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Existence of Solutions for some

Quasiaffine PDEs

Flavia Giannetti and Giovanni Pisante

Abstract. We prove the existence of solutions of problems of the type

{

Φ(Du(x)) = f(x) in Ω

u(x) = ξ0x on ∂Ω

with Φ : R
n×n → R quasiaffine function and ξ0 ∈ R

n×n fixed.
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1. Introduction

In 1965, J. Moser proved that two positive C∞ volume forms on a compact
manifold with the same total mass are related by a diffeomorphism [7]. Later
on B. Dacorogna and J. Moser in [5] considered problems of the type

{

det Du(x) = f in Ω

u(x) = x on ∂Ω ,
(1)

where Ω is a bounded domain in R
n with regular boundary and f is a positive

function on Ω verifying the assumption

∫

Ω

f dx = |Ω| ,

where |Ω| denotes the Lebesgue measure of Ω. The equation in (1) is called
the prescribed volume form equation and has a lot of applications in physics,
in particular in elasticity theory.
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The main difficulty in solving (1) is in the non-linearity of the Jacobian
determinant. In [5], Dacorogna and Moser overcame this problem in the case
f belonging to the Hölder spaces Cm,α(Ω) and obtained the best regularity
that one can expect, that is u ∈ Cm+1,α(Ω, Rn). Later on, in [10], the author
obtained the best regularity for u in the case f belonging to the Sobolev space
Wm,p(Ω) with max (1, n

m
) < p < ∞, that is u ∈ Wm+1,p(Ω, Rn).

The intent of this paper is to continue this theme from a more general and
unifying perspective. In particular we study problems of the type

{

Φ(Du(x)) = f(x) in Ω

u(x) = ξ0x on ∂Ω ,

where Φ : R
n×n → R is a quasiaffine function and ξ0 ∈ R

n×n is fixed. Clearly, in
this case we shall require that the function f satisfies the compatibility condition

∫

Ω

f(x) dx = Φ(ξ0)|Ω| .

Similar arguments to those used in [5] allow us to obtain, for f ∈ Cm,α(Ω) and
‖f −Φ(ξ0)‖C0,α sufficiently small, a solution in Cm+1,α(Ω, Rn) and an analogous
result in the setting of Sobolev spaces. The main difference between our results
and the ones contained in [5] and [10] is in the linearization procedure.

2. Notation and preliminaries

In this section we introduce some notation and recall some results useful in the
sequel. Let D ⊂ R

n, u : D → R and 0 < α ≤ 1 and say

[u]α,D := sup
x,y∈D
x 6=y

{

|u(x) − u(y)|

|x − y|α

}

.

Let Ω ⊂ R
n be open, k ≥ 0 be an integer. Set Ak := {a = (a1, . . . , an) ∈ N

n :
∑n

j=1 aj = k}. An element of Ak is called a multi-index of order k. Moreover,

if we write |a| =
∑n

j=1 aj, we mean by Dau the derivative Dau = ∂|a|

∂a1x1···∂anxn
.

Define the different spaces of Hölder continuous functions in the following
way:

– C0,α(Ω) is the set of u ∈ C(Ω) such that [u]α,K < ∞ for every compact
set K ⊂ Ω.

– C0,α(Ω) is the set of functions u ∈ C(Ω) such that [u]α,Ω < ∞. It is a
complete space when equipped with the norm

‖u‖C0,α(Ω) := ‖u‖C0(Ω) + [u]α,Ω .
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– Ck,α(Ω) is the set of u ∈ Ck(Ω) such that [Dau]α,K < ∞ for every compact
set K ⊂ Ω and every multi-index a ∈ Ak.

– Ck,α(Ω) is the set of u ∈ Ck(Ω) such that [Dau]α,Ω < ∞ for every multi-
index a ∈ Ak. It is a Banach space equipped with the norm

‖u‖Ck,α := ‖u‖Ck + max
a

[Dau]α .

In the next proposition we state the useful property of Hölder spaces Ck,α(Ω) of
being a multiplication algebra. For further references on these spaces we refer
to [1] and [6].

Proposition 2.1. Let Ω ⊂ R
n be open, k ≥ 0 an integer and 0 ≤ α ≤ 1. If

u, v ∈ Ck,α(Ω) then uv ∈ Ck,α(Ω). More precisely there exists a constant c > 0
such that

‖uv‖Ck,α ≤ c
(

‖u‖Ck,α‖v‖C0 + ‖u‖C0‖v‖Ck,α

)

≤ 2c‖u‖Ck,α‖v‖Ck,α .

We shall need also the lower semicontinuity property of the ‖ · ‖Ck,α norm
stated in the following

Proposition 2.2. For an integer k ≥ 0 and 0 < α < 1, let Ω ⊂ R
n be a

bounded open set with Ck+1,α boundary. Let r > 0 and

Br =
{

u ∈ Ck+1,α(Ω) : ‖u‖Ck+1,α(Ω) ≤ r
}

.

Let {uh}h∈N ⊂ Br such that uh → u in L∞(Ω), then u ∈ Br and

‖u‖Ck+1,α(Ω) ≤ lim inf
h→∞

‖uh‖Ck+1,α(Ω).

For the proof we suggest the book of Dacorogna ( [3], Prop. 12.8).

The following theorem, fundamental for the proof of our main result, has
been investigated by several authors, see for example [4].

Theorem 2.3. Let k ≥ 0 an integer and 0 < α < 1. Let Ω ⊂ R
n be a bounded

connected open set with orientable Ck+3,α boundary consisting of finitely many

connected components. The following conditions are then equivalent:

(i) f ∈ Ck,α(Ω) satisfies
∫

Ω

f(x) dx = 0 .

(ii) There exists u ∈ Ck+1,α(Ω, Rn) verifying
{

div u = f in Ω

u = 0 on ∂Ω .

Furthermore, there exists C0 = C0(α, k, Ω) > 0 such that

‖u‖Ck+1,α ≤ C0‖f‖Ck,α .
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Let us recall now the definition and some structure properties of quasiaffine
functions.

A Borel measurable and locally integrable function Φ : R
n×N → R is said

to be quasiconvex (in the sense of Morrey) if

Φ(A) ≤
1

|D|

∫

D

Φ(A + ∇φ(x)) dx

for every bounded domain D ⊂ R
n, for every A ∈ R

n×N and for every φ ∈
W

1,∞
0 (D; RN).

We say that a Borel measurable and locally integrable function Φ : R
n×N →

R is quasiaffine if Φ and −Φ are quasiconvex. Quasiaffine functions are com-
pletely characterized in [2] as linear functions of minors. In order to write the
representations of a quasiaffine function let us fix the terminology used.

For a matrix A ∈ R
n×N we denote by T (A) the vector

T (A) = (A, adj2A, . . . , adjn∧NA),

where adjsA stands for the matrix of all s × s minors of the matrix A, with
2 ≤ s ≤ n ∧ N = min{n,N}. Observe that T can be seen as an operator
T : R

nN → R
τ(n,N) where τ(n,N) =

∑n∧N

s=1

(

N

s

)(

n

s

)

is the euclidean dimension
of the space of all minors of A.

The following proposition holds true.

Proposition 2.4. Let Φ : R
n×N → R. Then Φ is quasiaffine if and only if

there exists β ∈ R
τ(n,N) such that

Φ(A) = Φ(0) + 〈β; T (A)〉

for every A ∈ R
n×N , where 〈 · ; · 〉 denotes the scalar product in R

τ(n,N).

We refer to the book [3] and to the references therein for further properties
and characterizations of quasiaffine functions.

3. The equation Φ(Du) = f

In this section we present our main result in the setting of Hölder spaces. Let
Φ : R

n×n → R a quasiaffine function and ξ0 ∈ R
n×n such that det DΦ(ξ0) 6= 0.

The following result holds:

Theorem 3.1. Let m ≥ 0 an integer and 0 < α < 1. Let Ω ⊂ R
n be a bounded

connected open set with orientable Cm+3,α boundary consisting of finitely many

connected components. Assume f ∈ Cm,α(Ω) satisfying
∫

Ω

f(x) dx = Φ(ξ0)|Ω| .
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Then there exists ǫ = ǫ(α,m, Ω) > 0 such that if ‖f − Φ(ξ0)‖C0,α(Ω) ≤ ǫ, then

there exists u ∈ Cm+1,α(Ω, Rn) such that

{

Φ(Du(x)) = f(x), x ∈ Ω

u(x) = uξ0(x) := ξ0x, x ∈ ∂Ω .
(2)

Furthermore, there exists a constant γ = γ(α,m, Ω) such that

‖u − uξ0‖C1,α(Ω,Rn) ≤ γ ‖f − Φ(ξ0)‖C0,α(Ω) . (3)

Remark 3.2. Assuming in addition that det ξ0 > 0, we also have that u(x) is
a diffeomorphism provided ‖f −Φ(ξ0)‖C0,α(Ω) is sufficiently small. Indeed uξ0(x)
is one to one and, in virtue of (3), for ǫ small enough there exists ǫ′ > 0 such
that det Du(x) ≥ det ξ0 − ǫ′ > 0 (see for example [8]).

Proof of Theorem 3.1. We divide the proof into two steps.

Step 1. Setting v(x) = u(x) − uξ0(x), the problem in (2) can be read as

{

Φ(ξ0 + Dv(x)) = f(x) in Ω

v(x) = 0 on ∂Ω .
(4)

On the other hand, since Φ is an affine function of the minors (see Proposi-
tion 2.4), it is a polinomial function of its arguments. It follows that its Taylor
expansion has a finite number of entries and then we can write

Φ(ξ0 + Dv(x)) = Φ(ξ0) + 〈DΦ(ξ0); Dv(x)〉 + Qξ0(Dv(x)),

where Qξ0(ζ) is a polinomial function that does not involve any linear terms in
the ζ variable. Therefore the problem (4) can be rewritten as

{

〈DΦ(ξ0); Dv(x)〉 + Qξ0(Dv(x)) = f(x) − Φ(ξ0) in Ω

v(x) = 0 on ∂Ω .
(5)

Let us show , by using some arguments of linear algebra, that the linear
term in (5) can be simplified in a divergence.

Let H be an invertible n × n matrix and consider the change of variables
y = Hx. Define w(y) = v(H−1y); its gradient will be given by

Dw(y) = Dv(H−1y)H−1 = Dv(x)H−1,

and therefore the gradient of v can be written as Dv(x) = Dw(y)H. The linear
term in (5) becomes 〈DΦ(ξ0); Dw(y)H〉 or equivalently 〈DΦ(ξ0)H

T ; Dw(y)〉.
Since det DΦ(ξ0) 6= 0, we can choose H := (DΦ(ξ0)

T )−1 and have

〈DΦ(ξ0)H
T ; Dw(y)〉 = div w .
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Then the problem (5) assumes the form

{

div w = f̃ − Φ(ξ0) − Q̃ξ0(Dw) in HΩ

w = 0 on ∂(HΩ),
(6)

where we have defined f̃ := f ◦ H−1 and Q̃ξ0 := Qξ0 ◦ H−1.

Step 2. Denote by HΩ ⊂ R
n the domain obtained by the deformation of the

domain Ω via the linear mapping represented by H and consider the linear
spaces

X =

{

b ∈ Cm,α(HΩ) :

∫

HΩ

b(x) dx = 0

}

Y =
{

a ∈ Cm+1,α(HΩ, Rn) : a = 0 on ∂(HΩ)
}

.

By Theorem 2.3 we know that there exists a bounded linear operator L : X → Y

which associates to every b ∈ X a unique a ∈ Y such that

{

div a = b in HΩ

a = 0 on ∂(HΩ) .
(7)

Furthermore, there exists a constant C0 > 0 such that

‖Lb‖Cm+1,α(HΩ,Rn) ≤ C0‖b‖Cm,α(HΩ) .

If we define for w ∈ Cm+1,α(HΩ, Rn) the operator

N(w) = f̃ − Φ(ξ0) − Q̃ξ0(Dw),

we can easily deduce that (6) is solved for any w ∈ Y which is a fixed point of
the operator LN , i.e.,

w = LN(w). (8)

Let us remark that the equation (8) is well defined for any w ∈ Y . Indeed,
being Q̃ξ(ζ) analytic, we obviously have N(w) ∈ Cm,α. Moreover, using an
integration by parts argument and the structure of Qξ0 , we infer that

∫

HΩ

N(w) dy =

∫

HΩ

[f̃ − Φ(ξ0) − Q̃ξ0(Dw)] dy = 0

since w = 0 on ∂(HΩ) and
∫

HΩ
[f̃ − Φ(ξ0)] dy = 0.

Our aim is to use the contraction mapping principle to solve (8). For r > 0,
consider the set

Br =

{

w ∈ Cm+1,α(HΩ, Rn)
w = 0 on ∂(HΩ), ‖w‖C1,α(HΩ,Rn) ≤ r,

‖w‖Cm+1,α(HΩ,Rn) ≤ 2C0‖f̃ − Φ(ξ0)‖Cm,α(HΩ)

}

.
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This is a complete space when endowed with the C1,α norm (see Proposition 2.2).
We shall prove the existence of w ∈ Br satisfying (8). First of all, note that

there exists a constant C1 > 0 such that

‖f̃ − Φ(ξ0)‖C0,α(HΩ) ≤ C1‖f − Φ(ξ0)‖C0,α(Ω).

Moreover, from Proposition 2.1 we get the existence of a constant c > 0
such that if w1, w2 ∈ Cm+1,α(HΩ, Rn) with ‖w1‖C1,α , ‖w2‖C1,α ≤ 1, then

‖Q̃ξ0(Dw1) − Q̃ξ0(Dw2)‖C0,α ≤ c
(

‖w1‖C1,α + ‖w2‖C1,α

)

‖w1 − w2‖C1,α .

Fix ǫ = min
{

1
8c C1 C2

0

, 1
2C0 C1

, 1
4c C1 C0

}

and r = 2C0‖f̃ −Φ(ξ0)‖C0,α(HΩ). If we note

that r ≤ 1, for w1, w2 ∈ Br we have

‖LN(w1) − LN(w2)‖C1,α ≤ C0‖N(w1) − N(w2)‖C0,α

= C0‖Q̃ξ0(Dw1) − Q̃ξ0(Dw2)‖C0,α

≤ c C0(‖w1‖C1,α + ‖w2‖C1,α)‖w1 − w2‖C1,α

≤ 2r c C0‖w1 − w2‖C1,α

= 4c C2
0‖f̃ − Φ(ξ0)‖C0,α‖w1 − w2‖C1,α

≤ 4c C1 C2
0‖f − Φ(ξ0)‖C0,α‖w1 − w2‖C1,α

≤ 1
2
‖w1 − w2‖C1,α .

Moreover, observing that for w ∈ Br

‖Q̃ξ0(Dw)‖Cm,α ≤ c ‖w‖Cm+1,α‖w‖C1,α

≤ 2c C0‖w‖Cm+1,α‖f̃ − Φ(ξ0)‖C0,α

≤ 2c C1 C0‖w‖Cm+1,α‖f − Φ(ξ0)‖C0,α

≤ 1
4C0

‖w‖Cm+1,α

≤ 1
2
‖f̃ − Φ(ξ0)‖Cm,α

we get

‖LN(w)‖Cm+1,α ≤ C0‖N(w)‖Cm,α

≤ C0‖f̃ − Φ(ξ0)‖Cm,α + C0‖Q̃ξ0(Dw)‖Cm,α

≤ 2C0‖f̃ − Φ(ξ0)‖Cm,α .

Finally,

‖LN(w)‖C1,α ≤ ‖LN(w) − LN(0)‖C1,α + ‖LN(0)‖C1,α

≤ 1
2
‖w‖C1,α + C0‖N(0)‖C0,α

≤ r
2

+ C0‖f̃ − Φ(ξ0)‖C0,α = r .
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In conclusion LN : Br → Br is a contraction mapping, hence there exists a
solution v in Cm+1,α of the problem (5).

Furthermore, since the function w found above satisfies the inequality

‖w‖C1,α ≤ 2C0‖f̃ − Φ(ξ0)‖C0,α

and there exists a constant K > 0 such that ‖v‖C1,α(Ω,Rn) ≤ K‖w‖C1,α(HΩ,Rn) we
get the existence of γ = γ(α,m, Ω) such that ‖u− uξ0‖C1,α ≤ γ‖f −Φ(ξ0)‖C0,α .
Theorem 3.1 is proved.

Remark 3.3. Note that, choosing in the proof of Theorem 3.1 instead of Br,
the set B defined as

B =

{

w ∈ Cm+1,α(HΩ, Rn)
w = 0 on ∂(HΩ), ∀ k ∈ {0, . . . ,m} :

‖w‖Ck+1,α(HΩ,Rn) ≤ 2C0‖f̃ − Φ(ξ0)‖Ck,α(HΩ)

}

,

we can also obtain the estimates

‖u − uξ0‖Ck+1,α(Ω,Rn) ≤ γ ‖f − Φ(ξ0)‖Ck,α(Ω),

just replacing m with k in the previous proof.

4. The Sobolev case

In this last section we point how to extend Theorem 3.1 to the setting of Sobolev
spaces. We shall start stating the result and then we shall comment about the
proof. Let Φ : R

n×n → R a quasiaffine function and ξ0 ∈ R
n×n such that

det DΦ(ξ0) 6= 0.

Theorem 4.1. Let m ∈ N, p > n
m

and 0 < α ≤ m − n
p
. Let Ω ⊂ R

n be a

bounded connected open set with orientable Cm+3 boundary consisting of finitely

many connected components. Assume f ∈ Wm,p(Ω) satisfying

∫

Ω

f(x) dx = Φ(ξ0)|Ω| .

Then there exists ǫ = ǫ(p,m, Ω) > 0 such that if ‖f − Φ(ξ0)‖C0,α(Ω) ≤ ǫ, then

there exists u ∈ Wm+1,p(Ω, Rn) such that

{

Φ(Du(x)) = f(x), x ∈ Ω

u(x) = uξ0(x) := ξ0x, x ∈ ∂Ω .
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Theorem 4.1 can be seen as the analogous of the result of Ye [10] on the
prescribed volume form equation. Since the proof of Theorem 4.1 retraces the
one of Theorem 3.1 here we shall just make some comments on the arguments
needed to justify all the steps. Step 1 goes exactly as in Theorem 3.1.

Concerning Step 2, we first note that if p > n
m

, since the regularity of
∂Ω implies the strong local Lipschitz property, the Sobolev space Wm,p(Ω) is
embedded in the Hölder space Ck,β(Ω), with k := max{j : (m − j)p > n}
and 0 < β < 1 if (m − k − 1)p = n or 0 < β ≤ m − k − n

p
otherwise (see

[1]). Accordingly, in our hypotheses, we always have Wm,p(Ω) →֒ C0,α(Ω) and
therefore f ∈ C0,α(Ω). This justifies our assumption on the difference f−Φ(ξ0).

The existence of the bounded linear operator L can still be proved using
elliptic equations arguments (see for example Theorem 2 in [10]). The spaces
X and Y are replaced by

X̃ =

{

b ∈ Wm,p(HΩ) :

∫

HΩ

b(x) dx = 0

}

Ỹ =
{

a ∈ Wm+1,p(HΩ, Rn) : a = 0 on ∂(HΩ)
}

,

respectively, and endowed with the Sobolev norms, in such a way that the
boundedness of L can be rephrased as

‖Lb‖W m+1,p(HΩ,Rn) ≤ C0‖b‖W m,p(HΩ) .

We note also that in this framework it is enough to suppose ∂Ω of class Cm+3

and that, in virtue of the recalled Sobolev embedding, the condition on the
boundary in the problem (7) has a pointwise meaning.

The contraction mapping principle can be applied to the set

B̃ =















w ∈ Wm+1,p(HΩ, Rn)

w = 0 on ∂(HΩ),

‖w‖C1,α(HΩ,Rn) ≤ 2C0‖f̃ − Φ(ξ0)‖C0,α(HΩ),

‖w‖W m+1,p(HΩ,Rn) ≤ 2C0‖f̃ − Φ(ξ0)‖W m,p(HΩ)















.

The completeness of B̃ with respect to the C1,α norm follows from the sequential
weak relative compactness of bounded sets in Wm+1,p, the lower semicontinu-
ity of the Wm+1,p norm with respect to the weak convergence, and from the
completeness of C1,α(HΩ, Rn).

Finally, in order to estimate ‖Q̃ξ0‖W m,p , we need the property of Wm,p(HΩ)
of being a Banach algebra. This property, when mp > n, follows easily from
the Sobolev embedding theorems (see [1] for details).

We conclude observing that the choice of B̃ implies for u the estimate

‖u − uξ0‖W m+1,p(Ω,Rn) ≤ γ‖f − Φ(ξ0)‖W m,p(Ω) ,
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and following the same argument used in Remark 3.3 we can estimate the dis-
tance from u and uξ0 in any norm which generates a smaller topology with
respect to the Wm,p one and such that the bounded sets are, for example, se-
quentially relatively compact with respect to the L∞ convergence. For instance,
we can infer the following W k,p estimates for k < m:

‖u − uξ0‖W k+1,p(Ω,Rn) ≤ γ‖f − Φ(ξ0)‖W k,p(Ω) .
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