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Global Smooth Solutions

of Viscous Compressible Real Flows

with Density-Dependent Viscosity

Xulong Qin and Zheng-an Yao

Abstract. We consider an initial boundary problem of viscous, compressible, heat-
conducting real fluids with density-dependent viscosity. More precisely, we assume
that the viscosity µ(ρ) = ρλ, where ρ is the density of flows and λ is a positive
constant. The equations of state for the real flows depend nonlinearly upon the
temperature and the density unlike the linear dependence for the perfect flows. We
prove the global existence (uniqueness) of smooth solutions under the hypotheses:
λ ∈

(

2(γ − 1), 1
2

]

and 1 ≤ γ < 5
4 , which improves a previous result. In particular, we

also show that no vacuum will be developed provided the initial density is far away
from vacuum.

Keywords. Viscous, heat-conducting gas, density-dependent viscosity, global exis-
tence
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1. Introduction

In this paper, we are concerned with viscous, compressible, heat-conducting
real fluids confined to a fixed tube with impermeable ends. We will study
the global existence of smooth solutions with density-dependent viscosity. The
governing equations of one-dimensional gas (under Lagrangian coordinate) are
the following three ones for the conservation of mass, the balance of momentum
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and the balance of energy respectively, see [4–6,8, 10,11]:

ut − vx = 0 (1a)

vt + Px(u, θ) =

(

µ(u)vx

u

)

x

(1b)

(

e +
v2

2

)

t

+ (vP (u, θ))x =

(

µ(u)vvx

u
+

kθx

u

)

x

, 0 < x < 1, t > 0, (1c)

with the initial conditions

(u, v, θ)(x, 0) = (u0(x), v0(x), θ0(x)), on [0, 1], (2)

and the boundary conditions

v(d, t) = θx(d, t) = 0, d = 0, 1. (3)

Here the unknown functions u = 1
ρ
, v, θ represent the specific volume, the

velocity and the temperature of the flows, respectively. e = e(u, θ), P = P (u, θ)
denote the specific internal energy and the pressure, respectively, and satisfy
the relation interrelated by

eu(u, θ) = −P (u, θ) + θPθ(u, θ) (4)

by the second law of thermodynamics. µ(u) = u−λ with 2(γ − 1) < λ ≤ 1
2

is
the viscosity coefficient of the real flows and k = k(u, θ) is the heat conductiv-
ity coefficient depending nonlinearly upon the temperature, refer to (7a). We
assume that e(u, θ) and P (u, θ) are continuously differentiable and k(u, θ) is
twice continuously differentiable on 0 < u < ∞ and 0 ≤ θ < ∞. The growth
conditions on e(u, θ), P (u, θ) and k(u, θ): There are constants ν, P1, P2, k0, and
for any given C > 0, there exist positive constants N(C), k(C) and k1(C), such
that for u ≥ C, θ ≥ 0, the following conditions hold:

e(u, 0) ≥ 0, ν(1 + θr) ≤ eθ(u, θ) ≤ N(C)(1 + θr) (5)

P (u, θ) ≥ 0, P (u, θ) → 0 as u → ∞ (6a)

|Pθ(u, θ)| ≤ N(C)
1 + θr

uγ
(6b)

−
P2(l + (1 − l)θ + θ1+r)

uγ+1
≤ Pu(u, θ) ≤ −

P1(l + (1 − l)θ + θ1+r)

uγ+1
(6c)

k0(1 + θq) ≤ k(u, θ) ≤ k1(C)(1 + θq) (7a)

|ku(u, θ)| + |kuu(u, θ)| ≤ k(C)(1 + θq), (7b)

where l = 0 or 1, q ≥ 2 + 2r, r ∈ [0, 1] and γ ∈ [1, 5
4
).
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Remark 1.1. By integrating (6c) over (u,∞) and noticing (6a), we obtain

P1[l + (1 − l)θ + θ1+r]

γ
≤ uγP (u, θ) ≤

P2[l + (1 − l)θ + θ1+r]

γ
.

The above assumptions are more general than those in [4–6, 8, 10, 11] for
the case of γ = 1, for example, P (u, θ) = R θ

u
, e(u, θ) = Cvθ satisfy (5) and (6),

where R is the gas constant, Cv = R
γ−1

is the heat capacity of the gas at constant
volume, and γ is the adiabatic exponent. There are many studies on the perfect
gas, see [2, 7, 9, 13] and the references therein. However, for gases with high
pressure and temperature, the internal energy e(u, θ) may grow as θ1+r with
r ≈ 0.5 and k(u, θ) ∝ θq with q ∈ [4.5, 5.5], refer to (5) and (7a). We point out
that the perfect gas only corresponds to r = 0 and γ = 1 for which there are
more extensive discussions and experimental evidence for the real compressible
flows in [1, 12]. From the physical points of view and mathematical analysis it
is very important to study the well-posedness of global solutions.

Because of the nonlinearity of state equations, the idea in [9] can not be
used to obtain the upper bound and lower bound of the specific volume, for
example, P (u, θ) = R1

θr1

u
+ R2

θr2

u
with constants Ri > 0, ri > 1, i = 1, 2. In

this direction, there are also some results, for instance [3, 10, 11] in which the
authors established the global existence of solutions with µ(u) ≥ C > 0, whereas
the positive lower bound of density does play an important role in obtaining
the upper and lower bound of the specific volume. On the other hand, the fact
that the viscosity µ(u) = u−λ decreases to zero rapidly as the density tends to
vacuum causes another difficulty. Jiang [6] firstly obtained the global existence
of smooth solutions for the problem of (1)–(3) with λ ∈ (0, 1

3
] in the case of

γ = 1. In this paper, we will develop some new novel estimates and efficient
methods and extend Jiang’s result to λ ∈

(

2(γ − 1), 1
2

]

with 1 ≤ γ < 5
4
.

The main result of this paper is

Theorem 1.2. Let µ(u) = u−λ. Assume that u0(x), u0x(x), v0(x), v0x(x),
v0xx(x), θ0(x), θ0x(x), θ0xx(x) are in Cα[0, 1] for some α ∈ (0, 1) and u0(x),
θ0(x) are positive on [0, 1] and satisfy the compatibility conditions. If 2(γ−1) <

λ ≤ 1
2
) and 1 ≤ γ < 5

4
, then there exists a unique solution (u, v, θ) to the initial

boundary problem of (1)–(3) such that

u(x, t) > 0, θ(x, t) > 0 on [0, 1] × [0,∞).

Furthermore, for any fixed T > 0, we have

(u, ux, ut, uxt, v, vx, vt, vxx, θ, θx, θt, θxx) ∈ (Cα, α

2 (QT ))12,

and (utt, vxt, θxt) ∈ (L2(QT ))3. Here, as usual, Cα[0, 1] denotes the Hölder space

on [0, 1] with exponent α, Cα, α

2 (QT ) the Hölder space on QT = [0, 1] × [0, T ]
with exponents α in x and α

2
in t.
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Remark 1.3. If we assume the initial data is in H1, so are the solutions. By the
upper and lower bounds of the density and applying the techniques in [10, 11],
we can obtain more higher regularity of the solutions.

2. Proof of Theorem 1.2

Similar to [8], to prove Theorem 1.2, it suffices to show the following results:

‖|(u, ux, ut, uxt)‖|α + ‖|(v, vx, vt, vxx)‖|α + ‖|(θ, θx, θt, θxx)‖|α ≤ C, (8)

and
0 < C1 ≤ θ(x, t) ≤ C2, (9)

where ‖|(f1, . . . , fn‖|α = ‖|f1‖|α + · · · + ‖|fn‖|α denotes the norm of the space
Cα, α

2 (QT ), C, C1 and C2 are positive constants. To establish (8) and (9), we
need some a priori estimates on (u, v, θ). In the sequel, the generic constant
C(C(T )) will depend on the initial data (the given time T ) and the parameters
of the system (1) which may be different from line to line.

Firstly, we trivially observe from (1a) and the boundary conditions (3) that
∫ 1

0
udx =

∫ 1

0
u0(x)dx. With no loss of generality, we assume

∫ 1

0

udx =

∫ 1

0

u0(x)dx = 1, (10)

From (1) and (4), we get

eθ(u, θ)θt + θPθ(u, θ)vx −
µ(u)

u
v2

x =

(

k(u, θ)

u
θx

)

x

. (11)

Applying the maximum principle to (11), we obtain θ(x, t) > 0 on [0, 1]×[0,∞).

As usual, the first lemma is the energy estimate.

Lemma 2.1. There exists a positive constant C, such that

∫ 1

0

(

ν(θ + θ1+r) +
v2

2

)

(x, t)dx ≤ C, ∀0 ≤ t ≤ T. (12)

Proof. Integrating (1c) over [0, 1] × [0, t] and noticing the boundary condi-
tions (3), we deduce that

∫ 1

0

(

e +
v2

2

)

dx =

∫ 1

0

(

e +
v2

2

)

(x, 0)dx,

which implies the proof of the lemma together with (5).
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The following lemma embodies the dissipative effects of viscosity and heat
diffusion.

Lemma 2.2. Under the hypotheses of Theorem 1.2, we have

∫ t

0

∫ 1

0

(

(1 + θq)θ2
x

uθ2
+

µ(u)v2
x

uθ

)

dx ds ≤ C, (13)

for 0 ≤ x ≤ 1 and 0 ≤ t ≤ T .

Proof. Define η(u, θ) by eθ = θηθ, ηu = Pθ, and let Ψ(u, θ) = e(u, θ) − θη(u, θ).
Then we deduce that Ψθ(u, θ) = −η(u, θ), Ψu(u, θ) = −P (u, θ) and θΨθθ = −eθ.
Set

Φ1 = Ψ(u, θ) − Ψ(u, 1) − Ψθ(u, θ)(θ − 1)

Φ2 = Ψ(u, 1) − Ψ(1, 1) − Ψu(1, 1)(u − 1),

then we get from (1) and (4),
(

Φ1 + Φ2 +
v2

2

)

t

+
kθ2

x

uθ2
+

µ(u)v2
x

uθ

=

(

µ(u)vvx

u
+

kθx

u
+ P (1, 1)v − vP −

kθx

uθ

)

x

.

(14)

Integrating (14) over [0, 1] × [0, t], we arrive at

∫ 1

0

(

Φ1 + Φ2 +
v2

2

)

dx +

∫ t

0

∫ 1

0

(

kθ2
x

uθ2
+

µ(u)v2
x

uθ

)

dx ds

=

∫ 1

0

(

Φ1 + Φ2 +
v2

2

)

(x, 0)dx.

By Taylor’s expansion, we obtain

Φ1 = (1 − θ)2

∫ 1

0

(1 − τ)eθ(u, θ + τ(1 − θ))

θ + τ(1 − θ)
dτ

≥ ν(1 − θ)2

∫ 1

0

(1 − τ)(1 + (θ + τ(1 − θ))r)

θ + τ(1 − θ)
dτ

≥ 0 (by (5))

and Φ2 = Φuu(ξ, 1)(u− 1)2 = −Pu(ξ, 1)(u− 1)2 ≥ 0, which end the proof of the
lemma together with (7a).

Lemma 2.3. The following inequality holds:

∫ t

0

max
[0,1]

θ(2+2r)ds ≤ C, ∀0 ≤ t ≤ T.
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Proof. In view of the embedding theorem, it yields

θr+1 ≤

∫ 1

0

θr+1(x, t)dx + (r + 1)

∫ 1

0

θr|θx|dx.

By the Cauchy-Schwarz inequality, (10) and (12), we find

θ1+r ≤

∫ 1

0

θ1+rdx + C

∫ 1

0

θr|θx|dx

≤ C + C

(
∫ 1

0

θ(2+2r)θ2
x

uθ2
dx

)
1
2
(

∫ 1

0

udx

)
1
2

≤ C + C

(
∫ 1

0

(1 + θq)θ2
x

uθ2
dx

)
1
2

, for q ≥ 2 + 2r.

Taking the square and integrating in t, we arrive at

∫ t

0

max
[0,1]

θ2(1+r)ds ≤ C

(

1 +

∫ t

0

∫ 1

0

(1 + θq)θ2
x

uθ2
dx ds

)

≤ C,

where we used (13).

Lemma 2.4. Under the hypotheses of Theorem 1.2, there holds

u(x, t) ≥ C(T ) ⇐⇒ ρ(x, t) ≤
1

C(T )
, (15)

for 0 ≤ x ≤ 1 and 0 ≤ t ≤ T .

Proof. Motivated by [6,9], we set

ϕ(x, t) =

∫ t

0

σ(x, s)ds +

∫ x

0

v0(y)dy, (16)

where σ(x, t) = µ(u)vx

u
−P (u, θ). Thus, we have ϕx = v and ϕt = µ(u)vx

u
−P (u, θ).

Hence
(uϕ)t − (vϕ)x = µ(u)vx − uP − v2. (17)

Integrating (17) over [0, 1] × [0, t], we derive that

∫ 1

0

(uϕ)(x, t)dx

=

∫ t

0

∫ 1

0

(µ(u)vx − uP − v2)(x, s)dx ds +

∫ 1

0

(uϕ)(x, 0)dx = Φ(t).

(18)
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From (10), we deduce that there exists a point x0(t)∈ [0, 1] such that ϕ(x0(t), t)=
∫ 1

0
(uϕ)(x, t)dx = Φ(t). This leads to

∫ t

0

σ(x0(t), s)ds = ϕ(x0(t), t) −

∫ x0(t)

0

v0(y)dy

= Φ(t) −

∫ x0(t)

0

v0(y)dy

=

∫ t

0

∫ 1

0

(µ(u)vx − uP − v2)(x, s)dx ds

+

∫ 1

0

u0(x)

∫ x

0

v0(y)dydx −

∫ x0(t)

0

v0(y)dy

(19)

together with (16) and (18). Let M(u) =
∫ u

inf [0,1] u0(x)
µ(ξ)

ξ
dξ. Integrating (1b)

over [x0(t), x] × [0, t] and using (19), we arrive at

M(u(x, t)) = M(u0(x)) +

∫ t

0

P (x, s)ds

+

∫ x

x0(t)

(v(y, t) − v0(y))dy +

∫ t

0

σ(x0(t), s)ds

= M(u0(x)) +

∫ t

0

P (x, s)ds +

∫ x

x0(t)

(v(y, t) − v0(y))dy

+

∫ t

0

∫ 1

0

(µ(u)vx − uP − v2)(x, s)dx ds

+

∫ 1

0

u0(x)

∫ x

0

v0(y)dy dx −

∫ x0(t)

0

v0(y)dy.

Therefore

ρλ =
[

inf
[0,1]

u0(x)
]

−λ

− λ

(

M(u0(x)) +

∫ t

0

P (x, s)ds

)

− λ

(
∫ x

x0(t)

(v(y, t) − v0(y))dy +

∫ t

0

∫ 1

0

(µ(u)vx − uP )(x, s)dx ds

)

− λ

(
∫ 1

0

u0(x)

∫ x

0

v0(y)dydx −

∫ x0(t)

0

v0(y)dy −

∫ t

0

∫ 1

0

v2dx ds

)

.

To finish up the proof of the lemma, we only need to estimate −λ
∫ t

0

∫ 1

0
(µ(u)vx−

uP )dx ds. Indeed by Lemma 2.2 and Lemma 2.3, it yields
∣

∣

∣

∣

∫ t

0

∫ 1

0

µ(u)vxdx ds

∣

∣

∣

∣

≤

∫ t

0

max
[0,1]

θ

(
∫ 1

0

uµ(u)dx

)

ds +

∫ t

0

∫ 1

0

µ(u)v2
x

uθ
dx ds

≤

∫ t

0

max
[0,1]

θ

(
∫ 1

0

udx

)1−λ

ds +

∫ t

0

∫ 1

0

µ(u)v2
x

uθ
dx ds ≤ C.

(20)
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Using (10), we obtain
∣

∣

∣

∣

∫ t

0

∫ 1

0

uPdx ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

0

∫ 1

0

uγPu1−γ

∣

∣

∣

∣

dx ds

≤ C

∫ t

0

max
[0,1]

(1 + θ1+r)

∫ 1

0

u1−γdx ds

≤ C

∫ t

0

max
[0,1]

(1 + θ2(1+r))ds +

∫ t

0

max
[0,1]

ρλ

(
∫ 1

0

u2(1−γ)+λdx

)

ds.

Since 2(γ − 1) < λ ≤ 1
2
, 1 ≤ γ < 5

4
, we have

∣

∣

∣

∣

∫ t

0

∫ 1

0

uPdx ds

∣

∣

∣

∣

≤ C(T ) + C

∫ t

0

max
[0,1]

ρλds.

This together with (20) and the initial conditions yields

max
[0,1]

ρλ ≤ C(T ) + C

∫ t

0

max
[0,1]

ρλds + λ

∫ t

0

∫ 1

0

v2dx ds ≤ C(T ) + C

∫ t

0

max
[0,1]

ρλds,

where we used (12). This implies the proof of the lemma by Gronwall’s inequal-
ity.

Lemma 2.5. There exists a positive constant C(T ), such that
∫ 1

0

[(u−λ)x]
2dx ≤ C(T ), 0 ≤ t ≤ T.

Proof. Substituting (1a) into (1b) and integrating over [0, t], we obtain

(u−λ)x = (u−λ
0 )x − λ(v − v0) − λ

∫ t

0

P (u, θ)xds. (21)

Multiplying (21) by (u−λ)x and integrating it over [0, 1], we have
∫ 1

0

[(u−λ)x]
2dx =

∫ 1

0

(

(u−λ
0 )x − λ(v − v0) − λ

∫ t

0

P (u, θ)xds

)2

dx.

Using the assumptions on the initial data and (12), we deduce
∫ 1

0

[(u−λ)x]
2dx =

∫ 1

0

(

(u−λ
0 )x − λ(v − v0) − λ

∫ t

0

P (u, θ)xds

)2

dx

≤ C

∫ 1

0

[(u−λ
0 )x]

2dx + C

∫ 1

0

v2
0(x)dx + C

∫ 1

0

v2dx

+ C

∫ 1

0

(
∫ t

0

P (u, θ)xds

)2

dx

≤ C + C

∫ 1

0

(
∫ t

0

P (u, θ)xds

)2

dx.

(22)
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Now we will estimate the integral on the right hand side of (22).
By (6b) and (6c), we obtain

∫ 1

0

(
∫ t

0

P (u, θ)xds

)2

dx

=

∫ 1

0

(
∫ t

0

Pu(u, θ)ux + Pθ(u, θ)θxds

)2

dx

≤ C

∫ 1

0

(
∫ t

0

|Pu(u, θ)ux|ds

)2

dx + C

∫ t

0

∫ 1

0

(Pθ(u, θ)θx)
2dx ds

≤ C

∫ 1

0

(
∫ t

0

(l + (1 − l)θ + θ1+r)|ux|

uγ+1
ds

)2

dx

+ C

∫ t

0

∫ 1

0

(1 + θr)2θ2
x

u2γ
dx ds

≤ C

∫ 1

0

(
∫ t

0

|(u−λ)x|u
λ−γ(l + (1 − l)θ + θ1+r)ds

)2

dx

+ C

∫ t

0

∫ 1

0

(1 + θr)2θ2
x

u2γ
dx ds

∆
= I1 + I2.

(23)

We will give the estimates of I1 and I2, respectively.

Recalling Hölder’s inequality, Lemma 2.3 and Lemma 2.4, we discover

I1 = C

∫ 1

0

(
∫ t

0

|(u−λ)x|u
λ−γ(l + (1 − l)θ + θ1+r)ds

)2

dx

≤ C(T )

∫ 1

0

(
∫ t

0

[(u−λ)x]
2ds ×

∫ t

0

max
[0,1]

(1 + θ2+2r)ds

)

dx

≤ C(T )

∫ t

0

∫ 1

0

[(u−λ)x]
2dx ds,

(24)

where we used Lemma 2.2 in the last line. By Young’s inequality, (13) and (15)
and noticing q ≥ 2 + 2r, one has

I2 = C

∫ t

0

∫ 1

0

(1 + θr)2θ2
x

u2γ
dx ds

= C

∫ t

0

∫ 1

0

θ2(1 + θr)2θ2
x

u2γθ2
dx ds

≤ C(T )

∫ t

0

∫ 1

0

(1 + θ2+2r)θ2
x

uθ2
dx ds

≤ C(T )

∫ t

0

∫ 1

0

(1 + θq)θ2
x

uθ2
dx ds

≤ C(T ).

(25)
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Collecting (22)–(25), we arrive at
∫ 1

0

[(u−λ)x]
2dx ≤ C(T ) + C(T )

∫ t

0

∫ 1

0

[(u−λ)x]
2dx ds,

which implies the lemma by Gronwall’s inequality.

Lemma 2.6. For 2(γ − 1) < λ ≤ 1
2

and 1 ≤ γ < 5
4
, there holds

u(x, t) ≤ C(T ) ⇐⇒ ρ(x, t) ≥
1

C(T )
, 0 ≤ x ≤ 1, 0 ≤ t ≤ T. (26)

Proof. Let U(t) = max[0,1]×[0,t] u(x, s). Then it follows from the Sobolev’s em-
bedding theorem W 1,1([0, 1]) →֒ L∞([0, 1]) for any 0 < β < 1 that uβ ≤
∫ 1

0
uβdx + β

∫ 1

0
uβ−1|ux| dx. From Hölder’s inequality, (10) and Lemma 2.5, we

have

uβ ≤

∫ 1

0

uβdx + β

∫ 1

0

uβ−1|ux| dx

≤

(
∫ 1

0

udx

)β

+ Cβ

(
∫ 1

0

[(u−λ)x]
2dx

)
1
2
(

∫ 1

0

u2(β+λ)dx

)
1
2

≤ 1 + C(T )βUβ

(
∫ 1

0

u2λdx

)
1
2

≤ 1 + C(T )βUβ, since 2(γ − 1) < λ ≤
1

2
.

This leads to Lemma 2.6 because there exists sufficiently small β such that
C(T )β < 1.

Based on the estimates (12)–(13), (15) and (26), we can show (8) and (9).
We refer reader to [3,4,8] for detailed proof. Here we omit it for brevity. With
the estimates (8), (15) and (26) in hand, the global existence of smooth solutions
can be obtained by extending the local solutions globally in time in view of a
priori global estimates, while the existence of local solutions is known from
Leray–Schauder fixed point theorem. This completes the proof of Theorem 1.2.
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