≤ CE⊥(t)(1 + t)−
d
4
− 1

2 .
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Thus, for d ≥ 2, we have

M(t) ≤ C(E(t) + E⊥(t)). (4.15)

Combining this with (4.2) and (4.10), we conclude that E(t) +E⊥(t) +D(t) ≤
C‖v0 − v̄‖Hs , provided that ‖v0 − v̄‖Hs is sufficiently small. In particular, we
have

‖∂k
x(v(t) − v̄)‖L2 ≤ C‖v0 − v̄‖Hs(1 + t)−

k
2

for 0 ≤ k ≤ s, and

‖(I − P )∂k
xv(t)‖L2 ≤ C‖v0 − v̄‖Hs(1 + t)−

1

2
(k+1)

for 0 ≤ k ≤ s − 1. Now the desired estimates follow from the Gagliardo–
Nirenberg inequality

‖∂k
xf‖Lp ≤ C‖∂m

x f‖
θ
L2‖f‖1−θ

L2 (4.16)

with 0 ≤ k ≤ m, p ∈ [2,∞] and θ =
k+2γ′

p

m
≤ 1 (< 1 if p = ∞). This completes

the proof.

5. Decay estimates for linear problems

In this section, we consider the following linearization of the nonlinear sys-
tem (1.1):

A0zt +
d
∑

j=1

Ajzxj
+ Lz =

d
∑

j=1

pj
xj

+ q. (5.1)

See (6.1) for the derivation of this linearization. In (5.1), A0 = A0(ū), Aj =
Aj(ū), L = L(ū) (see (2.2)) with ū ∈ M the constant state corresponding to
w̄ ∈ E , pj and q are given functions of (x, t) satisfying

q(x, t) ∈ M⊥ for (x, t) ∈ R
d × [0,∞). (5.2)

First, we apply the energy method in the Fourier space to derive the fol-
lowing pointwise estimate for the Fourier image

ẑ(ξ, t) := (2π)−
d
2

∫

Rd

e−iξ·xz(x, t)dx.

Proposition 5.1. Set ρ(ξ) = |ξ|2

1+|ξ|2
. Under the conditions of Theorem 3.2, the

Fourier image of the solution z = z(x, t) to the linear system (5.1) satisfies the
following pointwise estimate

|ẑ(ξ, t)|2 ≤ Ce−cρ(ξ)t|ẑ0(ξ)|
2

+ C

∫ t

0

e−cρ(ξ)(t−τ)
(

(1 + |ξ|2)|p̂(ξ, τ)|2 + |q̂(ξ, τ)|2
)

dτ,
(5.3)

where z0(x) is the initial data and p = (p1, p2, . . . , pd) is an m× d matrix.
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Proof. Taking the Fourier transform of (5.1), we obtain

A0ẑt + i|ξ|A(ω)ẑ + Lẑ = i|ξ|p̂ω + q̂, (5.4)

where A(ω) =
∑d

j=1A
jωj and ω = ξ

|ξ|
. We take the inner product of (5.4)

with ẑ. Since A0, A(ω) and L are real symmetric, the real part of the resulting
equation is

1

2
(A0ẑ, ẑ)t + (Lẑ, ẑ) = Re {i|ξ|(p̂ω, ẑ)} + Re (q̂, ẑ). (5.5)

Since L is positive definite on M⊥ and q̂ ∈ M⊥ due to (5.2), there is a positive
constant c1 such that (5.5) can be estimated as

1

2
(A0ẑ, ẑ)t+c1|(I−P )ẑ|2≤ ǫ|ξ|2(1+|ξ|2)−1|ẑ|2+ǫ−1C(1+|ξ|2)|p̂|2+C|q̂|2 (5.6)

for any ǫ > 0.

Next we use the matrix K = K(ω) in Theorem 2.6. Multiply (5.4) with
−i|ξ|K(ω) and then take the inner product with ẑ. Since iK(ω)A0 is hermitian,
the real part of the resulting equation is

−
1

2
|ξ|(iK(ω)A0ẑ, ẑ)t + |ξ|2([K(ω)A(ω)]′ẑ, ẑ)

= Re {i|ξ|(K(ω)Lẑ, ẑ)} + Re {|ξ|2(K(ω)p̂ω, ẑ)} − Re {i|ξ|(K(ω)q̂, ẑ)}.

As [K(ω)A(ω)]′ + L is positive definite, there are positive constants c2 and C3

such that the above equality can be estimated as

−
1

2
|ξ|(iK(ω)A0ẑ, ẑ)t + c2|ξ|

2|ẑ|2 ≤ C3(1 + |ξ|2)|(I − P )ẑ|2

+ C|ξ|2|p̂|2 + C|q̂|2.
(5.7)

Now let κ be a positive constant to be specified later. We multiply (5.7) by
κ(1 + |ξ|2)−1 and add the resulting inequality and (5.6). This yields

1

2
(Eκ(ξ)ẑ, ẑ)t + (c1 − κC3)|(I − P )ẑ|2 + (κc2 − ǫ)ρ(ξ)|ẑ|2

≤ C(ǫ, κ)(1 + |ξ|2)|p̂|2 + C(κ)|q̂|2
(5.8)

for some constants C(ǫ, κ) and C(κ), where ρ(ξ) = |ξ|
1+|ξ|2

and

Eκ(ξ) = A0 −
κ|ξ|

1 + |ξ|2
iK(ω)A0.

Note that Eκ(ξ) is hermitian and A0 is positive definite. We choose κ > 0 so
small that c1 −κC3 ≥ 0 and that Eκ(ξ) is positive definite uniformly in ξ ∈ R

n
ξ :

c|y|2 ≤ (Eκ(ξ)y, y) ≤ C|y|2 (5.9)
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for any y ∈ C
m. Then we take ǫ = κc2

2
. Thus we can regard (5.8) as an ordinary

differential inequality for Z = (Eκ(ξ)ẑ, ẑ):

Zt + cρ(ξ)Z ≤ C(1 + |ξ|2)|p̂|2 + C|q̂|2.

Applying the Gronwall inequality and using (5.9) we deduce the desired esti-
mate (5.3). This completes the proof.

As a corollary of Proposition 5.1, we have the following decay estimate for
the linear problem (5.1).

Lemma 5.2. Under the conditions of Theorem 3.2, the solution z = z(x, t) to
the linear problem (5.1) satisfies the following estimate:

‖∂k
xz(t)‖

2
L2 ≤ Ce−ct‖∂k

xz0‖
2
L2 + C(1 + t)−

d
2
−k‖z0‖

2
L1

+ C

∫ t

0

e−c(t−τ)
(

‖∂k
xp(τ)‖

2
H1 + ‖∂k

xq(τ)‖
2
L2

)

dτ

+ C

∫ t
2

0

(1 + t− τ)−
d
2
−k
(

‖p(τ)‖2
L1 + ‖q(τ)‖2

L1

)

dτ

+ C

∫ t

t
2

(1 + t− τ)−
d
2

(

‖∂k
xp(τ)‖

2
L1 + ‖∂k

xq(τ)‖
2
L1

)

dτ.

for any nonnegative integer k.

Proof. Multiplying (5.3) with |ξ|2k and integrating the resulting inequality over
R

d
ξ , we use the Plancherel theorem to obtain

‖∂k
xz(t)‖

2
L2 ≤ C

∫

R
d
ξ

|ξ|2ke−cρ(ξ)t|ẑ0(ξ)|
2dξ

+ C

∫ t

0

∫

R
d
ξ

|ξ|2ke−cρ(ξ)(t−τ)
(

(1 + |ξ|2)|p̂(ξ, τ)|2 + |q̂(ξ, τ)|2
)

dξ dτ.

Thus, the lemma follows from the estimate
∫

R
d
ξ

|ξ|2ke−cρ(ξ)t|ĥ(ξ)|2dξ ≤ e−ct‖∂k
xh‖

2
L2 + C(1 + t)−

d
2
−(k−l)‖∂l

xh‖
2
L1 , (5.10)

where 0 ≤ l ≤ k. It remains to prove this inequality. Since ρ(ξ) = |ξ|2

1+|ξ|2
≥ |ξ|2

2

for |ξ| ≤ 1, we deduce from the definition of the Fourier transform that

∫

|ξ|≤1

|ξ|2ke−cρ(ξ)t|ĥ(ξ)|2dξ ≤ sup
|ξ|≤1

(|ξ|2l|ĥ(ξ)|2)

∫

|ξ|≤1

|ξ|2(k−l)e−c|ξ|2tdξ

≤C(1 + t)−
d
2
−(k−l)‖∂l

xh‖
2
L1 .
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On the other hand, since ρ(ξ) ≥ 1
2

for |ξ| ≥ 1, we have
∫

|ξ|≥1

|ξ|2ke−cρ(ξ)t|ĥ(ξ)|2dξ ≤ e−ct

∫

|ξ|≥1

|ξ|2k|ĥ(ξ)|2dξ ≤ e−ct‖∂k
xh‖

2
L2 ,

where the Plancherel theorem has been used again. The last two inequalities
give (5.10) and hence the proof is complete.

Next, we introduce the semigroup etΦ associated with the linear prob-
lem (5.1). According to (5.4), this semigroup can be represented with the
inverse Fourier transform as

(etΦh)(x) = (2π)−
d
2

∫

R
d
ξ

etΦ(iξ)ĥ(ξ)eiξ·xdξ

with
Φ(iξ) = −(A0)−1(A(iξ) + L), (5.11)

where A(iξ) = i
∑d

j=1A
jξj.

Note that z(x, t) := (etΦh)(x) is a solution to (5.1) with p = 0, q = 0
and with the initial data h(x). Therefore it follows from Proposition 5.1 that
|etΦ(iξ)| ≤ Ce−cρ(ξ)t. Also, as a corollary of Lemma 5.2 we have the following
decay estimate for the semigroup etΦ.

Lemma 5.3. Under the conditions of Theorem 3.2, it holds that

‖∂k
xe

tΦh‖L2 ≤ Ce−ct‖∂k
xh‖L2 + C(1 + t)−

d
4
− 1

2
(k−l)‖∂l

xq‖L1

for any non-negative integers k and l with l ≤ k.

In case d = 1 and h = (A0)−1q with q ∈ M⊥, this lemma can be improved
as follows.

Lemma 5.4. Let d = 1. Under the conditions of Theorem 3.2, if q(x) ∈ M⊥

for x ∈ R
d, then it holds that

‖∂k
xe

tΦ(A0)−1q‖L2 ≤ Ce−ct‖∂k
xq‖L2 + C(1 + t)−

3

4
− 1

2
(k−l)‖∂l

xq‖L1

for any non-negative integers k and l with l ≤ k + 1.

Proof. Since q ∈ M⊥, by Lemma A.2 in Appendix there is a positive constant r0
such that |etΦ(iξ)(A0)−1q̂(ξ)| ≤ Ce−ct|q̂(ξ)| + C|ξ|e−cξ2t|q̂(ξ)| for |ξ| ≤ r0. Thus,
as in the proof of the inequality (5.10), we have

∫

|ξ|≤r0

|ξ|2k|etΦ(iξ)(A0)−1q̂(ξ)|2dξ

≤ Ce−ct

∫

|ξ|≤r0

|ξ|2k|q̂(ξ)|2dξ + C

∫

|ξ|≤r0

|ξ|2(k+1)e−cξ2t|q̂(ξ)|2dξ

≤ Ce−ct‖∂k
xq‖

2
L2 + C(1 + t)−

1

2
−(k+1−l)‖∂l

xq‖
2
L1 .
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On the other hand, since |etΦ(iξ)| ≤ Ce−ct for |ξ| ≥ r0, we have

∫

|ξ|≥r0

|ξ|2k|etΦ(iξ)(A0)−1q̂(ξ)|2dξ ≤ e−ct‖∂k
xq‖

2
L2 .

These estimates together with the Plancherel theorem prove the lemma.

6. Multi-dimensional nonlinear problems

In this section, we use Lemma 5.2 to derive sharper decay estimates of solutions
to the multi-dimensional nonlinear problem (1.1) under the additional condition
w0(x) − w̄ ∈ Hs ∩ L1.

Set w = w̄ +Duw(ū)z. The nonlinear system (1.1) can be rewritten as

A0zt +
d
∑

j=1

Ajzxj
+ Lz =

d
∑

j=1

pj
xj

+ q, (6.1)

where A0 = A0(ū), Aj = Aj(ū), L = L(ū), and

pj = −{f j(w) − f j(w̄) −Dwf
j(w̄)(w − w̄)}

q = g(w) − g(w̄) −Dwg(w̄)(w − w̄).

For these coefficient matrices, see (2.3) and (2.4). Note that q ∈ M⊥. Also, we
have from the calculus inequalities in Sobolev spaces that

‖∂k
xp‖L1 ≤ C‖w − w̄‖L2‖∂k

x(w − w̄)‖L2

‖∂k
xp‖L2 ≤ C‖w − w̄‖L∞‖∂k

x(w − w̄)‖L2

(6.2)

whenever w = w(x, t) takes values in a neighborhood w̄ ∈ E , where 0 ≤ k ≤ s.
The same estimates hold true also for q.

To show the decay estimates, we introduce

N(t) :=
s−1
∑

k=0

sup
0≤τ≤t

(1 + τ)
d
4
+ k

2 ‖∂k
x(w(τ) − w̄)‖L2 . (6.3)

Note that the Gagliardo–Nirenberg inequality (4.14) gives

‖w(t) − w̄‖L∞ ≤ CN(t)(1 + t)−
d
2 . (6.4)

Moreover, from (6.2) we deduce that

‖∂k
xp(t)‖L1 ≤ CN(t)2(1 + t)−

d
2
− k

2 ,

‖∂k
xp(t)‖L2 ≤ CN(t)2(1 + t)−

3d
4
− k

2

(6.5)
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for 0 ≤ k ≤ s − 1. The same estimates hold true also for q. In addition, we
have

‖∂k
xp(t)‖H1 ≤ CE(t)N(t)(1 + t)−

d
2
− k

2 (6.6)

for 0 ≤ k ≤ s − 1, where E(t) is defined in (4.1) with v replaced by w.
Here we have used the fact that ‖∂k

xp‖H1 ≤ C‖w − w̄‖L∞‖∂k
x(w − w̄)‖H1 and

‖∂k
x(w(t)− w̄)‖H1 ≤ E(t)(1+ t)−

k
2 . Note that N(t) does not control ‖∂s

xw(t)‖L2

and therefore E(t) is used in (6.6).

With these preparations, we apply Lemma 5.2 to (6.1) and obtain the fol-
lowing inequality on N(t).

Proposition 6.1. Let d ≥ 2 and s > d
2

+ 1. Under the conditions of Theo-
rem 3.2, suppose that w0−w̄ ∈ Hs∩L1 and put E1 := ‖w0−w̄‖Hs +‖w0−w̄‖L1 .

Then it holds that

N(t) ≤ CE1 + CN(t)2 + CE(t)N(t). (6.7)

Proof. Applying Lemma 5.2 to (6.1) gives

‖∂k
x(w(t) − w̄)‖2

L2 ≤ Ce−ct‖∂k
x(w0 − w̄)‖2

L2 + C(1 + t)−
d
2
−k‖w0 − w̄‖2

L1

+ C

∫ t

0

e−c(t−τ)
(

‖∂k
xp(τ)‖

2
H1 + ‖∂k

xq(τ)‖
2
L2

)

dτ

+ C

∫ t
2

0

(1 + t− τ)−
d
2
−k
(

‖p(τ)‖2
L1 + ‖q(τ)‖2

L1

)

dτ

+ C

∫ t

t
2

(1 + t− τ)−
d
2

(

‖∂k
xp(τ)‖

2
L1 + ‖∂k

xq(τ)‖
2
L1

)

dτ

(6.8)

for 0 ≤ k ≤ s− 1. For the integrals on the right-hand side of (6.8), we use the
inequalities in (6.5) and (6.6) to estimate them as follows. It is clear that

∫ t

0

e−c(t−τ)
(

‖∂k
xp(τ)‖

2
H1 + ‖∂k

xq(τ)‖
2
L2

)

dτ

≤ CE(t)2N(t)2

∫ t

0

e−c(t−τ)(1 + τ)−d−k dτ + CN(t)4

∫ t

0

e−c(t−τ)(1 + τ)−3 d
2
−k dτ

≤ CE(t)2N(t)2(1 + t)−d−k + CN(t)4(1 + t)−
3d
2
−k.

Moreover, since d ≥ 2, we have

∫ t
2

0

(1 + t− τ)−
d
2
−k
(

‖p(τ)‖2
L1 + ‖q(τ)‖2

L1

)

dτ

≤ CN(t)4

∫ t
2

0

(1 + t− τ)−
d
2
−k(1 + τ)−d dτ

≤ CN(t)4(1 + t)−
d
2
−k



Decay Estimates 25

and

∫ t

t
2

(1 + t− τ)−
d
2

(

‖∂k
xp(τ)‖

2
L1 + ‖∂k

xq(τ)‖
2
L1

)

dτ

≤ CN(t)4

∫ t

t
2

(1 + t− τ)−
d
2 (1 + τ)−d−k dτ

≤ CN(t)4ϑ(t)(1 + t)−d−k

≤ CN(t)4(1 + t)−
d
2
−k,

where ϑ(t) = log(1 + t) if d = 2 and ϑ(t) = 1 for d ≥ 3. Substituting all the
last three estimates into (6.8), we obtain

(1 + t)
d
2
+k‖∂k

x(w(t) − w̄)‖2
L2 ≤ CE2

1 + CN(t)4 + CE(t)2N(t)2

for 0 ≤ k ≤ s − 1. Summing up this inequality for k gives N(t)2 ≤ CE2
1 +

CN(t)2+CE(t)2N(t)2, which is equivalent to (6.7). This completes the proof.

Having Proposition 6.1, we turn to prove the main result of this section.

Theorem 6.2. Let d ≥ 2 and s > d
2
+ 1. Under the conditions of Theorem 3.2,

suppose w0 − w̄ ∈ Hs ∩L1 and E1 is sufficiently small. Then the global solution
w(x, t) to (1.1) satisfies the following decay estimates:

‖∂k
x(w(t) − w̄)‖Lp ≤ CE1(1 + t)−γp−

k
2 (6.9)

for p ∈ [2,∞] and 0 ≤ k ≤ s− 1 − 2γ′p (k 6= s− 1 − d
2

if p = ∞), and

‖(I − P )∂k
xv(t)‖Lp ≤ CE1(1 + t)−γp−

1

2
(k+1) (6.10)

for p ∈ [2,∞] and 0 ≤ k ≤ s − 2 − 2γ′p (k 6= s − 2 − d
2

if p = ∞). Here

γp = d
2
(1− 1

p
) is the decay exponent of the Lp – L1 decay estimate for the linear

heat equation and γ′p = d
2
(1

2
− 1

p
) is the same as in Theorem 4.3.

Proof. From Theorem 4.3 we see that E(t) ≤ C‖w0 − w̄‖Hs ≤ CE1. Thus, if
E1 is sufficiently small, we see from (6.7) that N(t) ≤ CE1 + CN(t)2, which
implies that N(t) ≤ CE1, provided that E1 is sufficiently small. Consequently,
we obtain the decay estimate (6.9) for p = 2 and 0 ≤ k ≤ s− 1. Obviously, this
gives

‖∂k
x(v(t) − v̄)‖L2 ≤ CE1(1 + t)−

d
4
− k

2 (6.11)

for 0 ≤ k ≤ s−1. Moreover, a direct use of the Gagliardo–Nirenberg inequality
(4.16) leads to (6.9).
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To show (6.10), we look back at the proof of Proposition 4.2. We simplify
(4.13) as

‖∂k
x b̃2‖L2 ≤ C‖∂k+1

x v‖L2 + C‖v − v̄‖L∞‖∂k
x(v − v̄)‖L2 (6.12)

for 0 ≤ k ≤ s − 1. Substituting (6.4) and (6.11), we obtain ‖∂k
x b̃2(t)‖L2 ≤

CE1(1 + t)−
d
4
− 1

2
(k+1) for 0 ≤ k ≤ s− 2. Consequently, we have

∫ t

0

e−c(t−τ)‖∂k
x b̃2(τ)‖L2 dτ ≤ CE1

∫ t

0

e−c(t−τ)(1 + τ)−
d
4
− 1

2
(k+1) dτ

≤ CE1(1 + t)−
d
4
− 1

2
(k+1)

for 0 ≤ k ≤ s − 2. This, together with (4.12), gives ‖(I − P )∂k
xv(t)‖L2 ≤

CE1(1 + t)−
d
4
− 1

2
(k+1) for 0 ≤ k ≤ s − 2 and, moreover, the desired estimate

(6.10) by using the Gagliardo–Nirenberg inequality (4.16). This completes the
proof.

7. One-dimensional nonlinear problems

In this section, we prove Proposition 6.1 and Theorem 6.2 for one-dimensional
nonlinear problem (6.1):

A0zt + Azx + Lz = px + q (7.1)

with A = A1(ū) and p = p1. Although the two hold true even for d = 1, the
proofs in the previous section are not valid for d = 1. In particular, we will
prove Theorem 6.2 under the additional regularity s ≥ 3. Also, we will use
Lemmas 5.3 and 5.4, instead of Lemma 5.2, to prove Proposition 6.1. Namely,

Proposition 7.1. Let d = 1 and s ≥ 2. Under the conditions of Theorem 3.2,
suppose that w0 − w̄ ∈ Hs ∩ L1. Then it holds that

N(t) ≤ CE1 + CN(t)2 + CE(t)N(t). (7.2)

Proof. Using the semigroup etΦ associated with the linearized system (7.1), the
solution z = z(x, t) to (7.1) can be represented as z(t) = etΦz0+

∫ t

0
e(t−τ)Φ(A0)−1·

(px + q)(τ) dτ. From this representation we have

‖∂k
x(w(t) − w̄)‖L2 ≤ C‖∂k

xe
tΦ(w0 − w̄)‖L2 + C

∫ t

0

‖∂k+1
x e(t−τ)Φ(A0)−1p(τ)‖L2 dτ

+ C

∫ t

0

‖∂k
xe

(t−τ)Φ(A0)−1q(τ)‖L2 dτ
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for 0 ≤ k ≤ s−1. Moreover, we note that q ∈ M⊥ and deduce from Lemmas 5.3
and 5.4 that

‖∂k
x(w(t) − w̄)‖L2 ≤ Ce−ct‖∂k

x(w0 − w̄)‖L2 + C(1 + t)−
1

4
− k

2 ‖w0 − w̄‖L1

+ C

∫ t

0

e−c(t−τ)
(

‖∂k+1
x p(τ)‖L2 + ‖∂k

xq(τ)‖L2

)

dτ

+ C

∫ t
2

0

(1 + t− τ)−
3

4
− k

2

(

‖p(τ)‖L1 + ‖q(τ)‖L1

)

dτ

+ C

∫ t

t
2

(1 + t− τ)−
3

4

(

‖∂k
xp(τ)‖L1 + ‖∂k

xq(τ)‖L1

)

dτ.

(7.3)

Now we use the inequalities in (6.5) and (6.6) to estimate each term on the
right-hand side of (7.3) as follows. We have
∫ t

0

e−c(t−τ)
(

‖∂k+1
x p(τ)‖L2 + ‖∂k

xq(τ)‖L2

)

dτ

≤ CE(t)N(t)

∫ t

0

e−c(t−τ)(1 + τ)−
1

2
− k

2 dτ + CN(t)2

∫ t

0

e−c(t−τ)(1 + τ)−
3

4
− k

2 dτ

≤ CE(t)N(t)(1 + t)−
1

2
− k

2 + CN(t)2(1 + t)−
3

4
− k

2 ,

∫ t
2

0

(1 + t− τ)−
3

4
− k

2

(

‖p(τ)‖L1 + ‖q(τ)‖L1

)

dτ

≤ CN(t)2

∫ t
2

0

(1 + t− τ)−
3

4
− k

2 (1 + τ)−
1

2 dτ

≤ CN(t)2(1 + t)−
1

4
− k

2

and
∫ t

t
2

(1 + t− τ)−
3

4

(

‖∂k
xp(τ)‖

2
L1 + ‖∂k

xq(τ)‖
2
L1

)

dτ

≤ CN(t)2

∫ t

t
2

(1 + t− τ)−
3

4 (1 + τ)−
1

2
− k

2 dτ

≤ CN(t)2(1 + t)−
1

4
− k

2 .

Thus we obtain (1 + t)
1

4
+ k

2 ‖∂k
x(w(t)− w̄)‖L2 ≤ CE1 +CN(t)2 +CE(t)N(t) for

0 ≤ k ≤ s− 1. Summing up this inequality for 0 ≤ k ≤ s− 1, we arrive at the
desired inequality (7.2). This completes the proof.

Notice that Theorem 4.3 has no counterpart for d = 1 because (4.15) fails
for d = 1. Thus, to control E(t) in (7.2), we introduce

N⊥(t) :=
s−2
∑

k=0

sup
0≤τ≤t

(1 + τ)
3

4
+ k

2 ‖(I − P )∂k
xv(τ)‖L2 .
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For this time-weighted quantity, we have the following analogue of Proposi-
tion 4.2:

Proposition 7.2. Let d = 1 and s ≥ 2. The conditions of Proposition 4.2
imply that

N⊥(t) ≤ C‖v0 − v̄‖Hs−2 + CN(t) + CN(t)2, (7.4)

where N(t) is defined in (6.3) with w replaced by v defined through (2.8).

Proof. Recall the proof of Proposition 4.2. We deduce from (6.12) and (6.4)
with d = 1 that

∫ t

0

e−c(t−τ)‖∂k
x b̃2(τ)‖L2 dτ ≤ C(N(t) +N(t)2)

∫ t

0

e−c(t−τ)(1 + τ)−
3

4
− k

2 dτ

≤ C(N(t) +N(t)2)(1 + t)−
3

4
− k

2

for 0 ≤ k ≤ s− 2. Substituting this into (4.12), we obtain

(1 + t)
3

4
+ k

2 ‖(I − P )∂k
xv(t)‖L2 ≤ C‖v0 − v̄‖Hs−2 + C(N(t) +N(t)2)

for 0 ≤ k ≤ s− 2. Summing up this inequality for k gives the desired inequal-
ity (7.4). This completes the proof.

Now we are in a position to state our last main result.

Theorem 7.3. Let d = 1 and s ≥ 3. Under the conditions of Theorem 3.2,
suppose w0 − w̄ ∈ Hs ∩L1 and E1 is sufficiently small. Then the global solution
w(x, t) to (1.1) satisfies the following decay estimates

‖∂k
x(w(t) − w̄)‖Lp ≤ CE1(1 + t)−γp−

k
2

for p ∈ [2,∞] and 0 ≤ k ≤ s− 1 − 2γ′p, and

‖(I − P )∂k
xv(t)‖Lp ≤ CE1(1 + t)−γp−

1

2
(k+1)

for p ∈ [2,∞] and 0 ≤ k ≤ s− 2 − 2γ′p. Here γp = 1
2
(1 − 1

p
) and γ′p = 1

2
(1

2
− 1

p
)

for d = 1.

Remark 7.4. The regularity s ≥ 2 is enough for the decay estimate

‖w(t) − w̄‖Hs−1 ≤ C(1 + t)−
1

4

(see [16]) and for semilinear problems where p1 = 0 (see [8]).
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Proof. Thanks to s ≥ 3, we deduce from the Gagliardo–Nirenberg inequality
(4.14) that

‖∂xv(t)‖L∞ ≤CN(t)(1 + t)−1

‖(I − P )v(t)‖L∞ ≤CN⊥(t)(1 + t)−1.

Thus, in place of (4.15), we have M(t) ≤ C(N(t)+N⊥(t)). Combining this with
(4.2), (7.2) and (7.4), we conclude that N(t) + N⊥(t) + E(t) + D(t) ≤ CE1,

provided that E1 is sufficiently small. Thus, we obtain

‖∂k
x(w(t) − w̄)‖L2 ≤ CE1(1 + t)−

1

4
− k

2

for 0 ≤ k ≤ s− 1, and

‖(I − P )∂k
xv(t)‖L2 ≤ CE1(1 + t)−

3

4
− k

2

for 0 ≤ k ≤ s − 2. Moreover, the desired estimates follow simply from the
Gagliardo–Nirenberg inequality (4.16) with d=1. This completes the proof.

A. Spectral analysis for one-dimensional linear problems

The aim here is to prove Lemma A.2 below for one-dimensional problems. In
what follows, we set Ψ(z) = ΛΦ(z)Λ−1 for complex number z, where Λ = (A0)

1

2

is real symmetric and positive definite, and Φ(iξ) = −(A0)−1(iξA+L) is defined
in (5.11).

Since Ψ(0) = −Λ−1LΛ−1 is real symmetric, its spectral representation is of
the form

Ψ(0) =
J
∑

j=1

λjΠ̄j,

where the λj’s are J distinct (real) eigenvalues of Ψ(0) and Π̄j is the corre-
sponding eigenprojection. Note that each Π̄j is real symmetric and satisfies

J
∑

j=1

Π̄j = I, Π̄2
j = Π̄j, Π̄jΠ̄k = 0 for j 6= k.

Since Ψ(0) is nonpositive definite, without loss of generality, we assume λ1 = 0.
Then Π̄1R

m is the null space of Ψ(0) and therefore

Π̄1R
m = ΛM and λj < 0 for j = 2, 3, . . . , J, (A.1)

where M is the null space of L.
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Note that Ψ(z) is analytic with respect to z and is real symmetric for real z.
According to the perturbation theory for one-parameter family of matrices [6],
Ψ(z) has the spectral representation of the form

Ψ(z) =
J̄
∑

l=1

λl(z)Πl(z) (A.2)

for z close to 0. Here J̄ is the number of distinct eigenvalues of Ψ(z), λl(z) is
an eigenvalue, and Πl(z) is the corresponding eigenprojection. Moreover, J̄ is
a constant for z close but unequal to 0, λl(z) and Πl(z) are analytic at z = 0,
each Πl(z) is real symmetric for real z, and the Πl(z)’s satisfy

J̄
∑

l=1

Πl(z) = I, Πl(z)
2 = Πl(z), Πl(z)Πk(z) = 0 for l 6= k. (A.3)

Letting z → 0 in (A.2), we have Ψ(0) =
∑J̄

l=1 λl(0)Πl(0). Thus λl(0) is
equal to a certain eigenvalue λj of Ψ(0). Let nj be the number of λl(z) satisfying
λl(0) = λj and rename the nj eigenvalues λl(z) as λjα(z) with α = 1, 2, . . . , nj.
Then the spectral representation of Ψ(z) can be rewritten as

Ψ(z) =
J
∑

j=1

nj
∑

α=1

λjα(z)Πjα(z) (A.4)

and (A.3) becomes

J
∑

j=1

nj
∑

α=1

Πjα(z) = I, Πjα(z)2 = Πjα(z)

Πjα(z)Πj′α′(z) = 0 for (j, α) 6= (j′, α′).

(A.5)

Moreover, we have

nj
∑

α=1

Πjα(0) = Π̄j and λjα(0) = λj. (A.6)

Since λjα(z) and Πjα(z) are analytic at z = 0, they have expansions

λjα(z) =
∞
∑

k=0

zkλ
(k)
jα , Πjα(z) =

∞
∑

k=0

zk Π
(k)
jα . (A.7)

Note that λ
(k)
jα and Π

(k)
jα are real, since so are λjα(z) and Πjα(z) for real z.

Thanks to (A.1), we see from (A.6) and (A.5) that

Π
(0)
1α R

m = Π1α(0)Rm ⊂ ΛM for α = 1, 2, . . . , n1. (A.8)

Furthermore, we have
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Lemma A.1. λ
(2)
1α > 0 for α = 1, 2, . . . , n1.

Proof. Fix α and choose φ ∈ R
m so that Π1α(0)φ 6= 0. Since Π1α(z)φ is an

eigenvector of Ψ(z) associated with the eigenvalue λ1α(z), we substitute the
expansions (A.7) into the equation Ψ(z)Π1α(z)φ = λ1α(z)Π1α(z)φ to obtain

Ψ(0)Π
(0)
1αφ = λ

(0)
1α Π

(0)
1αφ = 0

Ψ(0)Π
(1)
1αφ+ ĀΠ

(0)
1αφ = λ

(1)
1α Π

(0)
1αφ

Ψ(0)Π
(2)
1αφ+ ĀΠ

(1)
1αφ = λ

(1)
1α Π

(1)
1αφ+ λ

(2)
1α Π

(0)
1αφ,

where Ā := −Λ−1AΛ−1 is real symmetric. Now we look at these three equal-
ities. The first one indicates that the non-zero vector Π1α(0)φ = Π

(0)
1αφ is in

the null space of Ψ(0). Thus, it follows from the second equality and the sta-

bility condition in Section 2 that Π
(1)
1αφ 6= 0 is not in the null space of Ψ(0).

We take the inner products of Π
(1)
1αφ with the second equality and of Π

(0)
1αφ

with the third one to obtain 〈Π
(1)
1αφ, Ψ(0)Π

(1)
1αφ〉 = 〈Π

(1)
1αφ, (λ

(1)
1α − Ā)Π

(0)
1αφ〉

and 0 = 〈Π
(0)
1αφ, (λ

(1)
1α − Ā)Π

(1)
1αφ〉 + λ

(2)
1α |Π

(0)
1αφ|

2. Hence we have λ
(2)
1α |Π

(0)
1αφ|

2 =

−〈Π
(1)
1αφ, Ψ(0)Π

(1)
1αφ〉, which is strictly positive because Π

(1)
1αφ is not in the null

space of Ψ(0). This completes the proof.

Having these preparations, we prove the main result of this Appendix.

Lemma A.2. If q̂(ξ) ∈ M⊥ for ξ ∈ R, then there are positive constants r0, c
and C such that

|etΦ(iξ)(A0)−1q̂(ξ)| ≤ Ce−ct|q̂(ξ)| + C|ξ|e−cξ2t|q̂(ξ)|

for |ξ| ≤ r0.

Proof. It follows from (A.4) and (A.5) that

etΦ(iξ)(A0)−1q̂(ξ) = Λ−1etΨ(iξ)Λ−1q̂(ξ)

=
J
∑

j=1

nj
∑

α=1

eλjα(iξ)tΛ−1Πjα(iξ)Λ−1q̂(ξ).
(A.9)

For j = 2, 3, . . . , J , since λjα(0) < 0 due to (A.1) and (A.6), there is a positive
constant r1 such that for |ξ| ≤ r1,

J
∑

j=2

nj
∑

α=1

|eλjα(iξ)tΛ−1Πjα(iξ)Λ−1q̂(ξ)| ≤ Ce−ct|q̂(ξ)|. (A.10)

On the other hand, since Π1α(0) and Λ are real symmetric, we find that

〈Π1α(0)Λ−1q̂(ξ), φ〉 = 〈q̂(ξ), Λ−1Π1α(0)φ〉 = 0
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for any φ ∈ R
m and ξ ∈ R, where we used the fact that q̂(ξ) ∈ M⊥ and

Λ−1Π1α(0)φ ∈ M due to (A.8). This shows that Π1α(0)Λ−1q̂(ξ) = 0 for ξ ∈ R.
Also, by virtue of Lemma A.1, we have Reλ1α(ξ) ≤ −cξ2 for |ξ| ≤ r0, where r0
is a positive constant with r0 ≤ r1. Thus, we have

n1
∑

α=1

|eλ1α(iξ)tΛ−1Π1α(iξ)Λ−1q̂(ξ)| ≤ C|ξ|e−cξ2t|q̂(ξ)|

for |ξ| ≤ r0. By plugging this and (A.10) into (A.9), the proof is completed.
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