Remarks on $C^{1,\gamma}$ -Regularity of Weak Solutions to Elliptic Systems with BMO Gradients

Josef Daněček, Oldřich John and Jana Stará

Abstract. The interior $C^{1,\gamma}$ -regularity for a weak solution with BMO-gradient of a nonlinear nonautonomous second order elliptic systems is investigated.

Keywords. Nonlinear elliptic systems, regularity, Campanato and Morrey spaces Mathematics Subject Classification (2000). Primary 35J45, secondary 35B65

1. Introduction

In this paper we give conditions guaranteeing that the BMO first derivatives of weak solutions to a nonlinear elliptic system

$$-D_{\alpha}a_{i}^{\alpha}(x, Du) = -D_{\alpha}f_{i}^{\alpha}(x) \quad \text{on } \Omega \subset \mathbb{R}^{n}, \, i = 1, \dots, N$$
(1)

belong to $C_{loc}^{0,\gamma}(\Omega,\mathbb{R}^{nN})$.¹

The system (1) has been extensively studied. S. Campanato in [2,3] proved that (under suitable assumptions) $Du \in \mathcal{L}^{2,\lambda}_{loc}(\Omega, \mathbb{R}^{nN})$ with $\lambda < n$, and $u \in C^{0,\gamma}_{loc}(\Omega, \mathbb{R}^N)$ for some $\gamma < 1$ if n = 3, 4. If Ω has a smooth boundary and a_i^{α} are differentiable and have controllable growth, then there is a positive ϵ such that $u \in W^{2,2+\epsilon}_{loc}(\Omega, \mathbb{R}^{nN})$ which implies that Du is Hölder continuous on $\overline{\Omega}$ for n = 2 (see [8, 12, 13]). For this reason we will concentrate on the case

J. Daněček: Department of Mathematics, Faculty of Civil Engineering, Technical University of Brno, Žižkova 17, 60200 Brno, Czech Republic; danecek.j@fce.vutbr.cz O. John: Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University Sokolovská 83, 18600 Praha 8, Czech Republic; john@karlin.mff.cuni.cz

J. Stará: Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University Sokolovská 83, 18600 Praha 8, Czech Republic; stara@karlin.mff.cuni.cz

J. Daněček, O. John and J. Stará were supported by the GAČR 201/05/2465, the first author was supported by MSM0021630511, second and third author were supported by MSM0021620839, the third author by GAČR 201/06/0352.

¹Throughout the whole text we use the summation convention over repeated indices.

58J. Daněček et al.

n > 2. From a series of counterexamples starting from the famous De Giorgi work (see [7]) it is well known that Du need not be continuous or even bounded (see [9, 11, 14, 17, 18]) for n > 2. Higher smoothness of coefficients does not improve the smoothness of a solution, as there are examples (see [15]) where the coefficients are real analytic while Du is bounded and discontinuous. On the other hand, it follows immediately from so called direct proof of partial regularity (see [6,8]) that if modulus of continuity of $\frac{\partial a_i^{\alpha}}{\partial p_{\beta}^{\beta}}$ is small enough, then Du is Hölder continuous. For this reason we concentrate on conditions that do not require smallness of the L^∞ norm of the modulus of continuity and they imply that solutions with BMO gradients are $C_{loc}^{1,\gamma}(\Omega,\mathbb{R}^N)$. The condition that Du is in BMO cannot be verified in general (see [18]). On the other hand, for some classes of elliptic systems this assertion is proved in |4-6|. Our result has a local character and the work on the global variant is in progress.

By a weak solution to (1) we understand $u \in W^{1,2}(\Omega, \mathbb{R}^N)$ such that

$$\int_{\Omega} a_i^{\alpha}(x, Du(x)) D_{\alpha} \varphi^i(x) \, dx = \int_{\Omega} f_i^{\alpha}(x) D_{\alpha} \varphi^i(x) \, dx, \quad \forall \varphi \in W_0^{1,2}(\Omega, \mathbb{R}^N).$$

Here $\Omega \subset \mathbb{R}^n$ is an open set and, as we are interested in the interior regularity, we do not assume that u solves a boundary value problem nor any smoothness of $\partial \Omega$.

On the coefficients we suppose

- (i) (Smoothness) $a_i^{\alpha}(x,p)$ are differentiable functions in x and p with continuous derivatives. Without loss of generality we suppose that $a_i^{\alpha}(x,0) = 0$.
- (ii) (Growth) For all $(x,p) \in \Omega \times \mathbb{R}^{nN}$ denote $A_{ij}^{\alpha\beta}(x,p) = \frac{\partial a_i^{\alpha}}{\partial p_j^{\beta}}(x,p)$ and suppose

$$|a_i^{\alpha}(x,p)|, \left|\frac{\partial a_i^{\alpha}}{\partial x_s}(x,p)\right| \le M(1+|p|), \text{ and } \left|A_{ij}^{\alpha\beta}(x,p)\right| \le M,$$

where M > 0.

(iii) (Ellipticity) There exists $\nu > 0$ such that for every $x \in \Omega$ and $p, \xi \in \mathbb{R}^{nN}$

$$\nu |\xi|^2 \le A_{ij}^{\alpha\beta}(x,p)\xi_{\alpha}^i\xi_{\beta}^j.$$

(iv) (Oscillation of coefficients) There is a real function ω absolutely continuous on $[0,\infty)$, which is bounded, nondecreasing, $\omega(0) = 0$ and such that for all $x \in \Omega$ and $p, q \in \mathbb{R}^{nN}$

$$\left|A_{ij}^{\alpha\beta}(x,p) - A_{ij}^{\alpha\beta}(x,q)\right| \le \omega \left(|p-q|\right).$$

We set $\omega_{\infty} = \lim_{t \to \infty} \omega(t) \leq 2M$.

(v) $f_i^{\alpha} \in W^{1,2}(\Omega), \ \frac{\partial f_i^{\alpha}}{\partial x_{\beta}} \in L^{2,\delta-2}(\Omega) \text{ for } \delta = n+2\gamma, \ \gamma \in (0,1), \ \alpha, \ \beta = 1, \dots, n, \ i = 1, \dots, N.$

It is well known (see [8, p. 169]) that for uniformly continuous $A_{ij}^{\alpha\beta}$ there exists a real function ω satisfying (iv) and, viceversa, (iv) implies uniform continuity of $A_{ij}^{\alpha\beta}$.

In what follows we will understand by pointwise derivative ω' of ω the right derivative which is finite on $(0, \infty)$. For $p \in (1, \infty)$, $\frac{1}{p} + \frac{1}{p'} = 1$ denote

$$J_p = \int_0^\infty \frac{\frac{d}{dt}(\omega^{2p'})(t)}{t} \, dt, \quad S_p = \sup_{t \in (0,\infty)} \frac{d}{dt}(\omega^{2p'})(t) \quad \text{and} \quad P_p = \min\{J_p, S_p\}.$$

Now we formulate the result.

Theorem 1.1. Let u be a weak solution to (1) such that $Du \in BMO(\Omega, \mathbb{R}^{nN})$ and coefficients a_i^{α} satisfy the hypotheses (i), (ii), (iii), (iv) with the constants M, ν , a modulus of continuity ω and a right hand side f satisfying (v). Assume that there is a $p \in (1, \frac{n}{n-2}]$ such that $P_p < \infty$. Then the inequality

$$\left(P_p^2 \|Du\|_{BMO(\Omega,\mathbb{R}^{nN})}\right)^{\frac{1}{2p'}} \le \nu^2 C \tag{2}$$

,

implies that $Du \in C^{0,\gamma}_{loc}(\Omega, \mathbb{R}^{nN}).$

Remark. Here

$$C = \frac{\kappa_n^{\frac{2p'}{2p'}}}{12c^{\star}(\lambda, n)C\left(p, n, \frac{M}{\nu}\right)(8L)^{\frac{n+2}{n+2-\mu}}}$$

1

 $\mu \in (n + 2\gamma, n + 2)$, L is given in Lemma 2.4, $C(p, n, \frac{M}{\nu})$ is given in (10) and $c^{\star}(\lambda, n)$ is the embedding constant between *BMO* and $L^{2,\lambda}$ spaces.

2. Preliminaries and notations

Let $n, N \in \mathbb{N}, n \geq 3$. We will consider an open set $\Omega \subset \mathbb{R}^n$ with points $x = (x_1, \ldots, x_n), n \geq 3$. For a vector-valued function $u : \Omega \to \mathbb{R}^N, u(x) = (u^1(x), \ldots, u^N(x)), N \geq 1$, put $Du = (D_1u, \ldots, D_nu), D_\alpha = \frac{\partial}{\partial x_\alpha}$. If $x \in \mathbb{R}^n$ and r is a positive real number, we set $B(x, r) = \{y \in \mathbb{R}^n : |y - x| < r\}$. Denote by $u_{x,r} = (\kappa_n r^n)^{-1} \int_{B(x,r)} u(y) dy$ the mean value of the function $u \in L^1(B(x,r), \mathbb{R}^N)$ over the set $B(x,r) (\kappa_n$ being the volume of unit ball in \mathbb{R}^n). Moreover, we set $\phi(x,r) = \int_{B(x,r)} |Du(y) - (Du)_{x,r}|^2 dy$.

Beside the usually used space $C_0^{\infty}(\Omega, \mathbb{R}^N)$, the Hölder space $C^{0,\alpha}(\overline{\Omega}, \mathbb{R}^N)$ and Sobolev spaces $W^{k,p}(\Omega, \mathbb{R}^N)$, $W_0^{k,p}(\Omega, \mathbb{R}^N)$ we use Morrey spaces $L^{q,\lambda}(\Omega, \mathbb{R}^N)$, Campanato spaces $\mathcal{L}^{q,\lambda}(\Omega, \mathbb{R}^N)$ and the space of functions with bounded mean oscillations $BMO(\Omega, \mathbb{R}^N)$ (see, e.g., [10]). By the function space $X_{loc}(\Omega, \mathbb{R}^N)$ we understand the space of all functions which belong to $X(\tilde{\Omega}, \mathbb{R}^N)$ for any bounded subdomain $\tilde{\Omega}$ with smooth boundary which is compactly embedded in Ω .

For definitions and more details see [1, 8, 10, 13]. In particular, we will use:

60 J. Daněček et al.

Proposition 2.1. For a bounded domain $\Omega \subset \mathbb{R}^n$ with a Lipschitz boundary we have the following

- (a) For $q \in (1,\infty)$, $0 < \lambda < \mu < \infty$ we have $L^{q,\mu}(\Omega, \mathbb{R}^N) \subset L^{q,\lambda}(\Omega, \mathbb{R}^N)$ and $\mathcal{L}^{q,\mu}(\Omega, \mathbb{R}^N) \subset \mathcal{L}^{q,\lambda}(\Omega, \mathbb{R}^N)$;
- (b) $\mathcal{L}^{q,\lambda}(\Omega,\mathbb{R}^N)$ is isomorphic to $C^{0,\frac{\lambda-n}{q}}(\overline{\Omega},\mathbb{R}^N)$, for $n < \lambda \leq n+q$;
- (c) $L^{q,n}(\Omega, \mathbb{R}^N)$ is isomorphic to $L^{\infty}(\Omega, \mathbb{R}^N)$, $\mathcal{L}^{q,n}(\Omega, \mathbb{R}^N)$ is isomorphic to $BMO(\Omega, \mathbb{R}^N)$;
- (d) $L^{q,\lambda}(\Omega, \mathbb{R}^N)$ is isomorphic to $\mathcal{L}^{q,\lambda}(\Omega, \mathbb{R}^N)$, for $0 < \lambda < n$.

By means of Nirenberg's difference quotients method we obtain

Lemma 2.2. Let u be a weak solution to (1) and coefficients a_i^{α} satisfy the hypotheses (i), (ii), (iii), (iv) with the constants M, ν and a right hand side $f \in W^{1,2}(\Omega, \mathbb{R}^{nN})$. Then $u \in W^{2,2}_{loc}(\Omega, \mathbb{R}^N)$, and for any $x \in \Omega$ and $R \in (0, \frac{1}{2} \text{dist}(\mathbf{x}, \partial \Omega))$ it holds

$$\int_{B(x,R)} |D^2 u|^2 dx \le C\left(\frac{M}{\nu}\right) \left(\frac{1}{R^2} \int_{B(x,2R)} |Du - (Du)_{x,2R}|^2 dx + R^n + \int_{B(x,2R)} |Du|^2 dx + \int_{B(x,2R)} |Df|^2 dx\right).$$
(3)

In what follows we will use an algebraic lemma due to S. Campanato. We start with recalling it.

Lemma 2.3 (see [8], Chapter III., Lemma 2.1). Let α , d be positive numbers, $A > 0, \beta \in [0, \alpha)$. Then there exist ϵ_0 , C positive so that for any nonnegative, nondecreasing function ϕ defined on [0, d] and satisfying the inequality

$$\phi(\sigma) \le \left(A\left(\frac{\sigma}{R}\right)^{\alpha} + K\right)\phi(R) + BR^{\beta}, \quad \forall \sigma, R : 0 < \sigma < R \le d, \qquad (4)$$

with $K \in (0, \epsilon_0]$ and $B \in [0, \infty)$ it holds

$$\phi(\sigma) \le C\sigma^{\beta} \left(d^{-\beta} \phi(d) + B \right), \quad \forall \ \sigma \ : \ 0 < \sigma \le d.$$

For the statement of following Lemma see, e.g., [2, 8, 13].

Lemma 2.4. Consider a system of the type (1) with $a_i^{\alpha}(x,p) = A_{ij}^{\alpha\beta}p_{\beta}^j$, $A_{ij}^{\alpha\beta} \in \mathbb{R}$ (*i.e.*, a linear system with constant coefficients) satisfying (iii). Then there exists a constant $L = L(n, \frac{M}{\nu}) \geq 1$ such that for every weak solution $v \in W^{1,2}(\Omega, \mathbb{R}^N)$, for every $x \in \Omega$ and $0 < \sigma \leq R \leq \text{dist}(x, \partial\Omega)$ the following estimate holds:

$$\int_{B(x,\sigma)} |Dv(y) - (Dv)_{x,\sigma}|^2 \, dy \le L \left(\frac{\sigma}{R}\right)^{n+2} \int_{B(x,R)} |Dv(y) - (Dv)_{x,R}|^2 \, dy$$

Lemma 2.5 ([19, p. 37]). Let ψ : $[0, \infty] \to [0, \infty]$ be non decreasing function which is absolutely continuous on every closed interval of finite length, $\psi(0) = 0$. If $w \ge 0$ is measurable, $E(t) = \{y \in \mathbb{R}^n : w(y) > t\}$ and μ is the n-dimensional Lebesgue measure, then

$$\int_{\mathbb{R}^n} \psi \circ w \, dy = \int_0^\infty \mu\left(E(t)\right) \psi'(t) \, dt.$$

Remark. In case of ψ non decreasing and bounded, the assumption of absolute continuity of ψ on every closed interval of finite length is equivalent to the absolute continuity of ψ on $[0, \infty)$.

3. Proof of the main result

Proof of Theorem 1.1. Let x_0 be any fixed point of Ω . We prove that $Du \in \mathcal{L}^{2,\delta}$ on a neighborhood of x_0 . Let $R \leq \frac{1}{2} \operatorname{dist}(x_0, \partial \Omega)$. Where no confusion can result, we will use the notation B(R), $\phi(R)$ and $(Du)_R$ instead of $B(x_0, R)$, $\phi(x_0, R)$ and $(Du)_{x_0,R}$.

Denote
$$A_{ij,0}^{\alpha\beta} = A_{ij}^{\alpha\beta} (x_0, (Du)_R),$$

 $\tilde{A}_{ij}^{\alpha\beta} (x) = \int_0^1 A_{ij}^{\alpha\beta} (x_0, (Du)_R + t (Du(x) - (Du)_R)) dt.$

Hence $a_i^{\alpha}(x_0, Du(x)) - a_i^{\alpha}(x_0, (Du)_R) = \tilde{A}_{ij}^{\alpha\beta}(x) \left(D_{\beta} u^j(x) - (D_{\beta} u^j)_R \right)$. Thus we can rewrite the system (1) as

$$-D_{\alpha}\left(A_{ij,0}^{\alpha\beta}D_{\beta}u^{j}\right) = -D_{\alpha}\left(\left(A_{ij,0}^{\alpha\beta} - \tilde{A}_{ij}^{\alpha\beta}\right)\left(D_{\beta}u^{j} - \left(D_{\beta}u^{j}\right)_{R}\right)\right) \\ -D_{\alpha}\left(a_{i}^{\alpha}(x_{0}, Du) - a_{i}^{\alpha}(x, Du)\right) - D_{\alpha}\left(f_{i}^{\alpha}(x) - \left(f_{i}^{\alpha}\right)_{R}\right).$$

Split u as v + w where v is the solution of the Dirichlet problem

$$-D_{\alpha}\left(A_{ij,0}^{\alpha\beta}D_{\beta}v^{j}\right) = 0 \quad \text{in } B(R), \qquad v - u \in W_{0}^{1,2}\left(B(R), \mathbb{R}^{N}\right),$$

and $w \in W_0^{1,2}(B(R), \mathbb{R}^N)$ is the weak solution of the system

$$-D_{\alpha}\left(A_{ij,0}^{\alpha\beta}D_{\beta}w^{j}\right) = -D_{\alpha}\left(\left(A_{ij,0}^{\alpha\beta} - \tilde{A}_{ij}^{\alpha\beta}\right)\left(D_{\beta}u^{j} - \left(D_{\beta}u^{j}\right)_{R}\right)\right) -D_{\alpha}\left(a_{i}^{\alpha}(x_{0}, Du) - a_{i}^{\alpha}(x, Du)\right) -D_{\alpha}\left(f_{i}^{\alpha}(x) - \left(f_{i}^{\alpha}\right)_{R}\right).$$
(5)

For every $0 < \sigma \leq R$ from Lemma 2.4 it follows

$$\int_{B(\sigma)} |Dv - (Dv)_{\sigma}|^2 dx \le L \left(\frac{\sigma}{R}\right)^{n+2} \int_{B(R)} |Dv - (Dv)_R|^2 dx.$$

hence

$$\int_{B(\sigma)} |Du - (Du)_{\sigma}|^{2} dx
\leq 2L \left(\frac{\sigma}{R}\right)^{n+2} \int_{B(R)} |Dv - (Dv)_{R}|^{2} dx + 4 \int_{B(R)} |Dw|^{2} dx
\leq 4L \left(\frac{\sigma}{R}\right)^{n+2} \int_{B(R)} |Du - (Du)_{R}|^{2} dx + 4 \left(1 + 2L \left(\frac{\sigma}{R}\right)^{n+2}\right) \int_{B(R)} |Dw|^{2} dx.$$
(6)

Now as $w \in W_0^{1,2}(B_R, \mathbb{R}^N)$ we can choose a test function $\varphi = w$ in (5) and we get

$$\nu^{2} \int_{B(R)} |Dw|^{2} dx \leq 3 \left(\int_{B(R)} \omega^{2} \left(|Du - (Du)_{R}| \right) |Du - (Du)_{R}|^{2} dx + \int_{B(R)} |a_{i}^{\alpha}(x_{0}, Du) - a_{i}^{\alpha}(x, Du)|^{2} dx + \int_{B(R)} |f_{i}^{\alpha}(x) - (f_{i}^{\alpha})_{R}|^{2} dx \right).$$

$$(7)$$

From (6), (7) and Poincaré's inequality we have

$$\begin{split} \phi(\sigma) &= \int_{B(\sigma)} |Du - (Du)_{\sigma}|^{2} dx \\ &\leq 4L \left(\frac{\sigma}{R}\right)^{n+2} \int_{B(R)} |Du - (Du)_{R}|^{2} dx \\ &+ \frac{12 \left(1 + 2L \left(\frac{\sigma}{R}\right)^{n+2}\right)}{\nu^{2}} \left[\int_{B(R)} \omega^{2} (|Du - (Du)_{R}|) |Du - (Du)_{R}|^{2} dx \\ &+ \int_{B(R)} |a_{i}^{\alpha}(x_{0}, Du) - a_{i}^{\alpha}(x, Du)|^{2} dx + c(n)R^{2} \int_{B(R)} |Df|^{2} dx \right] \\ &\leq 4L \left(\frac{\sigma}{R}\right)^{n+2} \phi(R) \\ &+ \frac{12 \left(1 + 2L \left(\frac{\sigma}{R}\right)^{n+2}\right)}{\nu^{2}} \left[(I_{1} + I_{2}) + c(n)R^{\delta} \|Df\|_{L^{2,\delta-2}(\Omega,\mathbb{R}^{nN})}^{2} \right] \end{split}$$
(8)

where c(n) denotes the constant from Poincaré inequality. Then using Hölder inequality with the exponent p from the assumptions of the Theorem, embedding and Lemma 2.2 we have

$$I_{1} \leq \left(\int_{B(R)} |Du - (Du)_{R}|^{2p} dx \right)^{\frac{1}{p}} \left(\int_{B(R)} \omega^{2p'} \left(|Du - (Du)_{R}| \right) dx \right)^{\frac{1}{p'}}$$
$$\leq C_{p}^{2} R^{2 - \frac{n}{p'}} \int_{B(R)} |D^{2}u|^{2} dx \left(\int_{B(R)} \omega^{2p'} \left(|Du - (Du)_{R}| \right) dx \right)^{\frac{1}{p'}}$$

$$\leq C\left(p, n, \frac{M}{\nu}\right) \left(\frac{1}{\kappa_n R^n} \int_{B(R)} \omega^{2p'} \left(|Du - (Du)_R|\right) dx\right)^{\frac{1}{p'}} \times \left(\phi(2R) + R^{n+2} + R^2 ||Du||^2_{L^2(B(2R), \mathbb{R}^{nN})} + R^{\delta} ||Df||^2_{L^{2,\delta-2}(\Omega, \mathbb{R}^{nN})}\right)$$
(9)

where C_p stands for the embedding constant from $W^{1,2}(B(1), \mathbb{R}^{nN})$ into $L^{2p}(B(1), \mathbb{R}^{nN})$ and

$$C\left(p,n,\frac{M}{\nu}\right) = C_p^2 \times C\left(\frac{M}{\nu}\right) \times \left(1 + c(n)\right),\tag{10}$$

 $C(\frac{M}{\nu})$ is the constant from Lemma 2.2.

Taking in Lemma 2.5 $\psi(t) = \omega^{2p'}(t)$, $w = |Du - (Du)_R|$ on B(R) and w = 0 otherwise, we have $E_R(t) = \{y \in B(R) : |Du - (Du)_R| > t\}$ and for the last integral we get

$$\int_{B(R)} \omega^{2p'} \left(|Du - (Du)_R| \right) \, dx = \int_0^\infty \left[\frac{d}{dt} (\omega^{2p'})(t) \right] \mu \left(E_R(t) \right) \, dt.$$

Now we can estimate the integral on the right hand side according to assumptions of the theorem. In the first case we assume that $P_p = J_p = \int_0^\infty \frac{\frac{d}{dt}(\omega^{2p'})(t)}{t} dt < \infty$. As $\mu(E_R(t))$ is nonnegative and non-increasing then $\mu(E_R(t)) \leq \frac{1}{t} \int_0^t \mu(E_R(s)) ds$ holds, and we have

$$\int_0^\infty \left[\frac{d}{dt} (\omega^{2p'})(t) \right] \mu \left(E_R(t) \right) dt \le \int_0^\infty \frac{d}{dt} (\omega^{2p'})(t) \left(\frac{1}{t} \int_0^t \mu \left(E_R(s) \right) ds \right) dt$$
$$\le \int_0^\infty \frac{\frac{d}{dt} (\omega^{2p'})(t)}{t} dt \int_{B(R)} |Du - (Du)_R| dx$$
$$\le J_p(\kappa_n R^n)^{\frac{1}{2}} \phi^{\frac{1}{2}}(R). \tag{11}$$

If $P_p = S_p = \sup_{0 < t < \infty} \frac{d}{dt} (\omega^{2p'})(t) < \infty$ we have

$$\int_0^\infty \left[\frac{d}{dt}(\omega^{2p'})(t)\right] \mu\left(E_R(t)\right) dt \le S_p(\kappa_n R^n)^{\frac{1}{2}} \phi^{\frac{1}{2}}(R) \tag{12}$$

Denoting $K^{\star} = \kappa_n^{-\frac{1}{2p'}} C\left(p, n, \frac{M}{\nu}\right) P_p^{\frac{1}{p'}} \|Du\|_{BMO(\Omega, \mathbb{R}^{nN})}^{\frac{1}{2p'}}$ and using (9), (11), (12) for the estimate of I_1 we get

$$I_1 \le K^* \phi(2R) + K^* \left(R^{n+2} + R^2 \| Du \|_{L^2(B(2R),\mathbb{R}^{nN})}^2 + R^{\delta} \| Df \|_{L^{2,\delta-2}(\Omega,\mathbb{R}^{nN})}^2 \right).$$

As we suppose that $Du \in BMO(\Omega, \mathbb{R}^{nN})$ we have from Proposition 2.1 that $Du \in L^{2,\lambda}$ for any $\lambda < n$ and for R < 1

$$\|Du\|_{L^2(B(2R),\mathbb{R}^{nN})}^2 \le c^{\star}(\lambda,n)R^{\lambda}\|Du\|_{BMO(\Omega,\mathbb{R}^{nN})}.$$

64 J. Daněček et al.

Set $\lambda = \delta - 2$ and include $c^*(\lambda, n)$ into K^* . Hence using (ii)

$$I_{1} \leq K^{\star} \phi(2R) + K^{\star} \left(1 + \|Du\|_{BMO(\Omega,\mathbb{R}^{nN})}^{2} + \|Df\|_{L^{2,\delta-2}(\Omega,\mathbb{R}^{nN})}^{2} \right) R^{\delta},$$

$$I_{2} \leq M^{2} R^{2} \int_{B(R)} \left(1 + |Du|^{2} \right) dx \leq M^{2} \left(\kappa_{n} R^{n+2} + R^{2} \int_{B(R)} |Du|^{2} dx \right)$$

$$\leq M^{2} \left(\kappa_{n} + c^{\star}(\lambda, n) \|Du\|_{BMO(\Omega,\mathbb{R}^{nN})}^{2} \right) R^{\delta}.$$
(13)

By means of (13) we get from (8)

$$\phi(\sigma) \leq \left[4L\left(\frac{\sigma}{R}\right)^{n+2} + \frac{12\left(1+2L\left(\frac{\sigma}{R}\right)^{n+2}\right)}{\nu^2}K^{\star}\right]\phi(2R) + \frac{12\left(1+2L\left(\frac{\sigma}{R}\right)^{n+2}\right)}{\nu^2}$$
$$\times \left(K^{\star} + M^2\right)\left(\kappa_n + c^{\star}(\lambda, n)\|Du\|_{BMO(\Omega, \mathbb{R}^{nN})}^2 + 2\|Df\|_{L^{2,\delta-2}(\Omega, \mathbb{R}^{nN})}^2\right)R^{\delta}.$$

Thus the inequality (4) is satisfied with

$$A = 4L$$

$$K = \frac{12\left(1 + 2L\left(\frac{\sigma}{R}\right)^{n+2}\right)}{\nu^2} K^*$$

$$B = \frac{12\left(1 + 2L\left(\frac{\sigma}{R}\right)^{n+2}\right)}{\nu^2} (K^* + M^2)$$

$$\times \left(\kappa_n + \|Du\|_{BMO(\Omega,\mathbb{R}^{nN})}^2 + 2\|Df\|_{L^{2,\delta-2}(\Omega,\mathbb{R}^{nN})}^2\right).$$

We take $\alpha = n + 2$, $\beta = n + 2\gamma$. Note that ϵ_0 in Lemma 2.3 can be calculated explicitly (see the proof of Lemma 2.1., Chapter III in [8]). Then assumption (2) implies that $K < \epsilon_0$ and all assumptions of Lemma 2.3 are satisfied. Hence $\phi(\sigma) \leq C\sigma^{\delta}$. The thesis follows from Proposition 2.1, Part (b).

References

- Campanato, S., Sistemi Ellittici in Forma Divergenza. Regolarita All'Interno (in Italian). Pisa: Quaderni Scuola Norm. Sup. Pisa 1980.
- [2] Campanato, S., Hölder continuity of the solutions of some non-linear elliptic systems. Advances Math. 48 (1983), 16 – 43.
- [3] Campanato, S., A maximum principle for non-linear elliptic systems, Boundary fundamental estimates. *Advances Math.* 66 (1987), 293 317.
- [4] Daněček, J., Regularity for nonlinear elliptic systems of second order. Comment. Math. Univ. Carolin. 27 (1986)(4), 755 – 764.

- [5] Daněček, J., John, O. and Stará, J., Interior $C^{1,\gamma}$ -regularity for weak solutions of nonlinear second order elliptic system. *Math. Nachr.* 276 (2004), 47 56.
- [6] Daněček, J., John, O. and Stará, J., Structural conditions guaranteeing $C^{1,\gamma}$ regularity of weak solutions to nonlinear second-order elliptic systems. Nonlinear Anal. 66 (2007), 288 300.
- [7] De Giorgi, E., Un esempio di estremali discontinue per un problema variazionale di tipo ellitico (in Italian). Boll. Un. Mat. Ital. IV, Ser. 1 (1968), 135 – 137.
- [8] Giaquinta, M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals Math. Studies 105. Princeton (NJ): Princenton Univ. Press 1983.
- [9] Giusti, E. and Miranda, M., Un esempio di soluzioni discontinue per un problema di minimo relativo ad un integrale di calcolo delle ellitico (in Italian). *Boll. Un. Mat. Ital.* IV, Ser. 1 (1968), 219 – 226.
- [10] Kufner, A., John, O. and Fučík, S., Function Spaces. Prague: Academia 1977.
- [11] Mazya, V. G., Examples of nonregular solutions of quasilinear elliptic equations with analytic coefficients. *Funct. Anal. Appl.* 2 (1968), 230 – 234.
- [12] Meyers, N. G., An L_p estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa (3) 17 (1963), 189 - 206.
- [13] Nečas, J., Introduction to the Theory of Nonlinear Elliptic Equations. Teubner-Texte Math. 52. Leipzig: Teubner 1983.
- [14] Nečas, J., Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions for regularity. In: *Theory of Nonlinear Operators* (Proc. 4th Int. Summer School, Berlin 1975; ed.: R. Kluge). Berlin: Akademie-Verlag 1977, pp. 197 – 206.
- [15] Nečas, J., John, O. and Stará, J., Counterexample to the regularity of weak solution of elliptic systems. *Comment. Math. Univ. Carolin.* 21 (1980)(1), 145 – 154.
- [16] Stará, J., Regularity result for non-linear elliptic systems in two dimensions. Ann. Scuola Norm. Sup. Pisa 25 (1971), 163 – 190.
- [17] Šverák, V. and Yan, X., A singular minimizer of a smooth strongly convex functional in three dimensions. *Calc. Var. Partial Diff. Eqs.* 10 (2000)(3), 213 – 221.
- [18] Šverák, V. and Yan, X., Non-Lipschitz minimizers of smooth uniformly convex functionals. Proc. Nat. Acad. Sci. USA 99 (2002)(24), 15269 – 15276.
- [19] Ziemer, W. P., Weakly Differentiable Functions. Heidelberg: Springer 1989.

Received January 25, 2007; revised May 31, 2007